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ASYMPTOTICALLY I2-LACUNARY STATISTICAL

EQUIVALENCE OF DOUBLE SEQUENCES OF SETS

UǦUR ULUSU, ERDİNÇ DÜNDAR

Abstract. In this paper, we introduce the concepts of Wijsman asymptoti-

cally I2-statistical equivalence, Wijsman strongly asymptotically I2-lacunary
equivalence and Wijsman asymptotically I2-lacunary statistical equivalence of

double sequences of sets and investigate the relationship between them.

1. introduction, definitions and notations

Throughout the paper N denotes the set of all positive integers and R the set of
all real numbers. The concept of convergence of a sequence of real numbers has been
extended to statistical convergence independently by Fast [11] and Schoenberg [30].
This concept was extended to the double sequences by Mursaleen and Edely [19].
Çakan and Altay [6] presented multidimensional analogues of the results presented
by Fridy and Orhan [13].

The idea of I-convergence was introduced by Kostyrko et al. [17] as a general-
ization of statistical convergence which is based on the structure of the idea I of
subset of the set of natural numbers. Recently, Das et al. [7] introduced new no-
tions, namely I-statistical convergence and I-lacunary statistical convergence by
using ideal. Das, Kostyrko, Wilczyński and Malik [8] introduced the concept of
I-convergence of double sequences in a metric space and studied some properties
of this convergence.

The concept of convergence of sequences of numbers has been extended by several
authors to convergence of sequences of sets (see, [3–5,34,35]). Nuray and Rhoades
[20] extended the notion of convergence of set sequences to statistical convergence
and gave some basic theorems. Ulusu and Nuray [32] defined the Wijsman lacunary
statistical convergence of sequence of sets and considered its relation with Wijsman
statistical convergence, which was defined by Nuray and Rhoades. Kişi and Nuray
[15] introduced a new convergence notion, for sequences of sets, which is called
Wijsman I-convergence by using ideal. Recently, Ulusu and Dündar [31] studied
the concepts of Wijsman I-statistical convergence, Wijsman I-lacunary statistical
convergence and Wijsman strongly I-lacunary convergence of sequences of sets.
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Nuray et al. [22] studied Wijsman statistical convergence, Hausdorff statisti-
cal convergence and Wijsman statistical Cauchy double sequences of sets and in-
vestigate the relationship between them. Nuray et al. [21] studied the concepts
of Wijsman I2, I∗2 -convergence and Wijsman I2, I∗2 -Cauchy double sequences of
sets. Dündar et al. [10] introduced the concepts of the Wijsman I2-statistical
convergence, Wijsman I2-lacunary statistical convergence and Wijsman strongly
I2-lacunary convergence of double sequences of sets.

Marouf [18] peresented definitions for asymptotically equivalent and asymptotic
regular matrices. Patterson [26] extend these concepts by presenting an asymptoti-
cally statistical equivalent analog of these definitions. Patterson and Savaş [27] ex-
tend the definitions presented in [26] to lacunary sequences. In addition to these def-
initions, natural inclusion theorems were presented. Recently, Savaş [28] presented
the concept of I-asymptotically lacunary statistically equivalence which is a nat-
ural combination of the definitions for asymptotically equivalence and I-lacunary
statistical convergence.

The concept of asymptotically equivalence of sequences of real numbers which
is defined by Marouf [18] has been extended by Ulusu and Nuray [33] to concept
of Wijsman asymptotically equivalence of set sequences. In addition to these def-
initions, natural inclusion theorems are presented. Kişi et al. [16] introduced the
concept of Wijsman I-asymptotically equivalence of sequences of sets.

Now, we recall the basic definitions and concepts (See [1–3, 8–10, 12–14, 17, 18,
21–25,29]).

Two nonnegative sequences x = (xk) and y = (yk) are said to be asymptotically
equivalent if

lim
k

xk
yk

= 1.

