LACUNARY \mathcal{I}_{2}-INVARIANT CONVERGENCE AND SOME PROPERTIES

UĞUR ULUSU, ERDİNÇ DÜNDAR* AND FATİH NURAY

Department of Mathematics, Faculty of Science and Literature, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
*Corresponding author: edundar@aku.edu.tr

Abstract

In this paper, the concept of lacunary invariant uniform density of any subset A of the set $\mathbb{N} \times \mathbb{N}$ is defined. Associate with this, the concept of lacunary \mathcal{I}_{2}-invariant convergence for double sequences is given. Also, we examine relationships between this new type convergence concept and the concepts of lacunary invariant convergence and p-strongly lacunary invariant convergence of double sequences. Finally, introducing lacunary \mathcal{I}_{2}^{*}-invariant convergence concept and lacunary \mathcal{I}_{2}-invariant Cauchy concepts, we give the relationships among these concepts and relationships with lacunary \mathcal{I}_{2}-invariant convergence concept.

1. Introduction

Several authors have studied invariant convergent sequences (see, $[8-10,13,15-17,19]$).

Let σ be a mapping of the positive integers into themselves. A continuous linear functional ϕ on ℓ_{∞}, the space of real bounded sequences, is said to be an invariant mean or a σ-mean if it satisfies following conditions:
(1) $\phi(x) \geq 0$, when the sequence $x=\left(x_{n}\right)$ has $x_{n} \geq 0$ for all n,
(2) $\phi(e)=1$, where $e=(1,1,1, \ldots)$ and
(3) $\phi\left(x_{\sigma(n)}\right)=\phi\left(x_{n}\right)$ for all $x \in \ell_{\infty}$.

The mappings σ are assumed to be one-to-one and such that $\sigma^{m}(n) \neq n$ for all positive integers n and m, where $\sigma^{m}(n)$ denotes the m th iterate of the mapping σ at n. Thus, ϕ extends the limit functional on c,

2010 Mathematics Subject Classification. 40A05, 40A35.
Key words and phrases. double sequence; \mathcal{I}-convergence; lacunary sequence; invariant convergence; \mathcal{I}-Cauchy sequence.
the space of convergent sequences, in the sense that $\phi(x)=\lim x$ for all $x \in c$.

In the case σ is translation mappings $\sigma(n)=n+1$, the σ-mean is often called a Banach limit.
By a lacunary sequence we mean an increasing integer sequence $\theta=\left\{k_{r}\right\}$ such that $k_{0}=0$ and $h_{r}=$ $k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ is denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$ (see, [4]).

The concept of lacunary strongly σ-convergence was introduced by Savaş [17] as below:

$$
L_{\theta}=\left\{x=\left(x_{k}\right): \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left|x_{\sigma^{k}(m)}-L\right|=0, \text { uniformly in } m\right\}
$$

Pancaroğlu and Nuray [13] defined the concept of lacunary invariant summability and the space $\left[V_{\sigma \theta}\right]_{q}$ as follows:

A sequence $x=\left(x_{k}\right)$ is said to be lacunary invariant summable to L if

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{m \in I_{r}} x_{\sigma^{m}(n)}=L
$$

uniformly in n.

A sequence $x=\left(x_{k}\right)$ is said to be strongly lacunary q-invariant convergent $(0<q<\infty)$ to L if

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{m \in I_{r}}\left|x_{\sigma^{m}(n)}-L\right|^{q}=0
$$

uniformly in n and it is denoted by $x_{k} \rightarrow L\left(\left[V_{\sigma \theta}\right]_{q}\right)$.

The idea of \mathcal{I}-convergence was introduced by Kostyrko et al. [5] as a generalization of statistical convergence which is based on the structure of the ideal \mathcal{I} of subset of the set of natural numbers \mathbb{N}.

A family of sets $\mathcal{I} \subseteq 2^{\mathbb{N}}$ is called an ideal if and only if $(i) \emptyset \in \mathcal{I},(i i)$ For each $A, B \in \mathcal{I}$ we have $A \cup B \in \mathcal{I}$, (iii) For each $A \in \mathcal{I}$ and each $B \subseteq A$ we have $B \in \mathcal{I}$.

An ideal is called non-trivial if $\mathbb{N} \notin \mathcal{I}$ and non-trivial ideal is called admissible if $\{n\} \in \mathcal{I}$ for each $n \in \mathbb{N}$.

A family of sets $\mathcal{F} \subseteq 2^{\mathbb{N}}$ is called a filter if and only if $(i) \emptyset \notin \mathcal{F},($ ii $)$ For each $A, B \in \mathcal{F}$ we have $A \cap B \in \mathcal{F}$, (iii) For each $A \in \mathcal{F}$ and each $B \supseteq A$ we have $B \in \mathcal{F}$.

