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I2-CONVERGENCE OF DOUBLE SEQUENCES OF

FUZZY NUMBERS

E. DÜNDAR AND Ö. TALO

Abstract. In this paper, we introduce and study the concepts of I2-convergence,

I∗2 -convergence for double sequences of fuzzy real numbers, where I2 denotes
the ideal of subsets of N× N. Also, we study some properties and relations of

them.

1. Introduction

The concept of convergence of a sequence of real numbers has been extended
to statistical convergence independently by Fast [9] and Schoenberg [33]. A lot of

development have been made in this area after the works of Śalát [27] and Fridy
[10, 12]. In general, statistically convergent sequences satisfy many of the properties
of ordinary convergent sequences in metric spaces [9, 10, 12, 25]. This concept was
extended to the double sequences by Mursaleen and Edely [18] and Tripathy [36]
independently. C. akan and Altay [4] presented multidimensional analogues of the
results presented by Fridy and Orhan [11].

The concept of ordinary convergence of a sequence of fuzzy real numbers was
firstly introduced by Matloka [17] and proved some basic theorems for sequences
of fuzzy real numbers. Nanda [19] studied the sequences of fuzzy real numbers
and showed that the set of all convergent sequences of fuzzy real numbers form
a complete metric space. Recently, Nuray and Savas. [23] defined the concepts of
statistical convergence and statistically Cauchy for sequences of fuzzy real num-
bers. They proved that a sequence of fuzzy real number is statistically convergent
if and only if it is statistically Cauchy. Nuray [22] introduced Lacunary statistical
convergence of sequences of fuzzy real numbers whereas Savas. [29] studied some
equivalent alternative conditions for a sequence of fuzzy real numbers to be statis-
tically Cauchy. A lot of development have been made in this area after the works
of Altnok et al. [2], Bede [3], Saadati [26], Savas. [31, 32], Talo and Bas.ar [34],
Tripathy and Sarma [37] and many others.

Throughout the paper N and R denote the set of all positive integers and the
set of all real numbers, respectively. The idea of I-convergence was introduced by
Kostyrko et al. [13] as a generalization of statistical convergence which is based
on the structure of the ideal I of subset of the set of natural numbers N. Nuray
and Ruckle [21] indepedently introduced the same with another name generalized
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statistical convergence. Kostyrko et al. [14] gave some of basic properties of I-
convergence and dealt with extremal I-limit points. Das et al. [5] introduced the
concept of I-convergence of double sequences in a metric space and studied some
properties of this convergence. Also, Das and Malik [6] introduced the concept of
I-limit points, I-cluster points and I-limit superior and I-limit inferior of double
sequences. A lot of developments have been made in this area after the works of
Kumar [15], S̆alát et al. [28], Tripathy and Tripathy [35], Nabiev et al. [20] and
many others.

Kumar and Kumar [16] studied the concepts of I-convergence, I∗-convergence
and I-Cauchy sequence for sequences of fuzzy real numbers.

In this paper, we introduce and study the concepts of I2-convergence and I∗2 -
convergence for double sequences of fuzzy real numbers where I2 denotes the ideal
of subsets of N× N. Also, we study some properties and relations of them.

2. Definitions and Notations

Now, we recall the concept of ideal, convergence, statistical convergence, ideal
convergence of sequence, double sequence and fuzzy numbers and some basic defi-
nitions (See [1, 5, 8, 9, 13, 18, 24]).

A double sequence x = (xmn)m,n∈N of real numbers is said to be convergent
to L ∈ R in Pringsheim’s sense if for any ε > 0 , there exists Nε ∈ N such that
|xmn − L| < ε, whenever m,n > Nε. In this case we write

lim
m,n→∞

xmn = L.

A double sequence x = (xmn) of real numbers is said to be bounded if there
exists a positive real number M such that |xmn| < M, for all m,n ∈ N. That is,

‖x‖∞ = sup
m,n
|xmn| <∞.