It is denoted by x ∼ y.
Let (X, ρ) be a metric space. For any point x ∈ X and any non-empty subset A

of X, we define the distance from x to A by

d(x,A) = inf
a∈A

ρ(x, a).

Let (X, ρ) be a metric space and A,Ak be any non-empty closed subsets of X.
The sequence {Ak} is Wijsman convergent to A if for each x ∈ X,

lim
k→∞

d(x,Ak) = d(x,A).

A family of sets I ⊆ 2N is called an ideal if and only if
(i) ∅ ∈ I, (ii) For each A,B ∈ I we have A ∪ B ∈ I, (iii) For each A ∈ I and

each B ⊆ A we have B ∈ I.
An ideal is called non-trivial if N /∈ I and non-trivial ideal is called admissible if

{n} ∈ I for each n ∈ N.
Throughout the paper we take I2 as an admissible ideal in N× N.
A non-trivial ideal I2 of N×N is called strongly admissible if {i}×N and N×{i}

belongs to I2 for each i ∈ N .
It is evident that a strongly admissible ideal is admissible also.
I02 = {A ⊂ N × N : (∃m(A) ∈ N)(i, j ≥ m(A) ⇒ (i, j) 6∈ A)}. Then I02 is a

strongly admissible ideal and clearly an ideal I2 is strongly admissible if and only
if I02 ⊂ I2.
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The class of all A ⊂ N×N which has natural density zero denoted by If2 . Then

If2 is strongly admissible ideal.
A family of sets F ⊆ 2N is called a filter if and only if
(i) ∅ /∈ F, (ii) For each A,B ∈ F we have A ∩B ∈ F, (iii) For each A ∈ F and

each B ⊇ A we have B ∈ F.
I is a non-trivial ideal in N if and only if F (I) = {M ⊂ N : (∃A ∈ I)(M = N\A)}

is a filter in N.
An admissible ideal I2 ⊂ 2N×N satisfies the property (AP2) if for every countable

family of mutually disjoint sets {A1, A2, ...} belonging to I2, there exists a countable
family of sets {B1, B2, ...} such that Aj∆Bj ∈ I02 , i.e., Aj∆Bj is included in the
finite union of rows and columns in N × N for each j ∈ N and B =

⋃∞
j=1Bj ∈ I2

(hence Bj ∈ I2 for each j ∈ N).
A double sequence x = (xkj)k,j∈N of real numbers is said to be convergent to

L ∈ R in Pringsheim’s sense if for any ε > 0, there exists Nε ∈ N such that
|xkj − L| < ε, whenever k, j > Nε. In this case, we write

P − lim
k,j→∞

xkj = L or lim
k,j→∞

xkj = L.

Throughout the paper, we let (X, ρ) be a separable metric space, I2 ⊆ 2N×N be
a strongly admissible ideal and A,Akj be any non-empty closed subsets of X.

The double sequence {Akj} is Wijsman convergent to A if for each x ∈ X,

P − lim
k,j→∞

d(x,Akj) = d(x,A) or lim
k,j→∞

d(x,Akj) = d(x,A).

The double sequence {Akj} is Wijsman statistically convergent to A if for every
ε > 0 and for each x ∈ X,

lim
m,n→∞

1

mn
|{k ≤ m, j ≤ n : |d(x,Akj)− d(x,A)| ≥ ε}| = 0,

that is, |d(x,Akj)− d(x,A)| < ε for almost every (k, j).
By a lacunary sequence we mean an increasing integer sequence θ = {kr} such

that k0 = 0 and hr = kr − kr−1 →∞ as r →∞.
The double sequence θ = {(kr, js)} is called double lacunary sequence if there

exist two increasing sequence of integers such that

k0 = 0, hr = kr − kr−1 →∞ as r →∞

and

j0 = 0, h̄u = ju − ju−1 →∞ as u→∞.
We use following notations in the sequel:

kru = krju, hru = hrh̄u, Iru = {(k, j) : kr−1 < k ≤ kr and ju−1 < j ≤ ju},

qr =
kr
kr−1

and qu =
ju
ju−1

.