For any ideal there is a filter $\mathcal{F}(\mathcal{I})$ corresponding with \mathcal{I}, given by

$$
\mathcal{F}(\mathcal{I})=\{M \subset \mathbb{N}:(\exists A \in \mathcal{I})(M=\mathbb{N} \backslash A)\}
$$

Recently, the concepts of lacunary σ-uniform density of the set $A \subseteq \mathbb{N}$, lacunary \mathcal{I}_{σ}-convergence, lacunary \mathcal{I}_{σ}^{*}-convergence, lacunary \mathcal{I}_{σ}-Cauchy and \mathcal{I}_{σ}^{*}-Cauchy sequences of real numbers were defined by Ulusu and

Nuray [20] and similar concepts can be seen in [12].

Let $\theta=\left\{k_{r}\right\}$ be a lacunary sequence, $A \subseteq \mathbb{N}$ and

$$
s_{r}:=\min _{n}\left\{\left|A \cap\left\{\sigma^{m}(n): m \in I_{r}\right\}\right|\right\}
$$

and

$$
S_{r}:=\max _{n}\left\{\left|A \cap\left\{\sigma^{m}(n): m \in I_{r}\right\}\right|\right\} .
$$

If the following limits exist

$$
\underline{V_{\theta}}(A):=\lim _{r \rightarrow \infty} \frac{s_{r}}{h_{r}}, \quad \overline{V_{\theta}}(A):=\lim _{r \rightarrow \infty} \frac{S_{r}}{h_{r}}
$$

then they are called a lower lacunary σ-uniform (lower $\sigma \theta$-uniform) density and an upper lacunary σ-uniform (upper $\sigma \theta$-uniform) density of the set A, respectively. If $\underline{V_{\theta}}(A)=\overline{V_{\theta}}(A)$, then $V_{\theta}(A)=\underline{V_{\theta}}(A)=\overline{V_{\theta}}(A)$ is called the lacunary σ-uniform density or $\sigma \theta$-uniform density of A.

Denote by $\mathcal{I}_{\sigma \theta}$ the class of all $A \subseteq \mathbb{N}$ with $V_{\theta}(A)=0$.

Let $\mathcal{I}_{\sigma \theta} \subset 2^{\mathbb{N}}$ be an admissible ideal. A sequence $\left(x_{k}\right)$ is said to be lacunary \mathcal{I}_{σ}-convergent or $\mathcal{I}_{\sigma \theta}{ }^{-}$ convergent to the number L if for every $\varepsilon>0$

$$
A_{\varepsilon}:=\left\{k:\left|x_{k}-L\right| \geq \varepsilon\right\}
$$

belongs to $\mathcal{I}_{\sigma \theta}$; i.e., $V_{\theta}\left(A_{\varepsilon}\right)=0$. In this case we write $\mathcal{I}_{\sigma \theta}-\lim x_{k}=L$.

The set of all $\mathcal{I}_{\sigma \theta}$-convergent sequences will be denoted by $\mathfrak{I}_{\sigma \theta}$.

Let $\mathcal{I}_{\sigma \theta} \subset 2^{\mathbb{N}}$ be an admissible ideal. A sequence $x=\left(x_{k}\right)$ is said to be $\mathcal{I}_{\sigma \theta}^{*}$-convergent to the number L if there exists a set $M=\left\{m_{1}<m_{2}<\ldots\right\} \in \mathcal{F}\left(\mathcal{I}_{\sigma \theta}\right)$ such that $\lim _{k \rightarrow \infty} x_{m_{k}}=L$. In this case we write $\mathcal{I}_{\sigma \theta}^{*}-\lim x_{k}=L$.

A sequence $\left(x_{k}\right)$ is said to be lacunary \mathcal{I}_{σ}-Cauchy sequence or $\mathcal{I}_{\sigma \theta}$-Cauchy sequence if for every $\varepsilon>0$, there exists a number $N=N(\varepsilon) \in \mathbb{N}$ such that

$$
A(\varepsilon)=\left\{k:\left|x_{k}-x_{N}\right| \geq \varepsilon\right\}
$$

belongs to $\mathcal{I}_{\sigma \theta}$; i.e., $V_{\theta}(A(\varepsilon))=0$.

