37

\mathcal{I}_2 -CONVERGENCE OF DOUBLE SEQUENCES OF FUZZY NUMBERS

E. DÜNDAR AND Ö. TALO

ABSTRACT. In this paper, we introduce and study the concepts of \mathcal{I}_2 -convergence, \mathcal{I}_2^* -convergence for double sequences of fuzzy real numbers, where \mathcal{I}_2 denotes the ideal of subsets of $\mathbb{N} \times \mathbb{N}$. Also, we study some properties and relations of them.

1. Introduction

The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [9] and Schoenberg [33]. A lot of development have been made in this area after the works of Śalát [27] and Fridy [10, 12]. In general, statistically convergent sequences satisfy many of the properties of ordinary convergent sequences in metric spaces [9, 10, 12, 25]. This concept was extended to the double sequences by Mursaleen and Edely [18] and Tripathy [36] independently. Çakan and Altay [4] presented multidimensional analogues of the results presented by Fridy and Orhan [11].

The concept of ordinary convergence of a sequence of fuzzy real numbers was firstly introduced by Matloka [17] and proved some basic theorems for sequences of fuzzy real numbers. Nanda [19] studied the sequences of fuzzy real numbers and showed that the set of all convergent sequences of fuzzy real numbers form a complete metric space. Recently, Nuray and Savaş [23] defined the concepts of statistical convergence and statistically Cauchy for sequences of fuzzy real numbers. They proved that a sequence of fuzzy real number is statistically convergent if and only if it is statistically Cauchy. Nuray [22] introduced Lacunary statistical convergence of sequences of fuzzy real numbers whereas Savaş [29] studied some equivalent alternative conditions for a sequence of fuzzy real numbers to be statistically Cauchy. A lot of development have been made in this area after the works of Altnok et al. [2], Bede [3], Saadati [26], Savaş [31, 32], Talo and Başar [34], Tripathy and Sarma [37] and many others.

Throughout the paper \mathbb{N} and \mathbb{R} denote the set of all positive integers and the set of all real numbers, respectively. The idea of \mathcal{I} -convergence was introduced by Kostyrko et al. [13] as a generalization of statistical convergence which is based on the structure of the ideal \mathcal{I} of subset of the set of natural numbers \mathbb{N} . Nuray and Ruckle [21] independently introduced the same with another name generalized

Received: July 2011; Revised: December 2011 and March 2012; Accepted: August 2012

Key words and phrases: Ideal, Double Sequences, *I*-Convergence, Fuzzy number sequences. 2010 Mathematics Subject Classification. 03E72, 40A05, 40A35, 40B05.

statistical convergence. Kostyrko et al. [14] gave some of basic properties of \mathcal{I} convergence and dealt with extremal \mathcal{I} -limit points. Das et al. [5] introduced the concept of \mathcal{I} -convergence of double sequences in a metric space and studied some properties of this convergence. Also, Das and Malik [6] introduced the concept of \mathcal{I} -limit points, \mathcal{I} -cluster points and \mathcal{I} -limit superior and \mathcal{I} -limit inferior of double sequences. A lot of developments have been made in this area after the works of Kumar [15], Šalát et al. [28], Tripathy and Tripathy [35], Nabiev et al. [20] and many others.

Kumar and Kumar [16] studied the concepts of \mathcal{I} -convergence, \mathcal{I}^* -convergence and \mathcal{I} -Cauchy sequence for sequences of fuzzy real numbers.

In this paper, we introduce and study the concepts of \mathcal{I}_2 -convergence and \mathcal{I}_2^* convergence for double sequences of fuzzy real numbers where \mathcal{I}_2 denotes the ideal of subsets of $\mathbb{N} \times \mathbb{N}$. Also, we study some properties and relations of them.

2. Definitions and Notations

Now, we recall the concept of ideal, convergence, statistical convergence, ideal convergence of sequence, double sequence and fuzzy numbers and some basic definitions (See [1, 5, 8, 9, 13, 18, 24]).

A double sequence $x = (x_{mn})_{m,n \in \mathbb{N}}$ of real numbers is said to be convergent to $L \in \mathbb{R}$ in Pringsheim's sense if for any $\varepsilon > 0$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $|x_{mn} - L| < \varepsilon$, whenever $m, n > N_{\varepsilon}$. In this case we write

$$\lim_{m,n\to\infty} x_{mn} = L.$$

A double sequence $x = (x_{mn})$ of real numbers is said to be bounded if there exists a positive real number M such that $|x_{mn}| < M$, for all $m, n \in \mathbb{N}$. That is,

$$||x||_{\infty} = \sup_{m,n} |x_{mn}| < \infty.$$

Let $K \subset \mathbb{N} \times \mathbb{N}$ and K_{mn} be the number of $(j, k) \in K$ such that $j \leq m, k \leq n$. If the sequence $\{K_{mn}/(mn)\}$ converges in Pringsheim's sense then we say that K has double natural density and is denoted by

$$d_2(K) = \lim_{m,n \to \infty} \frac{K_{mn}}{mn}.$$

A double sequence $x = (x_{mn})$ of real numbers is said to be statistically convergent to $L \in \mathbb{R}$, if for any $\varepsilon > 0$ we have $d_2(A(\varepsilon)) = 0$, where $A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : |x_{mn} - L| \ge \varepsilon\}$.