Let θ be a double lacunary sequence. The double sequence {Akj} is Wijsman
strongly lacunary convergent to A if for each x ∈ X,

lim
r,u→∞

1

hrh̄u

kr∑
k=kr−1+1

ju∑
j=ju−1+1

|d(x,Akj)− d(x,A)| = 0.
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Let θ be a double lacunary sequence. The double sequence {Akj} is Wijsman
lacunary statistically convergent to A, if for every ε > 0 and for each x ∈ X,

lim
r,u→∞

1

hrh̄u
|{(k, j) ∈ Iru : |d(x,Akj)− d(x,A)| ≥ ε}| = 0.

The double sequence of sets {Akj} is Wijsman I2-convergent to A, if for every
ε > 0 and for each x ∈ X,

{(k, j) ∈ N× N : |d(x,Akj)− d(x,A)| ≥ ε} ∈ I2.

In this case we write IW2
− lim
k,j→∞

Akj = A.

We define d(x;Akj , Bkj) as follows:

d(x;Akj , Bkj) =


d(x,Akj)

d(x,Bkj)
, x 6∈ Akj ∪Bkj

L , x ∈ Akj ∪Bkj .

The double sequences {Akj} and {Bkj} are Wijsman asymptotically equivalent
of multiple L if for each x ∈ X, lim

k,j→∞
d(x;Akj , Bkj) = L.

The double sequences {Akj} and {Bkj} are Wijsman asymptotically statistical
equivalent of multiple L if for every ε > 0 and for each x ∈ X,

lim
m,n→∞

1

mn

∣∣∣{k ≤ m, j ≤ n : |d(x;Akj , Bkj)− L| ≥ ε
}∣∣∣ = 0.

Let θ be a double lacunary sequence. The double sequences {Akj} and {Bkj}
are Wijsman strongly asymptotically lacunary equivalent of multiple L if for each
x ∈ X,

lim
r,u→∞

1

hrhu

∑
k,j∈Iru

|d(x;Akj , Bkj)− L| = 0.

Let θ be a double lacunary sequence. The double sequences {Akj} and {Bkj} are
Wijsman asymptotically lacunary statistical equivalent of multiple L if for every
ε > 0 and each x ∈ X,

lim
r,u→∞

1

hrhu

∣∣∣{(k, j) ∈ Iru : |d(x;Akj , Bkj)− L| ≥ ε
}∣∣∣ = 0.

The sequence {Akj} is Wijsman I2-statistical convergent toA or S (IW2)-convergent
to A if for every ε > 0, δ > 0 and for each x ∈ X,{

(m,n) ∈ N× N :
1

mn
|{k ≤ m, j ≤ n : |d(x,Akj)− d(x,A)| ≥ ε}| ≥ δ

}
∈ I2.

In this case, we write Akj → A (S (IW2
)) .

Let θ be a double lacunary sequence. The sequence {Akj} is said to be Wijsman
strongly I2-lacunary convergent to A or Nθ[IW2

]-convergent to A if for every ε > 0
and for each x ∈ X,(r, u) ∈ N× N :

1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)| ≥ ε

 ∈ I2.
In this case, we write Akj → A (Nθ [IW2

]) .
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Let θ be a double lacunary sequence. The sequence {Akj} is Wijsman I2-
lacunary statistical convergent to A or Sθ (IW2)-convergent to A if for every ε > 0,
δ > 0 and for each x ∈ X,{

(r, u) ∈ N× N :
1

hrhu
| {(k, j) ∈ Iru : |d(x,Akj)− d(x,A)| ≥ ε} | ≥ δ

}
∈ I2.

In this case, we write Akj → A (Sθ (IW2
)) .