A sequence $x=\left(x_{k}\right)$ is said to be $\mathcal{I}_{\sigma \theta}^{*}$-Cauchy sequences if there exists a set $M=\left\{m_{1}<m_{2}<\ldots<m_{k}<\right.$ $\ldots\} \in \mathcal{F}\left(\mathcal{I}_{\sigma \theta}\right)$ such that

$$
\lim _{k, p \rightarrow \infty}\left|x_{m_{k}}-x_{m_{p}}\right|=0
$$

Convergence and \mathcal{I}-convergence of double sequences in a metric space and some properties of this convergence, and similar concepts which are noted following can be seen in $[1,2,6,7,14,18]$.

A double sequence $x=\left(x_{k j}\right)_{k, j \in \mathbb{N}}$ of real numbers is said to be convergent to $L \in \mathbb{R}$ in Pringsheim's sense if for any $\varepsilon>0$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $\left|x_{k j}-L\right|<\varepsilon$, whenever $k, j>N_{\varepsilon}$. In this case, we write $P-\lim _{k, j \rightarrow \infty} x_{k j}=L \quad$ or $\quad \lim _{k, j \rightarrow \infty} x_{k j}=L$.

A double sequence $x=\left(x_{k j}\right)$ is said to be bounded if $\sup _{k, j} x_{k j}<\infty$. The set of all bounded double sequences of sets will be denoted by ℓ_{∞}^{2}.

A nontrivial ideal \mathcal{I}_{2} of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible ideal if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times\{i\}$ belong to \mathcal{I}_{2} for each $i \in \mathbb{N}$.

It is evident that a strongly admissible ideal is admissible also.

Throughout the paper we take \mathcal{I}_{2} as a strongly admissible ideal in $\mathbb{N} \times \mathbb{N}$.
$\mathcal{I}_{2}^{0}=\{A \subset \mathbb{N} \times \mathbb{N}:(\exists m(A) \in \mathbb{N})(i, j \geq m(A) \Rightarrow(i, j) \notin A)\}$. Then \mathcal{I}_{2}^{0} is a strongly admissible ideal and clearly an ideal \mathcal{I}_{2} is strongly admissible if and only if $\mathcal{I}_{2}^{0} \subset \mathcal{I}_{2}$.

An admissible ideal $\mathcal{I}_{2} \subset 2^{\mathbb{N} \times \mathbb{N}}$ satisfies the property (AP2) if for every countable family of mutually disjoint sets $\left\{E_{1}, E_{2}, \ldots\right\}$ belonging to \mathcal{I}_{2}, there exists a countable family of sets $\left\{F_{1}, F_{2}, \ldots\right\}$ such that $E_{j} \Delta F_{j} \in \mathcal{I}_{2}^{0}$, i.e., $E_{j} \Delta F_{j}$ is included in the finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $F=\bigcup_{j=1}^{\infty} F_{j} \in \mathcal{I}_{2}$ (hence $F_{j} \in \mathcal{I}_{2}$ for each $j \in \mathbb{N}$).

Let (X, ρ) be a metric space. A sequence $x=\left(x_{m n}\right)$ in X is said to be \mathcal{I}_{2}-convergent to $L \in X$, if for any $\varepsilon>0$

$$
A(\varepsilon)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}: \rho\left(x_{m n}, L\right) \geq \varepsilon\right\} \in \mathcal{I}_{2}
$$

In this case, we write $\mathcal{I}_{2}-\lim _{m, n \rightarrow \infty} x_{m n}=L$.

The double sequence $\theta=\left\{\left(k_{r}, j_{u}\right)\right\}$ is called double lacunary sequence if there exist two increasing sequence of integers such that

$$
k_{0}=0, h_{r}=k_{r}-k_{r-1} \rightarrow \infty \quad \text { and } \quad j_{0}=0, \bar{h}_{u}=j_{u}-j_{u-1} \rightarrow \infty \quad \text { as } \quad r, u \rightarrow \infty
$$

We use the following notations in the sequel:

$$
\begin{gathered}
k_{r u}=k_{r} j_{u}, \quad h_{r u}=h_{r} \bar{h}_{u}, \quad I_{r u}=\left\{(k, j): k_{r-1}<k \leq k_{r} \text { and } j_{u-1}<j \leq j_{u}\right\}, \\
q_{r}=\frac{k_{r}}{k_{r-1}} \text { and } q_{u}=\frac{j_{u}}{j_{u-1}} .
\end{gathered}
$$

Also, the idea of \mathcal{I}_{2}-invariant convergence concepts and \mathcal{I}_{2}-invariant Cauchy concepts of double sequences were defined by Dündar and Ulusu (see [3]).