Let K ⊂ N× N and Kmn be the number of (j, k) ∈ K such that j ≤ m, k ≤ n.
If the sequence {Kmn/(mn)} converges in Pringsheim’s sense then we say that K
has double natural density and is denoted by

d2(K) = lim
m,n→∞

Kmn

mn
.

A double sequence x = (xmn) of real numbers is said to be statistically convergent
to L ∈ R, if for any ε > 0 we have d2(A(ε)) = 0, where A(ε) = {(m,n) ∈ N × N :
|xmn − L| ≥ ε}.

Let X 6= ∅. A class I of subsets of X is said to be an ideal in X provided:

(i) ∅ ∈ I,
(ii) A,B ∈ I implies A ∪B ∈ I,

(iii) A ∈ I, B ⊂ A implies B ∈ I.

I is called a nontrivial ideal if X 6∈ I.
Let X 6= ∅. A non empty class F of subsets of X is said to be a filter in X

provided:

(i) ∅ 6∈ F ,
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(ii) A,B ∈ F implies A ∩B ∈ F ,
(iii) A ∈ F , A ⊂ B implies B ∈ F .

Lemma 2.1. [13] If I is a nontrivial ideal in X, X 6= ∅, then the class

F(I) = {M ⊂ X : (∃A ∈ I)(M = X\A)}

is a filter on X, called the filter associated with I.

A nontrivial ideal I in X is called admissible if {x} ∈ I for each x ∈ X.
Throughout the paper we take I2 as a nontrivial admissible ideal in N × N.

Details about different types of ideals of N× N is found in Tripathy and Tripathy
[35].

A nontrivial ideal I2 of N×N is called strongly admissible if {i}×N and N×{i}
belong to I2 for each i ∈ N. It is evident that a strongly admissible ideal is also
admissible.

Let I02 = {A ⊂ N × N : (∃m(A) ∈ N)(i, j ≥ m(A) ⇒ (i, j) 6∈ A)}. Then I02 is a
nontrivial strongly admissible ideal and clearly an ideal I2 is strongly admissible if
and only if I02 ⊂ I2.

Let (X, ρ) be a linear metric space and I2 ⊂ 2N×N be a strongly admissible ideal.
A double sequence x = (xmn) in X is said to be I2-convergent to L ∈ X, if for any
ε > 0 we have A(ε) = {(m,n) ∈ N× N : ρ(xmn, L) ≥ ε} ∈ I2 and we write

I2 − lim
m,n→∞

xmn = L.

If I2 is a strongly admissible ideal on N × N, then usual convergence implies
I2-convergence.

Let (X, ρ) be a linear metric space and I2 ⊂ 2N×N be a strongly admissible
ideal. A double sequence x = (xmn) of elements of X is said to be I∗2 -convergent
to L ∈ X, if there exists a set M ∈ F(I2) (i.e., N× N\M ∈ I2) such that

lim
m,n→∞

xmn = L,

for (m,n) ∈M and we write

I∗2 − lim
m,n→∞

xmn = L.

We say that an admissible ideal I2 ⊂ 2N×N satisfies property (AP2), if for every
countable family of mutually disjoint sets {A1, A2, ...} belonging to I2, there exists a
countable family of sets {B1, B2, ...} such that Aj∆Bj ∈ I02 , i.e., Aj∆Bj is included
in a finite union of rows and columns in N×N for each j ∈ N and B =

⋃∞
j=1Bj ∈ I2

(hence Bj ∈ I2 for each j ∈ N).
A fuzzy real number is a fuzzy set on the real axis, i.e., a mapping u : R→ [0, 1]

which satisfies the following four conditions:

(i) u is normal, i.e., there exists an x0 ∈ R such that u(x0) = 1.

(ii) u is fuzzy convex, i.e., u[λx + (1 − λ)y] ≥ min{u(x), u(y)} for all x, y ∈ R
and for all λ ∈ [0, 1].