X ⊂ R, f, g : X → R functions and a point a ∈ X ′ are given. If f(x) = α(x)g(x)

for ∀x ∈
o

U δ(a) ∩ X, then for x ∈ X we write f = O(g) as x → a, where for any

δ > 0, α : X → R is bounded function on
o

Uδ(a) ∩X. In this case, if there exists a

c ≥ 0 such that |f(x)| ≤ c|g(x)| for ∀x ∈
o

U δ(a) ∩X, then for x ∈ X, f = O(g) as
x→ a.

2. main results

In this section, we define the concepts of Wijsman asymptotically I2-statistical
equivalence, Wijsman strongly asymptotically I2-lacunary equivalence and Wijs-
man asymptotically I2-lacunary statistical equivalence of double sequences of sets
and investigate the relationship between them.

Definition 2.1. The double sequences {Akj} and {Bkj} are Wijsman asymptoti-
cally I2-equivalent of multiple L if for every ε > 0 and each x ∈ X

{(k, j) ∈ N× N : |d(x;Akj , Bkj)− L| ≥ ε} ∈ I2.

In this case, we write Akj
ILW2∼ Bkj and simply Wijsman asymptotically I2-equivalent

if L = 1.

Definition 2.2. The double sequences {Akj} and {Bkj} are Wijsman asymptoti-
cally I2-statistical equivalent of multiple L if for every ε > 0, δ > 0 and for each
x ∈ X,{

(m,n) ∈ N× N :
1

mn
|{k ≤ m, j ≤ n : |d(x;Akj , Bkj)− L| ≥ ε}| ≥ δ

}
∈ I2.

In this case, we write Akj
S(ILW2

)
∼ Bkj and simply Wijsman asymptotically I2-

statistical equivalent if L = 1. The set of Wijsman asymptotically I2-statistical
equivalent double sequences will be denoted by

{
S
(
ILW2

)}
.

For I2 = If2 , Wijsman asymptotically I2-statistical equivalent of multiple L
coincides with Wijsman asymptotically statistical equivalent of multiple L which is
defined in [23].

As an example, consider the following double sequences;

Akj =

{
{(x, y) ∈ R2 : x2 + y2 + kjy = 0} , if k and j are a square integer,
{(1, 1)} , otherwise.

and

Bkj =

{
{(x, y) ∈ R2 : x2 + y2 − kjy = 0} , if k and j are a square integer,
{(1, 1)} , otherwise.
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If we take I2 = If2 , since{
(m,n) ∈ N× N :

1

mn
|{k ≤ m, j ≤ n : |d(x;Akj , Bkj)− L| ≥ ε}| ≥ δ

}
∈ If2 ,

then the double sequences {Akj} and {Bkj} are Wijsman asymptotically I2-statistical
equivalent.

Definition 2.3. Let θ be a double lacunary sequence. The double sequences {Akj}
and {Bkj} are Wijsman asymptotically I2-lacunary equivalent of multiple L if for
every ε > 0 and for each x ∈ X,(r, u) ∈ N× N :

( 1

hrhu

∑
(k,j)∈Iru

d(x;Akj , Bkj)− L
)
≥ ε

 ∈ I2.
In this case, we write Akj

Nθ(ILW2
)

∼ Bkj and simply Wijsman asymptotically I2-
lacunary equivalent if L = 1.

Definition 2.4. Let θ be a double lacunary sequence. The double sequences {Akj}
and {Bkj} are said to be Wijsman strongly asymptotically I2-lacunary equivalent
of multiple L if for every ε > 0 and for each x ∈ X,(r, u) ∈ N× N :

1

hrhu

∑
(k,j)∈Iru

|d(x;Akj , Bkj)− L| ≥ ε

 ∈ I2.
In this case, we write Akj

Nθ[ILW2
]

∼ Bkj and simply Wijsman strongly asymptotically
I2-lacunary equivalent if L = 1. The set of Wijsman strongly asymptotically I2-
lacunary equivalent double sequences will be denoted by

{
Nθ
[
ILW2

] }
.