Let $X \neq \emptyset$. A class \mathcal{I} of subsets of X is said to be an ideal in X provided:

(i) $\emptyset \in \mathcal{I}$,

(ii) $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$,

(iii) $A \in \mathcal{I}, B \subset A$ implies $B \in \mathcal{I}$.

 \mathcal{I} is called a nontrivial ideal if $X \notin \mathcal{I}$.

Let $X \neq \emptyset$. A non empty class \mathcal{F} of subsets of X is said to be a filter in X provided:

(i) $\emptyset \notin \mathcal{F}$,

(ii) $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$, (iii) $A \in \mathcal{F}, A \subset B$ implies $B \in \mathcal{F}$.

Lemma 2.1. [13] If \mathcal{I} is a nontrivial ideal in $X, X \neq \emptyset$, then the class

$$\mathcal{F}(\mathcal{I}) = \{ M \subset X : (\exists A \in \mathcal{I}) (M = X \setminus A) \}$$

is a filter on X, called the filter associated with \mathcal{I} .

A nontrivial ideal \mathcal{I} in X is called admissible if $\{x\} \in \mathcal{I}$ for each $x \in X$.

Throughout the paper we take \mathcal{I}_2 as a nontrivial admissible ideal in $\mathbb{N} \times \mathbb{N}$. Details about different types of ideals of $\mathbb{N} \times \mathbb{N}$ is found in Tripathy and Tripathy [35].

A nontrivial ideal \mathcal{I}_2 of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to \mathcal{I}_2 for each $i \in \mathbb{N}$. It is evident that a strongly admissible ideal is also admissible.

Let $\mathcal{I}_2^0 = \{A \subset \mathbb{N} \times \mathbb{N} : (\exists m(A) \in \mathbb{N}) (i, j \ge m(A) \Rightarrow (i, j) \notin A)\}$. Then \mathcal{I}_2^0 is a nontrivial strongly admissible ideal and clearly an ideal \mathcal{I}_2 is strongly admissible if and only if $\mathcal{I}_2^0 \subset \mathcal{I}_2$.

Let (X, ρ) be a linear metric space and $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})$ in X is said to be \mathcal{I}_2 -convergent to $L \in X$, if for any $\varepsilon > 0$ we have $A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn}, L) \ge \varepsilon\} \in \mathcal{I}_2$ and we write

$$\mathcal{I}_2 - \lim_{m,n \to \infty} x_{mn} = L.$$

If \mathcal{I}_2 is a strongly admissible ideal on $\mathbb{N} \times \mathbb{N}$, then usual convergence implies \mathcal{I}_2 -convergence.

Let (X, ρ) be a linear metric space and $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})$ of elements of X is said to be \mathcal{I}_2^* -convergent to $L \in X$, if there exists a set $M \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M \in \mathcal{I}_2$) such that

$$\lim_{m,n\to\infty} x_{mn} = L_{2}$$

for $(m, n) \in M$ and we write

$$\mathcal{I}_2^* - \lim_{m,n \to \infty} x_{mn} = L.$$

We say that an admissible ideal $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ satisfies property (AP2), if for every countable family of mutually disjoint sets $\{A_1, A_2, ...\}$ belonging to \mathcal{I}_2 , there exists a countable family of sets $\{B_1, B_2, ...\}$ such that $A_j \Delta B_j \in \mathcal{I}_2^0$, i.e., $A_j \Delta B_j$ is included in a finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $B = \bigcup_{j=1}^{\infty} B_j \in \mathcal{I}_2$ (hence $B_j \in \mathcal{I}_2$ for each $j \in \mathbb{N}$).

A fuzzy real number is a fuzzy set on the real axis, i.e., a mapping $u : \mathbb{R} \to [0, 1]$ which satisfies the following four conditions:

(i) u is normal, i.e., there exists an $x_0 \in \mathbb{R}$ such that $u(x_0) = 1$.

(ii) u is fuzzy convex, i.e., $u[\lambda x + (1 - \lambda)y] \ge \min\{u(x), u(y)\}$ for all $x, y \in \mathbb{R}$ and for all $\lambda \in [0, 1]$.

(iii) u is upper semi-continuous.

(iv) The set $[u]_0 := \overline{\{x \in \mathbb{R} : u(x) > 0\}}$ is compact, (cf. Zadeh [38]),

where $\overline{\{x \in \mathbb{R} : u(x) > 0\}}$ denotes the closure of the set $\{x \in \mathbb{R} : u(x) > 0\}$ in the usual topology of \mathbb{R} .

We denote the set of all fuzzy real numbers on \mathbb{R} by E^1 and call it as the space of fuzzy real numbers. α -level set $[u]_{\alpha}$ of $u \in E^1$ is defined by

$$[u]_{\alpha} := \begin{cases} \frac{\{t \in \mathbb{R} : x(t) \ge \alpha\}}{\{t \in \mathbb{R} : x(t) > \alpha\}} &, \quad (0 < \alpha \le 1), \\ &, \quad (\alpha = 0). \end{cases}$$

The set $[u]_{\alpha}$ is closed, bounded and non-empty interval for each $\alpha \in [0, 1]$ which is defined by $[u]_{\alpha} := [u^{-}(\alpha), u^{+}(\alpha)]$. \mathbb{R} can be embedded in E^{1} , since each $r \in \mathbb{R}$ can be regarded as a fuzzy real number \overline{r} defined by

$$\overline{r}(x) := \begin{cases} 1 & , \quad (x=r) \\ 0 & , \quad (x \neq r) \end{cases}$$

Theorem 2.2. [8] Let $[u]_{\alpha} = [u^{-}(\alpha), u^{+}(\alpha)]$ for $u \in E^{1}$ and for each $\alpha \in [0, 1]$. Then the following statements hold:

- (i) u^- is a bounded and non-decreasing left continuous function on (0, 1].
- (ii) u^+ is a bounded and non-increasing left continuous function on (0, 1].
- (iii) The functions u^- and u^+ are right continuous at the point $\alpha = 0$.
- (iv) $u^{-}(1) \le u^{+}(1)$.