(iii) u is upper semi-continuous.
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(iv) The set [u]0 := {x ∈ R : u(x) > 0} is compact, (cf. Zadeh [38]),

where {x ∈ R : u(x) > 0} denotes the closure of the set {x ∈ R : u(x) > 0} in the
usual topology of R.
We denote the set of all fuzzy real numbers on R by E1 and call it as the space of
fuzzy real numbers. α-level set [u]α of u ∈ E1 is defined by

[u]α :=

{
{t ∈ R : x(t) ≥ α} , (0 < α ≤ 1),

{t ∈ R : x(t) > α} , (α = 0).

The set [u]α is closed, bounded and non-empty interval for each α ∈ [0, 1] which is
defined by [u]α := [u−(α), u+(α)]. R can be embedded in E1, since each r ∈ R can
be regarded as a fuzzy real number r defined by

r(x) :=

{
1 , (x = r)
0 , (x 6= r)

.

Theorem 2.2. [8] Let [u]α = [u−(α), u+(α)] for u ∈ E1 and for each α ∈ [0, 1].
Then the following statements hold:

(i) u− is a bounded and non-decreasing left continuous function on (0, 1].
(ii) u+ is a bounded and non-increasing left continuous function on (0, 1].
(iii) The functions u− and u+ are right continuous at the point α = 0.
(iv) u−(1) ≤ u+(1).

Conversely, if the pair of functions u− and u+ satisfies the conditions (i)-(iv),
then there exists a unique u ∈ E1 such that [u]α := [u−(α), u+(α)] for each α ∈
[0, 1]. The fuzzy real number u corresponding to the pair of functions u− and u+ is
defined by u : R→ [0, 1], u(x) := sup{α : u−(α) ≤ x ≤ u+(α)}.

Let u, v, w ∈ E1 and k ∈ R. Then the operations addition, scalar multiplication
and product defined on E1 by

u+ v = w ⇐⇒ [w]α = [u]α + [v]α, for all α ∈ [0, 1]

⇐⇒ w−(α) = u−(α) + v−(α) and w+(α) = u+(α) + v+(α),

[ku]α = k[u]α, for all α ∈ [0, 1]

and

uv = w ⇐⇒ [w]α = [u]α[v]α, for all α ∈ [0, 1],

where it is immediate that

w−(α) = min{u−(α)v−(α), u−(α)v+(α), u+(α)v−(α), u+(α)v+(α)},
w+(α) = max{u−(α)v−(α), u−(α)v+(α), u+(α)v−(α), u+(α)v+(α)}

for all α ∈ [0, 1].
Let W be the set of all closed bounded intervals A of real numbers with endpoints

A and A, i.e. A := [A,A]. Define the relation d on W by

d(A,B) := max{|A−B|, |A−B|}.
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It can be observed that d is a metric on W and (W,d) is a complete metric space,
(cf. Nanda [19]). Now, we may define the metric D on E1 by means of the Hausdorff
metric d as

D(u, v) := sup
α∈[0,1]

d([u]α, [v]α) := sup
α∈[0,1]

max{|u−(α)− v−(α)|, |u+(α)− v+(α)|}.

One can see that

D(u, 0) = sup
α∈[0,1]

max{|u−(α)|, |u+(α)|} = max{|u−(0)|, |u+(0)|}. (1)

The partial ordering relation � on E1 is defined as follows:

u � v ⇔ u−(α) ≤ v−(α) and u+(α) ≤ v+(α), for all α ∈ [0, 1].

Two fuzzy numbers u and v are said to be comparable if u � v or v � u holds.
Now, we may give:

Proposition 2.3. [3] Let u, v, w, z ∈ E1 and k ∈ R. Then,

(i) (E1, D) is a complete metric space.
(ii) D(ku, kv) = |k|D(u, v).
(iii) D(u+ v, w + v) = D(u,w).
(iv) D(u+ v, w + z) ≤ D(u,w) +D(v, z).
(v) |D(u, 0)−D(v, 0)| ≤ D(u, v) ≤ D(u, 0) +D(v, 0).

Following Matloka [17], we give some definitions concerning the sequences of
fuzzy real numbers below, which are needed in the text.