As an example, consider the following double sequences;

Akj :=


{

(x, y) ∈ R2 :
(x−

√
kj)2

kj
+

y2

2kj
= 1

}
, if

kr−1 < k < kr−1 + [
√
hr],

ju−1 < j < ju−1 + [
√
hu].

{(1, 1)} , otherwise.

and

Bkj :=


{

(x, y) ∈ R2 :
(x+

√
kj)2

kj
+

y2

2kj
= 1

}
, if

kr−1 < k < kr−1 + [
√
hr],

ju−1 < j < ju−1 + [
√
hu].

{(1, 1)} , otherwise.

If we take I2 = If2 , since(r, u) ∈ N× N :
1

hrhu

∑
(k,j)∈Iru

|d(x;Akj , Bkj)− L| ≥ ε

 ∈ If2 ,
then the double sequences {Akj} and {Bkj} are Wijsman strongly asymptotically
I2-lacunary equivalent.

Definition 2.5. Let θ be a double lacunary sequence. The double sequences {Akj}
and {Bkj} are Wijsman asymptotically I2-lacunary statistical equivalent of multiple
L if for every ε > 0, δ > 0 and for each x ∈ X,{

(r, u) ∈ N× N :
1

hrhu
| {(k, j) ∈ Iru : |d(x;Akj , Bkj)− L| ≥ ε} | ≥ δ

}
∈ I2.
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In this case, we write Akj
Sθ(ILW2

)
∼ Bkj and simply Wijsman asymptotically I2-

lacunary statistical equivalent if L = 1. The set of Wijsman asymptotically I2-
lacunary statistical equivalent double sequences will be denoted by

{
Sθ
(
ILW2

) }
.

For I2 = If2 , Wijsman asymptotically I2-lacunary statistical equivalent of mul-
tiple L coincides with Wijsman asymptotically lacunary statistical equivalent of
multiple L which is defined in [23].

As an example, consider the following double sequences;

Akj :=


{

(x, y) ∈ R2 : x2 + (y − 1)2 =
1

kj

}
, if

kr−1 < k < kr−1 + [
√
hr],

ju−1 < j < ju−1 + [
√
hu]

and k is a square integer,
{(0, 0)} , otherwise.

and

Bkj :=


{

(x, y) ∈ R2 : x2 + (y + 1)2 =
1

kj

}
, if

kr−1 < k < kr−1 + [
√
hr],

ju−1 < j < ju−1 + [
√
hu]

and k is a square integer,
{(0, 0)} , otherwise.

If we take I2 = If2 , since{
(r, u) ∈ N× N :

1

hrhu
| {(k, j) ∈ Iru : |d(x;Akj , Bkj)− L| ≥ ε} | ≥ δ

}
∈ If2 ,

then the sequences {Akj} and {Bkj} is Wijsman asymptotically I2-lacunary sta-
tistical equivalent.

Theorem 2.6. Let θ be a double lacunary sequence. Then,

Akj
Nθ[ILW2

]
∼ Bkj ⇒ Akj

Sθ(ILW2
)

∼ Bkj .

Proof. Suppose that {Akj} and {Bkj} is Wijsman strongly asymptotically I2-
lacunary equivalent of multiple L. Given ε > 0 and for each x ∈ X we can write∑

(k,j)∈Iru
|d(x;Akj , Bkj)− L| ≥

∑
(k,j)∈Iru

|d(x;Akj ,Bkj)−L|≥ε

|d(x;Akj , Bkj)− L|

≥ ε.
∣∣∣{(k, j) ∈ Iru : |d(x;Akj , Bkj)− L| ≥ ε

}∣∣∣
and so we get

1

ε · hrhu

∑
(k,j)∈Iru

|d(x;Akj , Bkj)−L| ≥
1

hrhu

∣∣∣{(k, j) ∈ Iru : |d(x;Akj , Bkj)−L| ≥ ε
}∣∣∣.