Conversely, if the pair of functions u^- and u^+ satisfies the conditions (i)-(iv), then there exists a unique $u \in E^1$ such that $[u]_{\alpha} := [u^-(\alpha), u^+(\alpha)]$ for each $\alpha \in [0, 1]$. The fuzzy real number u corresponding to the pair of functions u^- and u^+ is defined by $u : \mathbb{R} \to [0, 1]$, $u(x) := \sup\{\alpha : u^-(\alpha) \le x \le u^+(\alpha)\}$.

Let $u, v, w \in E^1$ and $k \in \mathbb{R}$. Then the operations addition, scalar multiplication and product defined on E^1 by

$$\begin{split} u+v &= w &\iff [w]_{\alpha} = [u]_{\alpha} + [v]_{\alpha}, \text{ for all } \alpha \in [0,1] \\ &\iff w^{-}(\alpha) = u^{-}(\alpha) + v^{-}(\alpha) \text{ and } w^{+}(\alpha) = u^{+}(\alpha) + v^{+}(\alpha), \\ &\qquad [ku]_{\alpha} = k[u]_{\alpha}, \text{ for all } \alpha \in [0,1] \end{split}$$

and

$$uv = w \iff [w]_{\alpha} = [u]_{\alpha}[v]_{\alpha}, \text{ for all } \alpha \in [0, 1],$$

where it is immediate that

$$w^{-}(\alpha) = \min\{u^{-}(\alpha)v^{-}(\alpha), u^{-}(\alpha)v^{+}(\alpha), u^{+}(\alpha)v^{-}(\alpha), u^{+}(\alpha)v^{+}(\alpha)\}, w^{+}(\alpha) = \max\{u^{-}(\alpha)v^{-}(\alpha), u^{-}(\alpha)v^{+}(\alpha), u^{+}(\alpha)v^{-}(\alpha), u^{+}(\alpha)v^{+}(\alpha)\}\}$$

for all $\alpha \in [0, 1]$.

Let W be the set of all closed bounded intervals A of real numbers with endpoints <u>A</u> and \overline{A} , i.e. $A := [\underline{A}, \overline{A}]$. Define the relation d on W by

$$d(A,B) := \max\{|\underline{A} - \underline{B}|, |A - B|\}$$

It can be observed that d is a metric on W and (W, d) is a complete metric space, (cf. Nanda [19]). Now, we may define the metric D on E^1 by means of the Hausdorff metric d as

$$D(u,v) := \sup_{\alpha \in [0,1]} d([u]_{\alpha}, [v]_{\alpha}) := \sup_{\alpha \in [0,1]} \max\{|u^{-}(\alpha) - v^{-}(\alpha)|, |u^{+}(\alpha) - v^{+}(\alpha)|\}.$$

One can see that

$$D(u,\overline{0}) = \sup_{\alpha \in [0,1]} \max\{|u^{-}(\alpha)|, |u^{+}(\alpha)|\} = \max\{|u^{-}(0)|, |u^{+}(0)|\}.$$
 (1)

The partial ordering relation \leq on E^1 is defined as follows:

 $u \leq v \Leftrightarrow u^{-}(\alpha) \leq v^{-}(\alpha) \text{ and } u^{+}(\alpha) \leq v^{+}(\alpha), \text{ for all } \alpha \in [0,1].$

Two fuzzy numbers u and v are said to be comparable if $u \leq v$ or $v \leq u$ holds. Now, we may give:

Proposition 2.3. [3] Let $u, v, w, z \in E^1$ and $k \in \mathbb{R}$. Then,

- (i) (E^1, D) is a complete metric space.
- (ii) D(ku, kv) = |k|D(u, v).
- (iii) D(u + v, w + v) = D(u, w).
- (iv) $D(u+v, w+z) \le D(u, w) + D(v, z)$.
- (v) $|D(u,\overline{0}) D(v,\overline{0})| \le D(u,v) \le D(u,\overline{0}) + D(v,\overline{0}).$

Following Matloka [17], we give some definitions concerning the sequences of fuzzy real numbers below, which are needed in the text.

A sequence $u = (u_k)$ of fuzzy real numbers is a function u from the set \mathbb{N} into the set E^1 . The fuzzy real number u_k denotes the value of the function at $k \in \mathbb{N}$ and is called as the k^{th} term of the sequence. By w(F), we denote the set of all sequences of fuzzy real numbers

A sequence $(u_n) \in w(F)$ is called convergent with limit $u \in E^1$, if for every $\varepsilon > 0$ there exists $n_0 = n_0(\varepsilon) \in \mathbb{N}$ such that $D(u_n, u) < \varepsilon$, for all $n \ge n_0$.