A sequence u = (uk) of fuzzy real numbers is a function u from the set N into
the set E1. The fuzzy real number uk denotes the value of the function at k ∈ N
and is called as the kth term of the sequence. By w(F ), we denote the set of all
sequences of fuzzy real numbers

A sequence (un) ∈ w(F ) is called convergent with limit u ∈ E1, if for every ε > 0
there exists n0 = n0(ε) ∈ N such that D(un, u) < ε, for all n ≥ n0.

Definition 2.4. A double sequence u = (unk) of fuzzy real numbers is defined by
a function u from the set N × N into the set E1. The fuzzy number unk denotes
the value of the function at (n, k) ∈ N× N.

Definition 2.5. [30] A double sequence u = (umn) of fuzzy real numbers is said
to be convergent in the Pringsheim’s sense or P-convergent if for every ε > 0 there
exists k ∈ N such that D(umn, u0) < ε for all m,n ≥ k and is denoted by

P − lim
m,n→∞

umn = u0.

The fuzzy real number u0 is called the Pringsheim limit of u.

3. I2-convergence

Definition 3.1. Let I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence
u = (umn) of fuzzy real numbers is said to be I2-convergent to a fuzzy real number
u0, if for any ε > 0 we have

A(ε) = {(m,n) ∈ N× N : D(umn, u0) ≥ ε} ∈ I2
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and is written as

I2 − lim
m,n→∞

umn = u0.

Theorem 3.2. Let I2 ⊂ 2N×N be a strongly admissible ideal. If a double sequence
u = (umn) of fuzzy real numbers is I2-convergent to a fuzzy real number u0, then
u0 determined uniquely.

Proof. Suppose that u = (umn) is I2-convergent to two different fuzzy real numbers
u0 and v0. We first prove that under the assumption of the theorem u0 and v0 are
comparable. Suppose that u0 and v0 are not comparable. Then there exists an
α0 ∈ [0, 1] such that

u−0 (α0) < v−0 (α0) and u+0 (α0) > v+0 (α0) (2)

or

u−0 (α0) > v−0 (α0) and u+0 (α0) < v+0 (α0). (3)

We prove (2) only, (3) can be analogously proved. Suppose (2) holds. Choose
ε1 = v−0 (α0)− u−0 (α0) and ε2 = u+0 (α0)− v+0 (α0), then it is clear that ε1 > 0 and

ε2 > 0. Let ε′ = min{ε1, ε2}. Choose ε such that 0 < ε < ε′

2 . Since u = (umn) is
I2-convergent to fuzzy real numbers u0 and v0, we have

M1(ε) = {(m,n) ∈ N× N : D(umn, u0) < ε} ∈ F(I2)

and

M2(ε) = {(m,n) ∈ N× N : D(umn, v0) < ε} ∈ F(I2).

Since F(I2) is a filter on N×N, so ∅ 6= M1∩M2 ∈ F(I2). Let (m,n) ∈M1∩M2, then
we have D(umn, u0) < ε and D(umn, v0) < ε. This implies that d([umn]α, [u0]α) < ε
and d([umn]α, [v0]α) < ε, for each α ∈ [0, 1]. Hence we have d([umn]α0

, [u0]α0
) < ε

and d([umn]α0
, [v0]α0

) < ε. Now definition of d implies that

|u−mn(α0)− u−0 (α0)| < ε and |u−mn(α0)− v−0 (α0)| < ε, (4)

|u+mn(α0)− u+0 (α0)| < ε and |u+mn(α0)− v+0 (α0)| < ε. (5)

(4) shows that u−mn(α0) ∈
(
u−0 (α0)− ε, u−0 (α0) + ε

)
∩
(
v−0 (α0)− ε, v−0 (α0) + ε

)
= ∅.