Hence, for each x ∈ X and for any δ > 0, we have{
(r, u) ∈ N× N :

1

hrhu

∣∣∣{(k, j) ∈ Iru : |d(x;Akj , Bkj)− L| ≥ ε
}∣∣∣ ≥ δ}

⊆

{
(r, u) ∈ N× N :

1

hrhu

∑
(k,j)∈Iru

|d(x;Akj , Bkj)− L| ≥ ε · δ

}
∈ I2

and so Akj
Sθ(ILW2

)
∼ Bkj . �
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Theorem 2.7. Let θ be a double lacunary sequence and d(x,Akj)O
(
d(x,Bkj)

)
.

Then,

Akj
Sθ(ILW2

)
∼ Bkj ⇒ Akj

Nθ[ILW2
]

∼ Bkj .

Proof. Suppose that {Akj} and {Bkj} is Wijsman asymptotically I2-lacunary sta-
tistical equivalent of multiple L and d(x,Akj)O

(
d(x,Bkj)

)
. Then, there exists an

M > 0 such that

|d(x;Akj , Bkj)− L| ≤M,

for each x ∈ X and all k, j ∈ N. Given ε > 0, for each x ∈ X we get

1

hrhu

∑
(k,j)∈Iru

|d(x;Akj , Bkj)− L|

=
1

hrhu

∑
(k,j)∈Iru

|d(x;Akj ,Bkj)−L|≥ ε2

|d(x;Akj , Bkj)− L|

+
1

hrhu

∑
(k,j)∈Iru

|d(x;Akj ,Bkj)−L|< ε
2

|d(x;Akj , Bkj)− L|

≤ M

hrhu

∣∣∣{(k, j) ∈ Iru : |d(x;Akj , Bkj)− L| ≥ ε
2

}∣∣∣+
ε

2
.

Hence, for each x ∈ X we have{
(r, u) ∈ N× N :

1

hrhu

∑
(k,j)∈Iru

|d(x;Akj , Bkj)− L| ≥ ε

}

⊆
{

(r, u) ∈ N× N :
1

hrhu

∣∣∣{(k, j) ∈ Iru : |d(x;Akj , Bkj)− L| ≥ ε
2

}∣∣∣ ≥ ε
2M

}
∈ I2

and so Akj
Nθ[ILW2

]
∼ Bkj . �

We have the following Theorem by Theorem 2.6 and Theorem 2.7.

Theorem 2.8. Let θ be a double lacunary sequence. If d(x,Akj)O
(
d(x,Bkj)

)
, then{

Sθ
(
ILW2

) }
=
{
Nθ
[
ILW2

] }
.

Theorem 2.9. Let θ be a double lacunary sequence. If lim infr qr > 1 and
lim infu qu > 1 then,

Akj
S(ILW2

)
∼ Bkj ⇒ Akj

Sθ(ILW2
)

∼ Bkj .

Proof. Assume that lim infr qr > 1 and lim infu qu > 1, then there exist λ, µ > 0
such that

qr ≥ 1 + λ and qu ≥ 1 + µ

for sufficiently large r, u which implies that

hrhu
kru

≥ λµ

(1 + λ)(1 + µ)
.
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If {Akj} and {Bkj} is Wijsman asymptotically I2-statistical equivalent of mul-
tiple L, then for every ε > 0, for each x ∈ X and for sufficiently large r, u, we
get

1

krju

∣∣∣{k ≤ kr, j ≤ ju : |d(x;Akj , Bkj)− L| ≥ ε
}∣∣∣

≥ 1

krju

∣∣∣{(k, j) ∈ Iru : |d(x;Akj , Bkj)− L| ≥ ε
}∣∣∣

≥ λµ

(1 + λ)(1 + µ)
.