Definition 2.4. A double sequence $u = (u_{nk})$ of fuzzy real numbers is defined by a function u from the set $\mathbb{N} \times \mathbb{N}$ into the set E^1 . The fuzzy number u_{nk} denotes the value of the function at $(n, k) \in \mathbb{N} \times \mathbb{N}$.

Definition 2.5. [30] A double sequence $u = (u_{mn})$ of fuzzy real numbers is said to be convergent in the Pringsheim's sense or P-convergent if for every $\varepsilon > 0$ there exists $k \in \mathbb{N}$ such that $D(u_{mn}, u_0) < \varepsilon$ for all $m, n \geq k$ and is denoted by

$$P - \lim_{m,n \to \infty} u_{mn} = u_0$$

The fuzzy real number u_0 is called the Pringsheim limit of u.

3. \mathcal{I}_2 -convergence

Definition 3.1. Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $u = (u_{mn})$ of fuzzy real numbers is said to be \mathcal{I}_2 -convergent to a fuzzy real number u_0 , if for any $\varepsilon > 0$ we have

$$A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : D(u_{mn}, u_0) \ge \varepsilon\} \in \mathcal{I}_2$$

E. Dündar and Ö. Talo

and is written as

1

$$\mathcal{I}_2 - \lim_{m,n \to \infty} u_{mn} = u_0.$$

Theorem 3.2. Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. If a double sequence $u = (u_{mn})$ of fuzzy real numbers is \mathcal{I}_2 -convergent to a fuzzy real number u_0 , then u_0 determined uniquely.

Proof. Suppose that $u = (u_{mn})$ is \mathcal{I}_2 -convergent to two different fuzzy real numbers u_0 and v_0 . We first prove that under the assumption of the theorem u_0 and v_0 are comparable. Suppose that u_0 and v_0 are not comparable. Then there exists an $\alpha_0 \in [0, 1]$ such that

$$u_0^-(\alpha_0) < v_0^-(\alpha_0) \text{ and } u_0^+(\alpha_0) > v_0^+(\alpha_0)$$
 (2)

or

$$u_0^-(\alpha_0) > v_0^-(\alpha_0) \text{ and } u_0^+(\alpha_0) < v_0^+(\alpha_0).$$
 (3)

We prove (2) only, (3) can be analogously proved. Suppose (2) holds. Choose $\varepsilon_1 = v_0^-(\alpha_0) - u_0^-(\alpha_0)$ and $\varepsilon_2 = u_0^+(\alpha_0) - v_0^+(\alpha_0)$, then it is clear that $\varepsilon_1 > 0$ and $\varepsilon_2 > 0$. Let $\varepsilon' = \min\{\varepsilon_1, \varepsilon_2\}$. Choose ε such that $0 < \varepsilon < \frac{\varepsilon'}{2}$. Since $u = (u_{mn})$ is \mathcal{I}_2 -convergent to fuzzy real numbers u_0 and v_0 , we have

$$M_1(\varepsilon) = \{ (m, n) \in \mathbb{N} \times \mathbb{N} : D(u_{mn}, u_0) < \varepsilon \} \in \mathcal{F}(\mathcal{I}_2)$$

and

$$M_2(\varepsilon) = \{ (m, n) \in \mathbb{N} \times \mathbb{N} : D(u_{mn}, v_0) < \varepsilon \} \in \mathcal{F}(\mathcal{I}_2)$$

Since $\mathcal{F}(\mathcal{I}_2)$ is a filter on $\mathbb{N} \times \mathbb{N}$, so $\emptyset \neq M_1 \cap M_2 \in \mathcal{F}(\mathcal{I}_2)$. Let $(m, n) \in M_1 \cap M_2$, then we have $D(u_{mn}, u_0) < \varepsilon$ and $D(u_{mn}, v_0) < \varepsilon$. This implies that $d([u_{mn}]_{\alpha}, [u_0]_{\alpha}) < \varepsilon$ and $d([u_{mn}]_{\alpha}, [v_0]_{\alpha}) < \varepsilon$, for each $\alpha \in [0, 1]$. Hence we have $d([u_{mn}]_{\alpha_0}, [u_0]_{\alpha_0}) < \varepsilon$ and $d([u_{mn}]_{\alpha_0}, [v_0]_{\alpha_0}) < \varepsilon$. Now definition of d implies that

$$|u_{mn}^{-}(\alpha_0) - u_0^{-}(\alpha_0)| < \varepsilon \text{ and } |u_{mn}^{-}(\alpha_0) - v_0^{-}(\alpha_0)| < \varepsilon,$$

$$\tag{4}$$

$$|u_{mn}^{+}(\alpha_{0}) - u_{0}^{+}(\alpha_{0})| < \varepsilon \text{ and } |u_{mn}^{+}(\alpha_{0}) - v_{0}^{+}(\alpha_{0})| < \varepsilon.$$
(5)