2. Lacunary \mathcal{I}_{2}-Invariant Convergence

In this section, firstly, the concepts of lacunary invariant convergence of double sequence and lacunary invariant uniform density of any subset A of the set $\mathbb{N} \times \mathbb{N}$ are defined. Associate with this uniform density, the concept of lacunary \mathcal{I}_{2}-invariant convergence for double sequences is given. Also, we examine relationships between this new type convergence concept and the concepts of lacunary invariant convergence, p-strongly lacunary invariant convergence for double sequences.

Definition 2.1. A double sequence $x=\left(x_{k j}\right)$ is said to be lacunary invariant convergent to L if

$$
\lim _{r, u \rightarrow \infty} \frac{1}{h_{r u}} \sum_{k, j \in I_{r u}} x_{\sigma^{k}(m), \sigma^{j}(n)}=L
$$

uniformly in m, n and it is denoted by $x_{k j} \rightarrow L\left(V_{2}^{\sigma \theta}\right)$.

Definition 2.2. Let $\theta=\left\{\left(k_{r}, j_{u}\right)\right\}$ be a double lacunary sequence, $A \subseteq \mathbb{N} \times \mathbb{N}$ and

$$
s_{r u}:=\min _{m, n}\left|A \cap\left\{\left(\sigma^{k}(m), \sigma^{j}(n)\right):(k, j) \in I_{r u}\right\}\right|
$$

and

$$
S_{r u}:=\max _{m, n}\left|A \cap\left\{\left(\sigma^{k}(m), \sigma^{j}(n)\right):(k, j) \in I_{r u}\right\}\right| .
$$

If the following limits exist

$$
\underline{V_{2}^{\theta}}(A):=\lim _{r, u \rightarrow \infty} \frac{s_{r u}}{h_{r u}}, \quad \overline{V_{2}^{\theta}}(A):=\lim _{r, u \rightarrow \infty} \frac{S_{r u}}{h_{r u}}
$$

then they are called a lower lacunary σ-uniform density and an upper lacunary σ-uniform density of the set A, respectively. If $\underline{V_{2}^{\theta}}(A)=\overline{V_{2}^{\theta}}(A)$, then $V_{2}^{\theta}(A)=\underline{V_{2}^{\theta}}(A)=\overline{V_{2}^{\theta}}(A)$ is called the lacunary σ-uniform density of A.

Denote by $\mathcal{I}_{2}^{\sigma \theta}$ the class of all $A \subseteq \mathbb{N} \times \mathbb{N}$ with $V_{2}^{\theta}(A)=0$.

Throughout the paper we take $\mathcal{I}_{2}^{\sigma \theta}$ as a strongly admissible ideal in $\mathbb{N} \times \mathbb{N}$.

Definition 2.3. A double sequence $x=\left(x_{k j}\right)$ is said to be lacunary \mathcal{I}_{2}-invariant convergent or $\mathcal{I}_{2}^{\sigma \theta}$-convergent to the L if for every $\varepsilon>0$, the set

$$
A_{\varepsilon}:=\left\{(k, j) \in I_{r u}:\left|x_{k j}-L\right| \geq \varepsilon\right\}
$$

belongs to $\mathcal{I}_{2}^{\sigma \theta}$; i.e., $V_{2}^{\theta}\left(A_{\varepsilon}\right)=0$. In this case, we write

$$
\mathcal{I}_{2}^{\sigma \theta}-\lim x_{k j}=L \quad \text { or } \quad x_{k j} \rightarrow L\left(\mathcal{I}_{2}^{\sigma \theta}\right)
$$

The set of all $\mathcal{I}_{2}^{\sigma \theta}$-convergent sequences will be denoted by $\mathfrak{I}_{2}^{\sigma \theta}$.

Theorem 2.1. If $\mathcal{I}_{2}^{\sigma \theta}-\lim x_{k j}=L_{1}$ and $\mathcal{I}_{2}^{\sigma \theta}-\lim y_{k j}=L_{2}$, then
(i) $\mathcal{I}_{2}^{\sigma \theta}-\lim \left(x_{k j}+y_{k j}\right)=L_{1}+L_{2}$
(ii) $\mathcal{I}_{2}^{\sigma \theta}-\lim \alpha x_{k j}=\alpha L_{1}$ (α is a constant).

Proof. The proof is clear so we omit it.

Theorem 2.2. Suppose that $x=\left(x_{k j}\right)$ is a bounded double sequence. If $\left(x_{k j}\right)$ is lacunary \mathcal{I}_{2}-invariant convergent to L, then $\left(x_{k j}\right)$ is lacunary invariant convergent to L.