(
1

hrhu

∣∣∣{(k, j) ∈ Iru : |d(x;Akj , Bkj)− L| ≥ ε
}∣∣∣) .

Hence, for each x ∈ X and for any δ > 0 we have{
(r, u) :

1

hrhu

∣∣∣{(k, j) ∈ Iru : |d(x;Akj , Bkj)− L| ≥ ε
}∣∣∣ ≥ δ}

⊆
{

(r, u) :
1

krju

∣∣∣{k ≤ kr, j ≤ ju : |d(x;Akj , Bkj)− L| ≥ ε
}∣∣∣ ≥ δλµ

(1+λ)(1+µ)

}
∈ I2

and so Akj
SLθ (IW2)
∼ Bkj . �

Theorem 2.10. Let θ be a double lacunary sequence. If lim supr qr < ∞ and
lim supu qu <∞, then

Akj
Sθ(ILW2

)
∼ Bkj ⇒ Akj

S(ILW2
)

∼ Bkj .

Proof. If lim supr qr < ∞ and lim supu qu < ∞, then there is an M,N > 0 such
that qr < M and qu < N , for all r, u. Suppose that {Akj} and {Bkj} is Wijsman
asymptotically I2-lacunary statistical equivalent of multiple L and let

Uru = U(r, u, x) :=
∣∣∣{(k, j) ∈ Iru : |d(x;Akj , Bkj)− L| ≥ ε

}∣∣∣.
Since {Akj} and {Bkj} is Wijsman asymptotically I2-lacunary statistical equivalent
of multiple L, it follows that for every ε > 0 and δ > 0, for each x ∈ X,{

(r, u) ∈ N× N :
1

hrhu

∣∣∣{(k, j) ∈ Iru : |d(x;Akj , Bkj)− L| ≥ ε
}∣∣∣ ≥ δ}

=

{
(r, u) ∈ N× N :

Uru

hrhu
≥ δ
}
∈ I2.

Hence, we can choose a positive integers r0, u0 ∈ N such that

Uru

hrhu
< δ, for all r > r0, u > u0.

Now let

K := max
{
Uru : 1 ≤ r ≤ r0, 1 ≤ u ≤ u0

}
and let t and v be any integers satisfying kr−1 < t ≤ kr and ju−1 < v ≤ ju.
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Then, we have

1

tv

∣∣∣{k ≤ t, j ≤ v : |d(x;Akj , Bkj)− L| ≥ ε
}∣∣∣

≤ 1

kr−1ju−1

∣∣∣{k ≤ kr, j ≤ ju : |d(x;Akj , Bkj)− L| ≥ ε
}∣∣∣

=
1

kr−1ju−1

(
U11 + U12 + U21 + U22 + · · ·+ Ur0u0

+ · · ·+ Uru
)

≤ K

kr−1ju−1
· r0u0

+
1

kr−1ju−1

(
hr0hu0+1

Ur0,u0+1

hr0hu0+1

+ hr0+1hu0

Ur0+1,u0

hr0+1hu0

+ · · ·+ hrhu
Uru

hrhu

)

≤ r0u0 ·K
kr−1ju−1

+
1

kr−1ju−1

 sup
r>r0
u>u0

Uru

hrhu

(hr0hu0+1 + hr0+1hu0 + · · ·+ hrhu
)

≤ r0u0 ·K
kr−1ju−1

+ ε · (kr − kr0)(ju − ju0
)

kr−1ju−1

≤ r0u0 ·K
kr−1ju−1

+ ε · qr · qu ≤
r0u0 ·K
kr−1ju−1

+ ε ·M ·N.