(4) shows that $u_{mn}^{-}(\alpha_0) \in (u_0^{-}(\alpha_0) - \varepsilon, u_0^{-}(\alpha_0) + \varepsilon) \cap (v_0^{-}(\alpha_0) - \varepsilon, v_0^{-}(\alpha_0) + \varepsilon) = \emptyset$. In this way we obtain a contradiction. Hence u_0 and v_0 are comparable fuzzy real numbers. We may suppose that $u_0 \preceq v_0$. Take $\varepsilon = D(u_0, v_0)/3 > 0$ such that the neighborhoods

$$A(\varepsilon) = \{ (m, n) \in \mathbb{N} \times \mathbb{N} : D(u_{mn}, u_0) < \varepsilon \}$$

and

$$B(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : D(u_{mn}, v_0) < \varepsilon\}$$

of u_0 and v_0 , respectively, are disjoint. Since (u_{mn}) is \mathcal{I}_2 -convergent to u_0 and v_0 so by definition of \mathcal{I}_2 -convergence $A(\varepsilon), B(\varepsilon) \in \mathcal{F}(\mathcal{I}_2)$ and this implies $A(\varepsilon) \cap B(\varepsilon) \neq \emptyset$. In this way we obtain a contradiction to the fact that the neighborhoods $A(\varepsilon)$ and $B(\varepsilon)$ of u_0 and v_0 , respectively, are disjoint. Hence, u_0 is unique. \Box

Theorem 3.3. Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal, $u = (u_{mn})$ be a double sequence of fuzzy real numbers and u_0 be a fuzzy real number. Then

$$P - \lim_{m,n \to \infty} u_{mn} = u_0 \text{ implies } \mathcal{I}_2 - \lim_{m,n \to \infty} u_{mn} = u_0.$$

Proof. Let

$$P - \lim_{m,n \to \infty} u_{mn} = u_0.$$

For every $\varepsilon > 0$ there exists $k_0 = k_0(\varepsilon) \in \mathbb{N}$ such that $D(u_{mn}, u_0) < \varepsilon$ for all $m, n \geq k_0$. Then,

$$A(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : D(u_{mn},u_0) \ge \varepsilon\}$$

$$\subset (\mathbb{N} \times \{1,2,\ldots,(k_0-1)\} \cup \{1,2,\ldots,(k_0-1)\} \times \mathbb{N}).$$

Since \mathcal{I}_2 is a strongly admissible ideal, so $(\mathbb{N} \times \{1, 2, \dots, (k_0 - 1)\} \cup \{1, 2, \dots, (k_0 - 1)\} \times \mathbb{N}) \in \mathcal{I}_2$ and $A(\varepsilon) \in \mathcal{I}_2$. Hence, we have

$$\mathcal{I}_2 - \lim_{m,n \to \infty} u_{mn} = u_0.$$

Theorem 3.4. Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal, $u = (u_{mn})$, $v = (v_{mn})$ be two double sequences of fuzzy real numbers and u_0 , v_0 be two fuzzy real numbers. If $c \in \mathbb{R}$,

$$\mathcal{I}_2 - \lim_{m,n \to \infty} u_{mn} = u_0 \text{ and } \mathcal{I}_2 - \lim_{m,n \to \infty} v_{mn} = v_0,$$

then we have

(i)
$$\mathcal{I}_2 - \lim_{m,n \to \infty} c u_{mn} = c u_0 \text{ and } (ii) \mathcal{I}_2 - \lim_{m,n \to \infty} (u_{mn} + v_{mn}) = u_0 + v_0.$$

Proof. (i) Let $c \in \mathbb{R}$ and $\mathcal{I}_2 - \lim_{m,n\to\infty} u_{mn} = u_0$. If c = 0, there is nothing to prove, so we assume that $c \neq 0$. Let $\varepsilon > 0$ be given. Then,

$$\left\{(m,n)\in\mathbb{N}\times\mathbb{N}: D(cu_{mn},cu_0)\geq\varepsilon\right\}\subseteq\left\{(m,n)\in\mathbb{N}\times\mathbb{N}: D(u_{mn},u_0)\geq\frac{\varepsilon}{|c|}\right\}\in\mathcal{I}_2.$$

Hence, we have

$$\mathcal{I}_2 - \lim_{m,n \to \infty} c u_{mn} = c u_0.$$

(ii) Let $\mathcal{I}_2 - \lim_{m,n\to\infty} u_{mn} = u_0$ and $\mathcal{I}_2 - \lim_{m,n\to\infty} v_{mn} = v_0$. We write

$$A\left(\frac{\varepsilon}{2}\right) = \left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : D(u_{mn}, u_0) \ge \frac{\varepsilon}{2} \right\}$$

and

$$B\left(\frac{\varepsilon}{2}\right) = \left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : D(v_{mn},v_0) \ge \frac{\varepsilon}{2} \right\}$$

for every $\varepsilon > 0$. Then, for every $\varepsilon > 0$ we have

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : D(u_{mn} + v_{mn}, u_0 + v_0) \ge \varepsilon \right\} \subset A\left(\frac{\varepsilon}{2}\right) \ \cup B\left(\frac{\varepsilon}{2}\right),$$

for $D(u_{mn} + v_{mn}, u_0 + v_0) \le D(u_{mn}, u_0) + D(v_{mn}, v_0)$ and hence

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : D(u_{mn} + v_{mn}, u_0 + v_0) \ge \varepsilon \right\} \in \mathcal{I}_2$$

Theorem 3.5. Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal, $u = (u_{mn})$ and $v = (v_{mn})$ be two double sequences of fuzzy real numbers such that

(i)
$$u_{mn} \preceq v_{mn}$$
 for every $(m, n) \in M \subset \mathbb{N} \times \mathbb{N}$ with $M \in \mathcal{F}(\mathcal{I}_2)$.
(ii) $\mathcal{I}_2 - \lim_{m,n\to\infty} u_{mn} = u_0$ and $\mathcal{I}_2 - \lim_{m,n\to\infty} v_{mn} = v_0$.
Then $u_0 \prec v_0$.