Proof. Let $\theta=\left\{\left(k_{r}, j_{u}\right)\right\}$ be a double lacunary sequence, $m, n \in \mathbb{N}$ be an arbitrary and $\varepsilon>0$. Now, we calculate

$$
t(k, j, r, u):=\left|\frac{1}{h_{r u}} \sum_{k, j \in I_{r u}} x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right|
$$

We have

$$
t(k, j, r, u) \leq t^{(1)}(k, j, r, u)+t^{(2)}(k, j, r, u)
$$

where

$$
t^{(1)}(k, j, r, u):=\frac{1}{h_{r u}} \sum_{\substack{k, j \in I_{r u} \\\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right| \geq \varepsilon}}\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right|
$$

and

$$
t^{(2)}(k, j, r, u):=\frac{1}{h_{r u}} \sum_{\substack{k, j \in I_{r u} \\\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right|<\varepsilon}}\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right| .
$$

We get $t^{(2)}(k, j, r, u)<\varepsilon$, for every $m, n=1,2, \ldots$ The boundedness of $x=\left(x_{k j}\right)$ implies that there exists a $K>0$ such that

$$
\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right| \leq K, \quad\left((k, j) \in I_{r u} ; m, n=1,2, \ldots\right)
$$

Then, this implies that

$$
\begin{aligned}
t^{(1)}(k, j, r, u) & \leq \frac{K}{h_{r u}}\left|\left\{(k, j) \in I_{r u}:\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right| \geq \varepsilon\right\}\right| \\
& \leq K \frac{\max _{m, n}\left|\left\{(k, j) \in I_{r u}:\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right| \geq \varepsilon\right\}\right|}{h_{r u}}=K \frac{S_{r u}}{h_{r u}},
\end{aligned}
$$

hence $\left(x_{k j}\right)$ is lacunary invariant summable to L.

The converse of Theorem 2.2 does not hold. For example, $x=\left(x_{k j}\right)$ is the double sequence defined by following;

$$
x_{k j}:=\left\{\begin{array}{ccc}
1 \quad, & \text { if } \begin{array}{l}
k_{r-1}<k<k_{r-1}+\left[\sqrt{h_{r}}\right], \\
j_{r-1}<j<j_{r-1}+\left[\sqrt{\bar{h}_{u}}\right],
\end{array} \\
& \\
0 \quad, \quad \text { if } \quad \begin{array}{l}
k_{r-1}<k<k_{r-1}+\left[\sqrt{h_{r}}\right], \\
j_{r-1}<j<j_{r-1}+\left[\sqrt{h_{u}}\right],
\end{array} \text { and } k+j \quad \text { is an even integer. } \quad \text { and } k+j \quad \text { is an odd integer. }
\end{array}\right.
$$

When $\sigma(m)=m+1$ and $\sigma(n)=n+1$, this sequence is lacunary invariant convergent to $\frac{1}{2}$ but it is not lacunary \mathcal{I}_{2}-invariant convergent.

In [20], Ulusu and Nuray gave some inclusion relations between $\left[V_{\sigma \theta}\right]_{q}$-convergence and lacunary \mathcal{I} invariant convergence, and showed that these are equivalent for bounded sequences. Now, we shall give analogous theorems which states inclusion relations between $\left[V_{2}^{\sigma \theta}\right]_{p}$-convergence and lacunary \mathcal{I}_{2}-invariant convergence, and show that these are equivalent for bounded double sequences.

Definition 2.4. A double sequence $x=\left(x_{k j}\right)$ is said to be strongly lacunary invariant convergent to L if

$$
\lim _{r, u \rightarrow \infty} \frac{1}{h_{r u}} \sum_{k, j \in I_{r u}}\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right|,
$$

uniformly in m, n and it is denoted by $x_{k j} \rightarrow L\left(\left[V_{2}^{\sigma \theta}\right]\right)$.

Definition 2.5. A double sequence $x=\left(x_{k j}\right)$ is said to be p-strongly lacunary invariant convergent $(0<$ $p<\infty)$ to L if

$$
\lim _{r, u \rightarrow \infty} \frac{1}{h_{r u}} \sum_{k, j \in I_{r u}}\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right|^{p}=0
$$

uniformly in m, n and it is denoted by $x_{k j} \rightarrow L\left(\left[V_{2}^{\sigma \theta}\right]_{p}\right)$.

Theorem 2.3. If a double sequence $x=\left(x_{k j}\right)$ is p-strongly lacunary invariant convergent to L, then ($x_{k j}$) is lacunary \mathcal{I}_{2}-invariant convergent to L.