In this way we obtain a contradiction. Hence u0 and v0 are comparable fuzzy real
numbers. We may suppose that u0 � v0. Take ε = D(u0, v0)/3 > 0 such that the
neighborhoods

A(ε) = {(m,n) ∈ N× N : D(umn, u0) < ε}
and

B(ε) = {(m,n) ∈ N× N : D(umn, v0) < ε}
of u0 and v0, respectively, are disjoint. Since (umn) is I2-convergent to u0 and v0 so
by definition of I2-convergence A(ε), B(ε) ∈ F(I2) and this implies A(ε)∩B(ε) 6= ∅.
In this way we obtain a contradiction to the fact that the neighborhoods A(ε) and
B(ε) of u0 and v0, respectively, are disjoint. Hence, u0 is unique. �
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Theorem 3.3. Let I2 ⊂ 2N×N be a strongly admissible ideal, u = (umn) be a double
sequence of fuzzy real numbers and u0 be a fuzzy real number. Then

P − lim
m,n→∞

umn = u0 implies I2 − lim
m,n→∞

umn = u0.

Proof. Let

P − lim
m,n→∞

umn = u0.

For every ε > 0 there exists k0 = k0(ε) ∈ N such that D(umn, u0) < ε for all
m,n ≥ k0. Then,

A(ε) = {(m,n) ∈ N× N : D(umn, u0) ≥ ε}
⊂

(
N× {1, 2, . . . , (k0 − 1)} ∪ {1, 2, . . . , (k0 − 1)} × N

)
.

Since I2 is a strongly admissible ideal, so
(
N×{1, 2, . . . , (k0− 1)}∪ {1, 2, . . . , (k0−

1)} × N
)
∈ I2 and A(ε) ∈ I2. Hence, we have

I2 − lim
m,n→∞

umn = u0.
�

Theorem 3.4. Let I2 ⊂ 2N×N be a strongly admissible ideal, u = (umn), v = (vmn)
be two double sequences of fuzzy real numbers and u0, v0 be two fuzzy real numbers.
If c ∈ R,

I2 − lim
m,n→∞

umn = u0 and I2 − lim
m,n→∞

vmn = v0,

then we have

(i) I2 − lim
m,n→∞

cumn = cu0 and (ii) I2 − lim
m,n→∞

(umn + vmn) = u0 + v0.

Proof. (i) Let c ∈ R and I2 − limm,n→∞ umn = u0. If c = 0, there is nothing to
prove, so we assume that c 6= 0. Let ε > 0 be given. Then,{

(m,n) ∈ N×N : D(cumn, cu0) ≥ ε
}
⊆
{

(m,n) ∈ N×N : D(umn, u0) ≥ ε

|c|

}
∈ I2.

Hence, we have

I2 − lim
m,n→∞

cumn = cu0.

(ii) Let I2 − limm,n→∞ umn = u0 and I2 − limm,n→∞ vmn = v0. We write

A
(ε

2

)
=
{

(m,n) ∈ N× N : D(umn, u0) ≥ ε

2

}
and

B
(ε

2

)
=
{

(m,n) ∈ N× N : D(vmn, v0) ≥ ε

2

}
,

for every ε > 0. Then, for every ε > 0 we have{
(m,n) ∈ N× N : D(umn + vmn, u0 + v0) ≥ ε

}
⊂ A

(ε
2

)
∪B

(ε
2

)
,

for D(umn + vmn, u0 + v0) ≤ D(umn, u0) +D(vmn, v0) and hence{
(m,n) ∈ N× N : D(umn + vmn, u0 + v0) ≥ ε

}
∈ I2.

�
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Theorem 3.5. Let I2 ⊂ 2N×N be a strongly admissible ideal, u = (umn) and
v = (vmn) be two double sequences of fuzzy real numbers such that

(i) umn � vmn for every (m,n) ∈M ⊂ N× N with M ∈ F(I2),

(ii) I2 − limm,n→∞ umn = u0 and I2 − limm,n→∞ vmn = v0.

Then u0 � v0.

