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Abstract 

Traveling wave solutions of the Oskolkov equation, which is a model describing the dynamics of an 

incompressible visco-elastic Kelvin-Voigt fluid, are investigated in this study. Complex trigonometric and 

complex hyperbolic solutions of Oskolkov equation are obtained using the sub equation method. In 

these obtained solutions, graphs are presented by assigning special values to the parameters. The 

presented graphics are drawn with a computer package program. Implemented method is powerful 

and an effective method to achieve the exact solutions of nonlinear partial differential equations 

(NPDEs). 

 

Akışkanlar Dinamiğinde Oskolkov Denkleminin Tam Çözümleri 

 

Anahtar Kelimeler 

Alt denklem metodu; 

Oskolkov denklemi; 

Lineer olmayan kısmi 

diferansiyel denklem; 

Tam çözüm 

Öz 

Bu çalışmada, sıkıştırılamaz bir visko-elastik Kelvin-Voigt akışkanının dinamiklerini tanımlayan bir model 

olan Oskolkov denkleminin gezici dalga çözümleri araştırıldı. Alt denklem yöntemini kullanarak Oskolkov 

denkleminin karmaşık trigonometrik ve karmaşık hiperbolik çözümleri elde edildi. Bu elde edilen 

çözümlerde parametrelere özel değerler atanarak grafikler sunuldu. Sunulan grafikler bir bilgisayar 

paket programı ile çizildi. Uygulanan yöntem, lineer olmayan kısmi diferansiyel denklemlerin tam 

çözümlerini üretmek için güçlü ve etkili bir yöntemdir. 
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1. Introduction 

Mathematical models, called NPDEs include plasma 

physics, chemistry, quantum mechanics, hydro-

dynamic molecular biology, nonlinear optics, sheet 

water wave, biological science, optical fibers, etc. as 

seen in various fields of nonlinear science.  

Investigating NPDEs provides a clearer 

understanding of complex events. Recently, today 

by experts from around the world drew attention to 

several new mathematical models used to describe 

real-world problems. 

In that sense, some methods are new direct 

algebraic method Kurt et al. (2020), Extended trial 

equation method Gurefe et al. (2013), simplest 

equation method Chen and Jiang (2018), modified 

Kudryashov method Yokus et al. (2021), functional 

variable method Liu and Chen (2013), Hirota bilinear 

method Zhang et al. (2021), modified (1/G′)-

expansion method (Yokus et al. 2022, Duran et al. 

2021), first integral method Raslan (2008), modified 

expansion method Duran and Kaya (2021), the 

Laplace method Akgül and Modanlı (2022), (𝐺′/𝐺)-

expansion method (Zayed and Gepreel 2009). 

The Oskolkov equation appears in various study, 

such as exact solutions of the Oskolkov equation 

have been presented by using the modified (G′∕G)- 

method Alam et al. (2022), Ghanbari has been 

obtained exact solutions for two Oskolkov-type 

equations Ghanbari (2021), anayltical solutions 

have been obtained by aid of the modified simple 

equation method for Oskolkov equation Roshid and 

Roshid (2018), Thabet et al.  have been presented 
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exact solutions for Oskolkov equations with 

exponential rational function method Thabet et al.  

(2022), a set of shock wave solutions for generalised 

Oskolkov equation is obtained using the unified 

method Ak et al. (2018), Gözükızıl and Akçağıl have 

been attained the analytical solutions for the 

Oskolkov equation via tanh-coth method (Gözükızıl 

and Akçağıl 2013). 

The goal of this study is to use the sub equation 

method to determine the traveling wave solution of 

the (1+1)-D Oskolkov equation. The Oskolkov 

equation can be shown in the form of 

𝑢𝑡 − 𝛽𝑢𝑥𝑥𝑡 − 𝛼𝑢𝑥𝑥 + 𝑢𝑢𝑥 = 0. (1) 

Here  𝛼, 𝛽 are constants and 𝑢 is a function of 𝑥 

and 𝑡. The solution of the Oskolkov equation with 

the sub equation method is not available in the 

literature. In this study, different solutions of the 

Oskolkov equation from the literature are presented 

using the sub equation method. 