Proof. Assume that $x_{k j} \rightarrow L\left(\left[V_{2}^{\sigma \theta}\right]_{p}\right)$ and given $\varepsilon>0$. Then, for every double lacunary sequence $\theta=$ $\left\{\left(k_{r}, j_{u}\right)\right\}$ and for every $m, n \in \mathbb{N}$, we have

$$
\begin{aligned}
\sum_{k, j \in I_{r u}}\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right|^{p} & \geq \sum_{\substack{(k, j) \in I_{r u} \\
\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right| \geq \varepsilon}}\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right|^{p} \\
& \geq \varepsilon^{p}\left|\left\{(k, j) \in I_{r u}:\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right| \geq \varepsilon\right\}\right| \\
& \geq \varepsilon^{p} \max _{m, n}\left|\left\{(k, j) \in I_{r u}:\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right| \geq \varepsilon\right\}\right|
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1}{h_{r u}} \sum_{k, j \in I_{r u}}\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right|^{p} & \geq \varepsilon^{p} \frac{\max _{m, n}\left|\left\{(k, j) \in I_{r u}:\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right| \geq \varepsilon\right\}\right|}{h_{r u}} \\
& =\varepsilon^{p} \frac{S_{r u}}{h_{r u}} .
\end{aligned}
$$

This implies

$$
\lim _{r, u \rightarrow \infty} \frac{S_{r u}}{h_{r u}}=0
$$

and so $\left(x_{k j}\right)$ is $\mathcal{I}_{2}^{\sigma \theta}$-convergent to L.

Theorem 2.4. If a double sequence $x=\left(x_{k j}\right) \in \ell_{\infty}^{2}$ and $\left(x_{k j}\right)$ is lacunary \mathcal{I}_{2}-invariant convergent to L, then $\left(x_{k j}\right)$ is p-strongly lacunary invariant convergent to $L(0<p<\infty)$.

Proof. Suppose that $x=\left(x_{k j}\right) \in \ell_{\infty}^{2}$ and $x_{k j} \rightarrow L\left(\mathcal{I}_{2}^{\sigma \theta}\right)$. Let $0<p<\infty$ and $\varepsilon>0$. By assumption we have $V_{2}^{\theta}\left(A_{\varepsilon}\right)=0$. The boundedness of $\left(x_{k j}\right)$ implies that there exists $K>0$ such that

$$
\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right| \leq K, \quad\left((k, j) \in I_{r, u} ; m, n=1,2, \ldots\right)
$$

Observe that, for every $m, n \in \mathbb{N}$ we have

$$
\begin{aligned}
\frac{1}{h_{r u}} \sum_{k, j \in I_{r u}}\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right|^{p}= & \frac{1}{h_{r u}} \sum_{\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right| \geq \varepsilon}\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right|^{p} \\
& +\frac{1}{h_{r u}} \sum_{\substack{k, j \in I_{r u} \\
\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right|<\varepsilon}}\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right|^{p} \\
\leq & K \frac{\max _{m, n}\left|\left\{(k, j) \in I_{r u}:\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right| \geq \varepsilon\right\}\right|}{h_{r u}}+\varepsilon^{p} \\
\leq & K \frac{S_{r u}}{h_{r u}}+\varepsilon^{p} .
\end{aligned}
$$

Hence, we obtain

$$
\lim _{r, u \rightarrow \infty} \frac{1}{h_{r u}} \sum_{k, j \in I_{r u}}\left|x_{\sigma^{k}(m), \sigma^{j}(n)}-L\right|^{p}=0
$$

uniformly in m, n.

Theorem 2.5. A double sequence $x=\left(x_{k j}\right) \in \ell_{\infty}^{2}$ and $\left(x_{k j}\right)$ is lacunary \mathcal{I}_{2}-invariant convergent to L if and only if $\left(x_{k j}\right)$ is p-strongly lacunary invariant convergent to $L(0<p<\infty$.)

Proof. This is an immediate consequence of Theorem 2.3 and Theorem 2.4.

Now, introducing lacunary \mathcal{I}_{2}^{*}-invariant convergence concept, lacunary \mathcal{I}_{2}^{σ}-Cauchy double sequence and $\mathcal{I}_{2^{*}}^{\sigma \theta}$-Cauchy double sequence concepts, we give the relationships among these concepts and relationships with lacunary \mathcal{I}_{2}-invariant convergence concept.