Proof. By (ii) for each ε > 0

A = {(m,n) ∈ N× N : D(umn, u0) ≥ ε} ∈ I2
and

B = {(m,n) ∈ N× N : D(vmn, v0) ≥ ε} ∈ I2.
Suppose that u0 � v0 is not true, then there exist α0 ∈ [0, 1] such that u−0 (α0) >
v−0 (α0) or u+0 (α0) > v+0 (α0). We may suppose that u−0 (α0) > v−0 (α0), the case for

u+0 (α0) > v+0 (α0) is analogously proved. Take ε =
u−0 (α0)−v−0 (α0)

3 . Since M ∈ F(I2)
and A,B ∈ I2 so we have ∅ 6= M ∩ Ac ∩ Bc ∈ F(I2). Let (m,n) ∈ M ∩ Ac ∩ Bc,
then we have

umn � vmn, D(umn, u0) < ε and D(vmn, v0) < ε. (6)

Last two inequalities of (6) give the following

|u−mn(α0)− u−0 (α0)| < ε and |v−mn(α0)− v−0 (α0)| < ε (7)

and

|u+mn(α0)− u+0 (α0)| < ε and |v+mn(α0)− v+0 (α0)| < ε. (8)

Thus equation (7) shows that u−mn(α0) > v−mn(α0). Therefore we obtain a contra-
diction to umn � vmn as (m,n) ∈M . Hence we have u0 � v0. �

Theorem 3.6. Let I2 ⊂ 2N×N be a strongly admissible ideal, u = (umn), v = (vmn)
and w = (wmn) be three double sequences of fuzzy real numbers such that

(i) umn � vmn � wmn for every (m,n) ∈M ⊂ N× N with M ∈ F(I2)

(ii) I2 − limm,n→∞ umn = u0 and I2 − limm,n→∞ wmn = u0.

Then I2 − limm,n→∞ vmn = u0.

Proof. Let I2− limm,n→∞ umn = I2− limm,n→∞ wmn = u0. For ε > 0 we can take

A = {(m,n) ∈ N× N : D(umn, u0) ≥ ε} ∈ I2
and

B = {(m,n) ∈ N× N : D(wmn, u0) ≥ ε} ∈ I2.
Now we define the set C = {(m,n) ∈ N × N : D(vmn, u0) ≥ ε}. We can have
either (m,n) ∈ M or (m,n) ∈ M c. Assume that (m,n) ∈ M (as otherwise C ⊂
A ∪B ∪M c) then we have umn � vmn � wmn. Since

D(vmn, u0) = sup
α∈[0,1]

max{|v−mn(α)− u−0 (α)|, |v+mn(α)− u+0 (α)|} ≥ ε,
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therefore by definition of supremum, there exists α0 ∈ [0, 1] such that

max{|v−mn(α0)− u−0 (α0)|, |v+mn(α0)− u+0 (α0)|} ≥ ε− ε′,
for every 0 < ε′ < ε. This implies that

|v−mn(α0)− u−0 (α0)| ≥ ε− ε′ (9)
or

|v+mn(α0)− u+0 (α0)| ≥ ε− ε′. (10)

Without loss of generality we may assume that (9) holds. Now according to vmn
and u0 are comparable or not we have the following possibilities:

v−mn(α0) < u−0 (α0) and v+mn(α0) < u+0 (α0) or v+mn(α0) > u+0 (α0) (11)

and

v−mn(α0) > u−0 (α0) and v+mn(α0) < u+0 (α0) or v+mn(α0) > u+0 (α0). (12)

We can suppose that (1) holds. One can analogously prove that (12) holds. Since
umn � vmn ≤ wmn, we have u−mn(α0) ≤ v−mn(α0). But then (9) implies that
|u−mn(α0)− u−0 (α0)| ≥ ε− ε′. As ε′ was chosen arbitrarily so D(umn, uo) ≥ ε. This
shows that (m,n) ∈ A and therefore C ⊂ A∪B ∪M c. Hence, C ∈ I2 and we have

I2 − lim
m,n→∞

vmn = u0.
�

4. I∗2 -convergence

Definition 4.1. Let I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence
u = (umn) of fuzzy real numbers is said to be I∗2 -convergent to u0 ∈ E1, if there
exists M ∈ F(I2) (i.e., H = N× N\M ∈ I2) such that

lim
m,n→∞
(m,n)∈M

umn = u0

and is written
I∗2 − lim

m,n→∞
umn = u0.