Proof. By (ii) for each $\varepsilon > 0$

$$A = \{ (m, n) \in \mathbb{N} \times \mathbb{N} : D(u_{mn}, u_0) \ge \varepsilon \} \in \mathcal{I}_2$$

and

$$B = \{ (m, n) \in \mathbb{N} \times \mathbb{N} : D(v_{mn}, v_0) \ge \varepsilon \} \in \mathcal{I}_2.$$

Suppose that $u_0 \leq v_0$ is not true, then there exist $\alpha_0 \in [0,1]$ such that $u_0^-(\alpha_0) > v_0^-(\alpha_0)$ or $u_0^+(\alpha_0) > v_0^+(\alpha_0)$. We may suppose that $u_0^-(\alpha_0) > v_0^-(\alpha_0)$, the case for $u_0^+(\alpha_0) > v_0^+(\alpha_0)$ is analogously proved. Take $\varepsilon = \frac{u_0^-(\alpha_0) - v_0^-(\alpha_0)}{3}$. Since $M \in \mathcal{F}(\mathcal{I}_2)$ and $A, B \in \mathcal{I}_2$ so we have $\emptyset \neq M \cap A^c \cap B^c \in \mathcal{F}(\mathcal{I}_2)$. Let $(m, n) \in M \cap A^c \cap B^c$, then we have

$$u_{mn} \preceq v_{mn}, \ D(u_{mn}, u_0) < \varepsilon \ and \ D(v_{mn}, v_0) < \varepsilon.$$
 (6)

Last two inequalities of (6) give the following

$$u_{mn}^{-}(\alpha_0) - u_0^{-}(\alpha_0)| < \varepsilon \quad and \quad |v_{mn}^{-}(\alpha_0) - v_0^{-}(\alpha_0)| < \varepsilon \tag{7}$$

and

$$|u_{mn}^{+}(\alpha_{0}) - u_{0}^{+}(\alpha_{0})| < \varepsilon \text{ and } |v_{mn}^{+}(\alpha_{0}) - v_{0}^{+}(\alpha_{0})| < \varepsilon.$$
(8)

Thus equation (7) shows that $u_{mn}(\alpha_0) > v_{mn}(\alpha_0)$. Therefore we obtain a contradiction to $u_{mn} \leq v_{mn}$ as $(m, n) \in M$. Hence we have $u_0 \leq v_0$.

Theorem 3.6. Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal, $u = (u_{mn}), v = (v_{mn})$ and $w = (w_{mn})$ be three double sequences of fuzzy real numbers such that

(i) $u_{mn} \leq v_{mn} \leq w_{mn}$ for every $(m, n) \in M \subset \mathbb{N} \times \mathbb{N}$ with $M \in \mathcal{F}(\mathcal{I}_2)$

(ii) $\mathcal{I}_2 - \lim_{m,n\to\infty} u_{mn} = u_0 \text{ and } \mathcal{I}_2 - \lim_{m,n\to\infty} w_{mn} = u_0.$

Then $\mathcal{I}_2 - \lim_{m,n\to\infty} v_{mn} = u_0.$

Proof. Let $\mathcal{I}_2 - \lim_{m,n\to\infty} u_{mn} = \mathcal{I}_2 - \lim_{m,n\to\infty} w_{mn} = u_0$. For $\varepsilon > 0$ we can take $A = \{(m,n) \in \mathbb{N} \times \mathbb{N} : D(u_{mn}, u_0) \ge \varepsilon\} \in \mathcal{I}_2$

and

$$B = \{ (m, n) \in \mathbb{N} \times \mathbb{N} : D(w_{mn}, u_0) \ge \varepsilon \} \in \mathcal{I}_2$$

Now we define the set $C = \{(m,n) \in \mathbb{N} \times \mathbb{N} : D(v_{mn}, u_0) \geq \varepsilon\}$. We can have either $(m,n) \in M$ or $(m,n) \in M^c$. Assume that $(m,n) \in M$ (as otherwise $C \subset A \cup B \cup M^c$) then we have $u_{mn} \preceq v_{mn} \preceq w_{mn}$. Since

$$D(v_{mn}, u_0) = \sup_{\alpha \in [0,1]} \max\{ |v_{mn}^-(\alpha) - u_0^-(\alpha)|, |v_{mn}^+(\alpha) - u_0^+(\alpha)| \} \ge \varepsilon,$$

therefore by definition of supremum, there exists $\alpha_0 \in [0,1]$ such that

$$\max\{|v_{mn}^{-}(\alpha_{0}) - u_{0}^{-}(\alpha_{0})|, |v_{mn}^{+}(\alpha_{0}) - u_{0}^{+}(\alpha_{0})|\} \ge \varepsilon - \varepsilon',$$

for every $0 < \varepsilon' < \varepsilon$. This implies that

$$|v_{mn}^{-}(\alpha_0) - u_0^{-}(\alpha_0)| \ge \varepsilon - \varepsilon'$$
(9)

or

$$|v_{mn}^+(\alpha_0) - u_0^+(\alpha_0)| \ge \varepsilon - \varepsilon'.$$
(10)