Definition 2.6. A double sequence $x=\left(x_{k j}\right)$ is lacunary \mathcal{I}_{2}^{*}-invariant convergent or $\mathcal{I}_{2^{*}}^{\sigma \theta}$-convergent to L if and only if there exists a set $M_{2} \in \mathcal{F}\left(\mathcal{I}_{2}^{\sigma \theta}\right)\left(\mathbb{N} \times \mathbb{N} \backslash M_{2}=H \in \mathcal{I}_{2}^{\sigma \theta}\right)$ such that

$$
\begin{equation*}
\lim _{\substack{k, j \rightarrow \infty \\(k, j) \in M_{2}}} x_{k j}=L \tag{2.1}
\end{equation*}
$$

In this case, we write $\mathcal{I}_{2^{*}}^{\sigma \theta}-\lim x_{k j}=L \quad$ or $\quad x_{k j} \rightarrow L\left(\mathcal{I}_{2^{*}}^{\sigma \theta}\right)$.

Theorem 2.6. If a double sequence $x=\left(x_{k j}\right)$ is lacunary \mathcal{I}_{2}^{*}-invariant convergent to L, then this sequence is lacunary \mathcal{I}_{2}-invariant convergent to L.

Proof. Since $\mathcal{I}_{2^{*}}^{\sigma \theta}-\lim _{k, j \rightarrow \infty} x_{k j}=L$, there exists a set $M_{2} \in \mathcal{F}\left(\mathcal{I}_{2}^{\sigma \theta}\right)\left(\mathbb{N} \times \mathbb{N} \backslash M_{2}=H \in \mathcal{I}_{2}^{\sigma \theta}\right)$ such that

$$
\lim _{\substack{k, j \rightarrow \infty \\(k, j) \in M_{2}}} x_{k j}=L .
$$

Given $\varepsilon>0$. By (2.1), there exists $k_{0}, j_{0} \in \mathbb{N}$ such that $\left|x_{k j}-L\right|<\varepsilon$, for all $(k, j) \in M_{2}$ and $k \geq k_{0}, j \geq j_{0}$. Hence, for every $\varepsilon>0$, we have

$$
\begin{aligned}
T(\varepsilon)= & \left\{(k, j) \in \mathbb{N} \times \mathbb{N}:\left|x_{k j}-L\right| \geq \varepsilon\right\} \\
& \subset H \cup\left(M_{2} \cap\left(\left(\left\{1,2, \ldots,\left(k_{0}-1\right)\right\} \times \mathbb{N}\right) \cup\left(\mathbb{N} \times\left\{1,2, \ldots,\left(k_{0}-1\right)\right\}\right)\right)\right) .
\end{aligned}
$$

Since $\mathcal{I}_{2}^{\sigma \theta} \subset 2^{\mathbb{N} \times \mathbb{N}}$ is a strongly admissible ideal,

$$
H \cup\left(M_{2} \cap\left(\left(\left\{1,2, \ldots,\left(k_{0}-1\right)\right\} \times \mathbb{N}\right) \cup\left(\mathbb{N} \times\left\{1,2, \ldots,\left(k_{0}-1\right)\right\}\right)\right)\right) \in \mathcal{I}_{2}^{\sigma \theta}
$$

so we have $T(\varepsilon) \in \mathcal{I}_{2}^{\sigma \theta}$ that is $V_{2}^{\theta}(T(\varepsilon))=0$. Hence, $\mathcal{I}_{2}^{\sigma \theta}-\lim _{k, j \rightarrow \infty} x_{k j}=L$.
The converse of Theorem 2.6, which it's proof is similar to the proof of Theorems in [1-3], holds if $\mathcal{I}_{2}^{\sigma \theta}$ has property $(A P 2)$.

Theorem 2.7. Let $\mathcal{I}_{2}^{\sigma \theta}$ has property (AP2). If a double sequence $x=\left(x_{k j}\right)$ is lacunary \mathcal{I}_{2}-invariant convergent to L, then this sequence is lacunary \mathcal{I}_{2}^{*}-invariant convergent to L.

Finally, we define the concepts of lacunary \mathcal{I}_{2}-invariant Cauchy and lacunary \mathcal{I}_{2}^{*}-invariant Cauchy double sequences.

Definition 2.7. A double sequence $\left(x_{k j}\right)$ is said to be lacunary \mathcal{I}_{2}-invariant Cauchy sequence or $\mathcal{I}_{2}^{\sigma \theta}$-Cauchy sequence, if for every $\varepsilon>0$, there exist numbers $s=s(\varepsilon), t=t(\varepsilon) \in \mathbb{N}$ such that

$$
A(\varepsilon)=\left\{(k, j),(s, t) \in I_{r u}:\left|x_{k j}-x_{s t}\right| \geq \varepsilon\right\} \in \mathcal{I}_{2}^{\sigma \theta}
$$

that is, $V_{2}^{\theta}(A(\varepsilon))=0$.