The outline of this article is as follows: in Section 2 

introduces the sub-equation method for differential 

equations. In Section 3, traveling wave solutions of 

(1+1) dimensional Oskolkov equation are generated 

using the sub-equation method. Some of the 

important results of the article are presented in 

Section 4. 

 2. Sub Equation Method 

Consider the following general form of a NPDE with 

u as the dependent variable and x,t as the 

independent variables Duran et al. (2021),   

𝑃 (𝑢,
𝜕𝑢

𝜕𝑡
,
𝜕𝑢

𝜕𝑥
,
𝜕2𝑢

𝜕𝑥2
, . . . ) = 0. (2) 

By applying the traditional wave conversion 

𝑢 = 𝑢(𝑥, 𝑡) = 𝑢(𝜉),   𝜉 = 𝑥 − 𝑐𝑡, 𝑐 ≠ 0,  (3) 

𝑐 is the velocity of the wave and a constant. 

Equation (2) converts into ODE 

𝑇(𝑢, 𝑢′, 𝑢′′, . . . ) = 0. (4) 

It is assumed that the solution of equation (4) has 

the form 

𝑢(𝜉) = ∑ 𝑎𝑖
𝑛
𝑖=0 𝐺𝑖(𝜉), 𝑎𝑛 ≠ 0, (5)                

here 𝑎𝑖 , (𝑖 = (0,1, … , 𝑛)) are constants to be 

determined. 𝑛 denotes a constant to be found by 

using the balancing process Equation (4) and  

𝐺 = 𝐺(𝜉)   gratifies the ODE below 

𝐺′(𝜉) = 𝜇 + (𝐺(𝜉))2 = 0, 𝜇 ∈ 𝑅.      (6) 

Some specific solutions for equation (6) are 

presented in the formulas below, 

G(𝜉) =

{
 
 

 
 
−√−𝜇 tanh(√−𝜇𝜉),  𝜇 < 0,

−√−𝜇 coth(√−𝜇𝜉) , 𝜇 < 0,

√𝜇 tan(√𝜇𝜉) ,             𝜇 > 0,

−√𝜇 cot(√𝜇𝜉) ,        𝜇 > 0,

   
−1

𝜉+𝑟
, 𝑟 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝜇 = 0.

    (7) 

Equations (5) and (6) are substituted into equation 

(4) and the 𝐺𝑖(𝜉) coefficients are equal to zero. A 

nonlinear algebraic system is produced by this 

procedure 𝑎𝑖 , 𝑖 = (0,1, … , 𝑛). Finally, constants are 

determined by solving nonlinear algebraic 

equations. Replacing attained constants from 

nonlinear algebraic system equation (6) into 

equation (5) via a solution of equation (7). This 

provides the exact solutions for equation (2). 

One of the significant advantages of the method is 

that it produces three different types of traveling 

wave solutions: trigonometric, hyperbolic and 

rational forms. These solutions are in Eq. (7) 

formats.  At the same time, classical wave solution 

is applied in this method and the balancing term is 

used. Also, its difference from other methods: in the 

sub-equation method, base equation is an ordinary 

differential equation, and since the base equations 

in the expansion methods are different, they have 

different properties from the solutions produced by 

other methods.  
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3. The solutions of Oskolkov Equation 

Considering Oskolkov equation (1) and using 

transformation   𝑢 = 𝑢(𝑥, 𝑡) = 𝑢(𝜉),    𝜉 = 𝑥 − 𝑐𝑡,

𝑐 ≠ 0, we obtain   

  −𝑐𝑢′ + 𝛽𝑐u′′′ − 𝛼𝑢′′ + 𝑢𝑢′ = 0.  (8) 

Considering the Eq. (8), we get the balancing term 

𝑛 = 2 and taking into account the series given in 

equation (5), 

  𝑢(𝜉) = 𝑎0 + 𝑎1(G(𝜉)) + 𝑎2(G(𝜉))
2. (9) 