Without loss of generality we may assume that (9) holds. Now according to v_{mn} and u_0 are comparable or not we have the following possibilities:

$$v_{mn}^-(\alpha_0) < u_0^-(\alpha_0) \text{ and } v_{mn}^+(\alpha_0) < u_0^+(\alpha_0) \text{ or } v_{mn}^+(\alpha_0) > u_0^+(\alpha_0)$$
 (11)

and

$$v_{mn}^{-}(\alpha_0) > u_0^{-}(\alpha_0) \text{ and } v_{mn}^{+}(\alpha_0) < u_0^{+}(\alpha_0) \text{ or } v_{mn}^{+}(\alpha_0) > u_0^{+}(\alpha_0).$$
 (12)

We can suppose that (1) holds. One can analogously prove that (12) holds. Since $u_{mn} \leq v_{mn} \leq w_{mn}$, we have $u_{mn}^-(\alpha_0) \leq v_{mn}^-(\alpha_0)$. But then (9) implies that $|u_{mn}^-(\alpha_0) - u_0^-(\alpha_0)| \geq \varepsilon - \varepsilon'$. As ε' was chosen arbitrarily so $D(u_{mn}, u_o) \geq \varepsilon$. This shows that $(m, n) \in A$ and therefore $C \subset A \cup B \cup M^c$. Hence, $C \in \mathcal{I}_2$ and we have

$$\mathcal{I}_2 - \lim_{m,n \to \infty} v_{mn} = u_0.$$

4. \mathcal{I}_2^* -convergence

Definition 4.1. Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $u = (u_{mn})$ of fuzzy real numbers is said to be \mathcal{I}_2^* -convergent to $u_0 \in E^1$, if there exists $M \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $H = \mathbb{N} \times \mathbb{N} \setminus M \in \mathcal{I}_2$) such that

$$\lim_{\substack{m,n\to\infty\\(m,n)\in M}} u_{mn} = u_0$$

and is written

$$\mathcal{I}_2^* - \lim_{m,n \to \infty} u_{mn} = u_0.$$

Theorem 4.2. Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal, $u = (u_{mn})$ be a double sequence of fuzzy real numbers and $u_0 \in E^1$. Then,

$$\mathcal{I}_2^* - \lim_{m,n \to \infty} u_{mn} = u_0 \quad implies \quad \mathcal{I}_2 - \lim_{m,n \to \infty} u_{mn} = u_0$$

Proof. Let $\mathcal{I}_2^* - \lim_{m,n\to\infty} u_{mn} = u_0$. By definition, there exists a $M \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $H = \mathbb{N} \times \mathbb{N} \setminus M \in \mathcal{I}_2$) such that

$$\lim_{\substack{m,n\to\infty\\(m,n)\in M}} u_{mn} = u_0.$$

Then, for every $\varepsilon > 0$ there exists $k_0 = k_0(\varepsilon) \in \mathbb{N}$ we have $D(u_{mn}, u_0) < \varepsilon$ whenever $m, n \ge k_0$ for $(m, n) \in M$. Now, let $A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : D(u_{mn}, u_0) \ge \varepsilon\}$. Therefore, clearly we have

$$A(\varepsilon) \subset H \cup \left| M \cap \left(\left(\{1, 2, \dots, (k_0 - 1)\} \times \mathbb{N} \right) \cup \left(\mathbb{N} \times \{1, 2, \dots, (k_0 - 1)\} \right) \right) \right|$$

Since \mathcal{I}_2 is a strongly admissible ideal, so

$$H \cup \left[M \cap \left(\left(\{1, 2, \dots, (k_0 - 1)\} \times \mathbb{N}\right) \cup \left(\mathbb{N} \times \{1, 2, \dots, (k_0 - 1)\}\right)\right)\right] \in \mathcal{I}_2.$$

Hence, we have $A(\varepsilon) \in \mathcal{I}_2$ and consequently

$$\mathcal{I}_2 - \lim_{m,n \to \infty} u_{mn} = u_0.$$

Theorem 4.3. Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. For any double sequence $u = (u_{mn})$ of fuzzy real numbers, if there exist two sequences $v = (v_{mn})$ and $w = (w_{mn})$ of fuzzy numbers such that

$$u = v + w$$
, $\lim_{m,n\to\infty} v_{mn} = u_0$ and $supp w \in \mathcal{I}_2$,

where $supp w = \{(m, n) \in \mathbb{N} \times \mathbb{N} : w_{mn} \neq \overline{0}\}$ and $\overline{0}$ is the zero element of fuzzy real numbers, then $u = (u_{mn})$ is \mathcal{I}_2 -convergent to $u_0 \in E^1$.

Proof. Suppose that there exist two sequences $v = (v_{mn})$ and $w = (w_{mn})$ of fuzzy real numbers such that

$$u = v + w$$
, $\lim_{m,n \to \infty} v_{mn} = u_0$ and $supp w \in \mathcal{I}_2$.