Theorem 4.2. Let I2 ⊂ 2N×N be a strongly admissible ideal, u = (umn) be a double
sequence of fuzzy real numbers and u0 ∈ E1. Then,

I∗2 − lim
m,n→∞

umn = u0 implies I2 − lim
m,n→∞

umn = u0.

Proof. Let I∗2 − limm,n→∞ umn = u0. By definition, there exists a M ∈ F(I2) (i.e.,
H = N× N\M ∈ I2) such that

lim
m,n→∞
(m,n)∈M

umn = u0.

Then, for every ε > 0 there exists k0 = k0(ε) ∈ N we have D(umn, u0) < ε whenever
m,n ≥ k0 for (m,n) ∈ M . Now, let A(ε) = {(m,n) ∈ N × N : D(umn, u0) ≥ ε}.
Therefore, clearly we have

A(ε) ⊂ H ∪
[
M ∩

(
({1, 2, . . . , (k0 − 1)} × N) ∪ (N× {1, 2, . . . , (k0 − 1)})

)]
.
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Since I2 is a strongly admissible ideal, so

H ∪
[
M ∩

(
({1, 2, . . . , (k0 − 1)} × N) ∪ (N× {1, 2, . . . , (k0 − 1)})

)]
∈ I2.

Hence, we have A(ε) ∈ I2 and consequently

I2 − lim
m,n→∞

umn = u0.
�

Theorem 4.3. Let I2 ⊂ 2N×N be a strongly admissible ideal. For any double
sequence u = (umn) of fuzzy real numbers, if there exist two sequences v = (vmn)
and w = (wmn) of fuzzy numbers such that

u = v + w, lim
m,n→∞

vmn = u0 and suppw ∈ I2,

where suppw = {(m,n) ∈ N×N : wmn 6= 0} and 0 is the zero element of fuzzy real
numbers, then u = (umn) is I2-convergent to u0 ∈ E1.

Proof. Suppose that there exist two sequences v = (vmn) and w = (wmn) of fuzzy
real numbers such that

u = v + w, lim
m,n→∞

vmn = u0 and suppw ∈ I2.

Let M = {(m,n) ∈ N × N : wmn = 0}. Since suppw ∈ I2, so M ∈ F(I2).
Since umn = vmn for each (m,n) ∈ M and limm,n→∞ vmn = u0, so it follows that
limm,n→∞ umn = u0. This shows that

I∗2 − lim
m,n→∞

umn = u0.

Thus, by Theorem 4.2 we have

I2 − lim
m,n→∞

umn = u0. �

Theorem 4.4. Let I2 ⊂ 2N×N be a strongly admissible ideal with property (AP2),
u = (umn) be a double sequence of fuzzy numbers and u0 be a fuzzy real number.
Then,

I2 − lim
m,n→∞

umn = u0 implies I∗2 − lim
m,n→∞

umn = u0.

Proof. Let I2 satisfy the property (AP2) and u = (umn) be a double sequence of
fuzzy real numbers and u0 ∈ E1 such that I2 − limm,n→∞ umn = u0. Then for any
ε > 0

A(ε) = {(m,n) ∈ N× N : D(umn, u0) ≥ ε} ∈ I2.
Now put

A1 = {(m,n) ∈ N× N : D(umn, u0) ≥ 1},

Ak =

{
(m,n) ∈ N× N :

1

k
≤ D(umn, u0) <

1

k − 1

}
for k ≥ 2. It is clear that Ai∩Aj = ∅ for i 6= j and Ai ∈ I2 for each i ∈ N. By virtue
of (AP2) there exists a sequence {Bk}k∈N of sets such that Aj 4Bj is included in
finite union of rows and columns in N× N for each j ∈ N and B =

⋃∞
j=1Bj ∈ I2.
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We prove that

lim
m,n→∞
(m,n)∈M

umn = u0,

for M = N× N\B ∈ F(I2). Let δ > 0 be given. Choose k ∈ N such that 1/k < δ.
Then, we have

{(m,n) ∈ N× N : D(umn, u0) ≥ δ} ⊂
k⋃
j=1

Aj .