Definition 2.8. A double sequence $\left(x_{k j}\right)$ is lacunary \mathcal{I}_{2}^{*}-invariant Cauchy sequence or $\mathcal{I}_{2^{*}}^{\sigma \theta}$-Cauchy sequence if there exists a set $M_{2} \in \mathcal{F}\left(\mathcal{I}_{2}^{\sigma \theta}\right)$ (i.e., $\mathbb{N} \times \mathbb{N} \backslash M_{2}=H \in \mathcal{I}_{2}^{\sigma \theta}$) such that for every $(k, j),(s, t) \in M_{2}$

$$
\lim _{k, j, s, t \rightarrow \infty}\left|x_{k j}-x_{s t}\right|=0
$$

The proof of the following theorems are similar to the proof of Theorems in $[2,3,11]$, so we omit them.

Theorem 2.8. If a double sequence $x=\left(x_{k j}\right)$ is $\mathcal{I}_{2}^{\sigma \theta}$-convergent, then $\left(x_{k j}\right)$ is an $\mathcal{I}_{2}^{\sigma \theta}$-Cauchy sequence.

Theorem 2.9. If a double sequence $x=\left(x_{k j}\right)$ is $\mathcal{I}_{2^{*}}^{\sigma \theta}$-Cauchy sequence, then $\left(x_{k j}\right)$ is $\mathcal{I}_{2}^{\sigma \theta}$-Cauchy sequence.

Theorem 2.10. Let $\mathcal{I}_{2}^{\sigma \theta}$ has property (AP2). If a double sequence $x=\left(x_{k j}\right)$ is $\mathcal{I}_{2}^{\sigma \theta}$-Cauchy sequence then, $\left(x_{k j}\right)$ is $\mathcal{I}_{2^{*}}^{\sigma \theta}$-Cauchy sequence.

Acknowledgements: This study supported by Afyon Kocatepe University Scientific Research Coordination Unit with the project number 17.Kariyer. 21 .

References

[1] P. Das, P. Kostyrko, W. Wilczyński and P. Malik, \mathcal{I} and \mathcal{I}^{*}-convergence of double sequences, Math. Slovaca, 58(5) (2008), 605-620.
[2] E. Dündar and B. Altay, \mathcal{I}_{2}-convergence and \mathcal{I}_{2}-Cauchy of double sequences, Acta Math. Sci., 34B(2) (2014), 343-353.
[3] E. Dündar, U. Ulusu and F. Nuray, On ideal invariant convergence of double sequences and some properties, Creat. Math. Inf., 27(2) (2018), (in press).
[4] J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160(1) (1993), 43-51.
[5] P. Kostyrko, T. Šalát and W. Wilczyński, \mathcal{I}-Convergence, Real Anal. Exchange, 26(2) (2000), 669-686.
[6] V. Kumar, On \mathcal{I} and \mathcal{I}^{*}-convergence of double sequences, Math. Commun. 12 (2007), 171-181.
[7] S. A. Mohiuddine and E. Savaş, Lacunary statistically convergent double sequences in probabilistic normed spaces, Ann Univ. Ferrara, 58 (2012), 331-339.
[8] M. Mursaleen, Matrix transformation between some new sequence spaces, Houston J. Math., 9 (1983), 505-509.
[9] M. Mursaleen, On finite matrices and invariant means, Indian J. Pure Appl. Math., 10 (1979), 457-460.
[10] M. Mursaleen and O. H. H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett., 22(11) (2009), 1700-1704.
[11] A. Nabiev, S. Pehlivan and M. Gürdal, On \mathcal{I}-Cauchy sequences, Taiwanese J. Math., 11(2) (2007), 569-576.
[12] F. Nuray, H. Gök and U. Ulusu, \mathcal{I}_{σ}-convergence, Math. Commun. 16 (2011) 531-538.
[13] N. Pancaroğlu and F. Nuray, Statistical lacunary invariant summability, Theor. Math. Appl., 3(2) (2013), 71-78.
[14] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289 ?21.
[15] R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J., 30(1) (1963), 81-94.
[16] E. Savaş, Some sequence spaces involving invariant means, Indian J. Math., 31 (1989), 1-8.
[17] E. Savaş, Strongly σ-convergent sequences, Bull. Calcutta Math., 81 (1989), 295-300.
[18] E. Savaş and R. Patterson, Double σ-convergence lacunary statistical sequences, J. Comput. Anal. Appl., 11(4) (2009).
[19] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36 (1972), 104-110.
[20] U. Ulusu and F. Nuray, Lacunary \mathcal{I}_{σ}-convergence, (under review).