Since kr−1ju−1 →∞ as t, v →∞, it follows that

1

tv

∣∣∣{k ≤ t, j ≤ v : |d(x;Akj , Bkj)− L| ≥ ε
}∣∣∣→ 0

and consequently, for any δ1 > 0 the set{
(t, v) ∈ N× N :

1

tv

∣∣∣{k ≤ t, j ≤ v : |d(x;Akj , Bkj)− L| ≥ ε
}∣∣∣ ≥ δ1} ∈ I2.

This shows that {Akj} and {Bkj} is Wijsman asymptotically I2-statistical equiva-
lent of multiple L. �

We have the following Theorem by Theorem 2.9 and Theorem 2.10.

Theorem 2.11. Let θ be a double lacunary sequence. If

1 < lim inf
r
qr ≤ lim sup

r
qr <∞ and 1 < lim inf

u
qu ≤ lim sup

u
qu <∞,

then {
Sθ(ILW2

)
}

=
{
S(ILW2

)
}
.

Theorem 2.12. Let I2 ⊆ 2N×N be a strongly admissible ideal satisfying property
(AP2) and θ ∈ F(I2). If {Akj} , {Bkj} ∈

{
S(IL1

W2
)
}
∩
{
Sθ(IL2

W2
)
}
, then L1 = L2.

Proof. Assume that Akj
SL1(IW2)
∼ Bkj , Akj

S
L2
θ (IW2)
∼ Bkj and L1 6= L2. Let

0 < ε <
1

2
|L1 − L2|.
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Since I2 satisfies the property (AP2), there exists M ∈ F(I2) (i.e., N×N\M ∈ I2)
such that for each x ∈ X and for (m,n) ∈M,

lim
m,n→∞

1

mn

∣∣∣{k ≤ m, j ≤ n : |d(x;Akj , Bkj)− L1| ≥ ε
}∣∣∣ = 0.

Let the sets

P = {k ≤ m, j ≤ n : |d(x;Akj , Bkj)− L1|)| ≥ ε|}

and

R = {k ≤ m, j ≤ n : |d(x;Akj , Bkj)− L2| ≥ ε} .

Then, mn = |P ∪R| ≤ |P |+ |R|. This implies that

1 ≤ |P |
mn

+
|R|
mn

.

Since
|R|
mn
≤ 1 and lim

m,n→∞

|P |
mn

= 0,

so we must have

lim
m,n→∞

|R|
mn

= 1.

Let M∗ = M ∩ θ ∈ F(I2). Then, for (kl, jt) ∈M∗ the kljtth term of the statistical
limit expression

1

mn

∣∣∣{k ≤ m, j ≤ n : |d(x;Akj , Bkj)− L2| ≥ ε
}∣∣∣

is

1

kljt

∣∣∣∣∣
{

(k, j) ∈
l,t⋃

r,u=1,1

Iru : |d(x;Akj , Bkj)− L2| ≥ ε

}∣∣∣∣∣ =
1

l,t∑
r,u=1,1

hrhu

l,t∑
r,u=1,1

vruhrhu,

(2.1)
where

vru =
1

hrhu

∣∣∣{(k, j) ∈ Iru : |d(x;Akj , Bkj)− L2| ≥ ε
}∣∣∣ I2→ 0

because {Akj} and {Bkj} is Wijsman asymptotically I2-lacunary statistical equiva-
lent of multiple L2. Since θ is a double lacunary sequence, (2.1) is a regular weighted
mean transform of vru’s and therefore it is also I2-convergent to 0 as l, t→∞, and
so it has a subsequence which is convergent to 0 since I2 satisfies property (AP2).
But since this is a subsequence of{

1

mn

∣∣∣{k ≤ m, j ≤ n : |d(x;Akj , Bkj)− L2| ≥ ε
}∣∣∣}

(m,n)∈M
,

we infer that{
1

mn

∣∣∣{k ≤ m, j ≤ n : |d(x;Akj , Bkj)− L2| ≥ ε
}∣∣∣}

(m,n)∈M

is not convergent to 1. This is a contradiction. Hence, the proof is completed. �
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