Here 𝑎1 ≠ 0 or 𝑎2 ≠ 0. If we substitute the 

equation (9) in the equation (8) and necessary 

adjustments are made. Thus, we may write equation 

system as: 

    𝐺(𝜉)0: −𝑐𝜇𝑎1 + 2𝑐𝛽𝜇
2𝑎1 = 0,  

𝐺(𝜉)1:−2𝛼𝜇𝑎1 + 𝜇𝑎1
2 − 2𝑐𝜇𝑎2 + 16𝑐𝛽𝜇

2𝑎2 +

2𝜇𝑎0𝑎2 = 0,  

𝐺(𝜉)2:−𝑐𝑎1 + 8𝑐𝛽𝜇𝑎1 + 𝑎0𝑎1 − 8𝛼𝜇𝑎2 +

3𝜇𝑎1𝑎2 = 0,  

𝐺(𝜉)3: − 2𝛼𝑎1 + 𝑎1
2 − 2𝑐𝑎2 + 40𝑐𝛽𝜇𝑎2 +

2𝑎0𝑎2 + 2𝜇𝑎2
2 = 0,  

𝐺(𝜉)4: 6𝑐𝛽𝑎1 − 6𝛼𝑎2 + 3𝑎1𝑎2 = 0,  

𝐺(𝜉)5: 24𝑐𝛽𝑎2 + 2𝑎2
2 = 0. (10) 

 𝛼, 𝛽, 𝜇, 𝑐  and  𝑎0, 𝑎1, 𝑎2 constants are attained 

from equation (10) the system via a package 

program. 

Case 1. If  𝜇 < 0, 

𝛽 =
5𝑎2

12𝑎0
, 𝑎1 = 2𝑖√

6

5
√𝑎0√𝑎2, 𝜇 =

6𝑎0

5𝑎2
,  

𝑐 = −
𝑎0

5
, 𝛼 = 𝑖√

5

6
√𝑎0√𝑎2, (11) 

replacing values equation (11) into equation (9) and 

we get complex hyperbolic solution for equation (1): 

  𝑢1(𝑥, 𝑡) = 𝑎0 −
12

5
𝑖√𝑎0√−

𝑎0

𝑎2
√𝑎2tanh[√

6

5
(𝑥 +

𝑡𝑎0

5
)√−

𝑎0

𝑎2
] −

6

5
𝑎0tanh[√

6

5
(𝑥 +

𝑡𝑎0

5
)√−

𝑎0

𝑎2
]2.     (12) 

 

 

Figure 1. 3D, contour, and 2D graphs of in the  𝑢1(𝑥, 𝑡) 

obtained of the equation (1) for 𝜇 = −0.7, 𝑎2 =

−1.2, 𝑎0 = 0.7. 

If 
2 0a   and 0

2

0
a

a
  are selected, our complex-

valued traveling wave solution turns into a real-

valued form. Similar situations can be encountered 

in other cases. 

 

Case 2. If 𝜇 < 0, 

𝛽 =
5𝑎2

12𝑎0
, 𝑎1 = 2𝑖√

6

5
√𝑎0√𝑎2, 𝜇 =

6𝑎0

5𝑎2
,  

𝑐 = −
𝑎0

5
, 𝛼 = 𝑖√

5

6
√𝑎0√𝑎2, (13)       

replacing values equation (13) into equation (9), we 

attain complex hyperbolic solution for equation (1): 
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𝑢2(𝑥, 𝑡) = 𝑎0 −
6

5
coth[√

6

5
(𝑥 +

𝑡𝑎0

5
)√−

𝑎0

𝑎2
]2𝑎0 −

12

5
𝑖coth[√

6

5
(𝑥 +

𝑡𝑎0

5
)√−

𝑎0

𝑎2
]√𝑎0√−

𝑎0

𝑎2
√𝑎2. (14) 

 

 

Figure 2. 3D, contour, and 2D graphs of the 𝑢2(𝑥, 𝑡)  

obtained of the equation (1) for 𝜇 = −0.1, 𝑎2 =

= −1.2, 𝑎0 = 0.1. 