Since Aj4Bj are included in finite union of rows and columns for j ∈ {1, 2, . . . , k},
there exists n0 ∈ N such that( k⋃
j=1

Bj

)
∩ {(m,n) : m ≥ n0 ∧ n ≥ n0} =

( k⋃
j=1

Aj

)
∩ {(m,n) : m ≥ n0 ∧ n ≥ n0}

If m,n ≥ n0 and (m,n) 6∈ B then

(m,n) 6∈
k⋃
j=1

Bj and so (m,n) 6∈
k⋃
j=1

Aj .

Thus, we have D(umn, u0) < 1
k < δ. This implies that

lim
m,n→∞
(m,n)∈M

umn(x) = u0.

Hence, we have

I∗2 − lim
m,n→∞

umn = u0.
�

Definition 4.5. [7] Let I2 ⊂ 2N×N be a strongly admissible ideal. A double
sequence of functions {fmn} is said to be I2-uniformly convergent to f on a set
S ⊂ R if for every ε > 0

{(m,n) ∈ N× N : |fmn(x)− f(x)| ≥ ε} ∈ I2, for each fixed x ∈ S

and is denoted by fmn ⇒I2 f . This can be stated as follows : For ε > 0, ∃H ∈ I2
such that for all x ∈ S, |fmn(x)− f(x)| < ε, ∀(m,n) 6∈ H.

A double sequence of functions {fmn} is said to be I∗2 -uniformly convergent to
f on S ⊂ R if and only if there exists a set M ∈ F(I2) (i.e., N× N\M ∈ I2) such
that for ε > 0

lim
m,n→∞
(m,n)∈M

fmn(x) = f(x), for each (fixed) x ∈ S

and is written fmn ⇒I∗2 f .

Theorem 4.6. Let I2 ⊂ 2N×N be a strongly admissible ideal with the property
(AP2), u = (umn) be a double sequence of fuzzy real numbers and u0 ∈ E1. Then,
I2 − limm,n→∞ umn = u0 if and only if

u−mn(α) ⇒I∗2 u
−
0 (α) and u+mn(α) ⇒I∗2 u

+
0 (α)

on [0, 1].
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Proof. Let I2 − limm,n→∞ umn = u0. By definition we have

{(m,n) ∈ N× N : D(umn, u0) ≥ ε} ∈ I2,
for every ε > 0. Then, by Theorem 4.4 for every ε > 0 there exists a set M ∈ F(I2)
and N = N(ε) such that

D(umn, u0) = sup
α∈[0,1]

max
{
|u−mn(α)− u−0 (α)|, |u+mn(α)− u+0 (α)|

}
< ε,

for all m,n ≥ N and (m,n) ∈M . This implies that

max
{
|u−mn(α)− u−0 (α)|, |u+mn(α)− u+0 (α)|

}
< ε,

hence the result follows for all α ∈ [0, 1].
To prove the converse implication, let ε > 0 be fixed. Then by Definition 4.5

and by Theorem 4.4, there exist M1 ∈ F(I2) and N1 = N1(ε) ∈ N such that

|u−mn(α)− u−0 (α)| < ε,

for all m,n ≥ N1 and (m,n) ∈ M1, and for each α ∈ [0, 1]. Similarly, there exist
M2 ∈ F(I2) and N2 = N2(ε) ∈ N such that

|u+mn(α)− u+0 (α)| < ε,

for all m,n ≥ N2 and (m,n) ∈M2, and for each α ∈ [0, 1].
Let N3 = max{N1, N2} and M3 = M1 ∩M2 ∈ F(I2). Thus, for every ε > 0

there exists M3 ∈ F(I2) such that for all m,n ≥ N3, (m,n) ∈M3,

sup
α∈[0,1]

max
{
|u−mn(α)− u−0 (α)|, |u+mn(α)− u+0 (α)|

}
= D(umn, u0) < ε.

This implies I∗2 − limm,n→∞ umn = u0. Hence, we have

I2 − lim
m,n→∞

umn = u0.

�
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