Case 3. If 𝜇 > 0, 

𝛽 =
5𝑎2

12𝑎0
, 𝑎1 = 2𝑖√

6

5
√𝑎0√𝑎2, 𝜇 =

6𝑎0

5𝑎2
,  

𝑐 = −
𝑎0

5
, 𝛼 = 𝑖√

5

6
√𝑎0√𝑎2, (15)         

replacing values equation (15) into equation (9), we 

get complex trigonometric solutions for equation 

(1): 

𝑢3(𝑥, 𝑡) = 𝑎0 +
12

5
𝑖√𝑎0√

𝑎0

𝑎2
√𝑎2tan[√

6

5
(𝑥 +

𝑡𝑎0

5
)√

𝑎0

𝑎2
] +

6

5
𝑎0tan[√

6

5
(𝑥 +

𝑡𝑎0

5
)√

𝑎0

𝑎2
]2.               (16) 

 

 
 

Figure 3. 3D, contour, and 2D graphs of the 𝑢3(𝑥, 𝑡) 

obtained of the equation (1) for 𝜇 = 0.7, 𝑎2 =

1.2, 𝑎0 = 0.7. 
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Case 4. If 𝜇 > 0, 

𝛽 =
5𝑎2

12𝑎0
, 𝑎1 = 2𝑖√

6

5
√𝑎0√𝑎2, 𝜇 =

6𝑎0

5𝑎2
,  

𝑐 = −
𝑎0

5
, 𝛼 = 𝑖√

5

6
√𝑎0√𝑎2, (17)              

replacing values equation (17) into equation (9), we 

get complex trigonometric solutions for equation 

(1): 

𝑢4(𝑥, 𝑡) = 𝑎0 +
6

5
cot[√

6

5
(𝑥 +

𝑡𝑎0

5
)√

𝑎0

𝑎2
]2𝑎0 −

12

5
𝑖cot[√

6

5
(𝑥 +

𝑡𝑎0

5
)√

𝑎0

𝑎2
]√𝑎0√

𝑎0

𝑎2

√𝑎2. (18) 

 

 

  

 
 

Figure 4. 3D, contour, and 2D graphs of the 𝑢4(𝑥, 𝑡)  

obtained of the equation (1) for 𝜇 = 0.1, 𝑎2 =

1.2, 𝑎0 = 0.1. 

 

Case 5. If 𝜇 = 0, 

𝛽 =
5𝑎2

12𝑎0
, 𝑎1 = 2𝑖√

6

5
√𝑎0√𝑎2, 𝜇 =

6𝑎0

5𝑎2
,  

𝑐 = −
𝑎0

5
, 𝛼 = 𝑖√

5

6
√𝑎0√𝑎2, (19)         

For an algebraic solution to exist, 0   had to be. 

𝜇  is not zero so algebraic solution cannot be 

written.  

 

4. Conclusion 

 

In the literature, different types of solutions of the 

Oskolkov equation have been presented with the 

help of different methods. For example; Ghanbari 

has been presented the exponential and hyperbolic 

type solutions of the Oskolkov equation (Ghanbari 

2021). Alam et al. have been presented kinkwave, 

periodic respiratory waves, cuspwave and periodic 

wave solutions in their studies (Alam et al. 2022). 

Roshid and Bashar have been presented on kinky 

periodic wave and breather wave (Roshid and 

Bashar 2019). 

In this study, solutions of Oskolkov equation in 

complex hyperbolic and complex trigonometric 

form are produced. In the solutions obtained, the 

3D, contour and 2D graphs are presented by giving 

special values to the parameters. The results 

attained here show that sub equation method is 

reliable, powerful and can be used to process other 

NPDEs. In addition, in this study, a computer 
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package program was used for graphs and 

calculations. 
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