Let $M = \{(m,n) \in \mathbb{N} \times \mathbb{N} : w_{mn} = \overline{0}\}$. Since $supp w \in \mathcal{I}_2$, so $M \in \mathcal{F}(\mathcal{I}_2)$. Since $u_{mn} = v_{mn}$ for each $(m,n) \in M$ and $\lim_{m,n\to\infty} v_{mn} = u_0$, so it follows that $\lim_{m,n\to\infty} u_{mn} = u_0$. This shows that

$$\mathcal{I}_2^* - \lim_{m \to \infty} u_{mn} = u_0.$$

Thus, by Theorem 4.2 we have

$$\mathcal{I}_2 - \lim_{m,n \to \infty} u_{mn} = u_0.$$

Theorem 4.4. Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal with property (AP2), $u = (u_{mn})$ be a double sequence of fuzzy numbers and u_0 be a fuzzy real number. Then,

$$\mathcal{I}_2 - \lim_{m,n \to \infty} u_{mn} = u_0 \quad implies \quad \mathcal{I}_2^* - \lim_{m,n \to \infty} u_{mn} = u_0.$$

Proof. Let \mathcal{I}_2 satisfy the property (AP2) and $u = (u_{mn})$ be a double sequence of fuzzy real numbers and $u_0 \in E^1$ such that $\mathcal{I}_2 - \lim_{m,n\to\infty} u_{mn} = u_0$. Then for any $\varepsilon > 0$

$$A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : D(u_{mn}, u_0) \ge \varepsilon\} \in \mathcal{I}_2$$

Now put

$$A_1 = \{(m,n) \in \mathbb{N} \times \mathbb{N} : D(u_{mn}, u_0) \ge 1\},$$

$$A_k = \left\{(m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{k} \le D(u_{mn}, u_0) < \frac{1}{k-1}\right\}$$

for $k \geq 2$. It is clear that $A_i \cap A_j = \emptyset$ for $i \neq j$ and $A_i \in \mathcal{I}_2$ for each $i \in \mathbb{N}$. By virtue of (AP2) there exists a sequence $\{B_k\}_{k\in\mathbb{N}}$ of sets such that $A_j \triangle B_j$ is included in finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $B = \bigcup_{i=1}^{\infty} B_j \in \mathcal{I}_2$.

We prove that

$$\lim_{\substack{m,n\to\infty\\(m,n)\in M}} u_{mn} = u_0$$

for $M = \mathbb{N} \times \mathbb{N} \setminus B \in \mathcal{F}(\mathcal{I}_2)$. Let $\delta > 0$ be given. Choose $k \in \mathbb{N}$ such that $1/k < \delta$. Then, we have ŀ

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}: D(u_{mn},u_0)\geq\delta\}\subset\bigcup_{j=1}^nA_j.$$

Since $A_j \triangle B_j$ are included in finite union of rows and columns for $j \in \{1, 2, ..., k\}$, there exists $n_0 \in \mathbb{N}$ such that

$$\left(\bigcup_{j=1}^{\kappa}B_{j}\right)\cap\left\{(m,n):m\geq n_{0}\wedge n\geq n_{0}\right\}=\left(\bigcup_{j=1}^{\kappa}A_{j}\right)\cap\left\{(m,n):m\geq n_{0}\wedge n\geq n_{0}\right\}$$

If $m, n \ge n_0$ and $(m, n) \notin B$ then

$$(m,n) \notin \bigcup_{j=1}^{k} B_j$$
 and so $(m,n) \notin \bigcup_{j=1}^{k} A_j$.

Thus, we have $D(u_{mn}, u_0) < \frac{1}{k} < \delta$. This implies that

$$\lim_{\substack{m,n\to\infty\\(m,n)\in M}} u_{mn}(x) = u_0$$

Hence, we have

$$\mathcal{I}_2^* - \lim_{m,n \to \infty} u_{mn} = u_0.$$

Definition 4.5. [7] Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence of functions $\{f_{mn}\}$ is said to be \mathcal{I}_2 -uniformly convergent to f on a set $S \subset \mathbb{R}$ if for every $\varepsilon > 0$

$$\{(m,n) \in \mathbb{N} \times \mathbb{N} : |f_{mn}(x) - f(x)| \ge \varepsilon\} \in \mathcal{I}_2, \text{ for each fixed } x \in S$$

and is denoted by $f_{mn} \rightrightarrows_{\mathcal{I}_2} f$. This can be stated as follows : For $\varepsilon > 0, \exists H \in \mathcal{I}_2$ such that for all $x \in S$, $|f_{mn}(x) - f(x)| < \varepsilon$, $\forall (m, n) \notin H$.

A double sequence of functions $\{f_{mn}\}$ is said to be \mathcal{I}_2^* -uniformly convergent to f on $S \subset \mathbb{R}$ if and only if there exists a set $M \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M \in \mathcal{I}_2$) such that for $\varepsilon > 0$

$$\lim_{\substack{m,n\to\infty\\(m,n)\in M}} f_{mn}(x) = f(x), \text{ for each (fixed) } x \in S$$

and is written $f_{mn} \rightrightarrows_{\mathcal{I}_2^*} f$.

Theorem 4.6. Let $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal with the property (AP2), $u = (u_{mn})$ be a double sequence of fuzzy real numbers and $u_0 \in E^1$. Then, $\mathcal{I}_2 - \lim_{m,n\to\infty} u_{mn} = u_0$ if and only if

$$u_{mn}^{-}(\alpha) \rightrightarrows_{\mathcal{I}_{2}^{*}} u_{0}^{-}(\alpha) \text{ and } u_{mn}^{+}(\alpha) \rightrightarrows_{\mathcal{I}_{2}^{*}} u_{0}^{+}(\alpha)$$

on [0, 1].

Proof. Let $\mathcal{I}_2 - \lim_{m,n\to\infty} u_{mn} = u_0$. By definition we have

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}:D(u_{mn},u_0)\geq\varepsilon\}\in\mathcal{I}_2$$

for every $\varepsilon > 0$. Then, by Theorem 4.4 for every $\varepsilon > 0$ there exists a set $M \in \mathcal{F}(\mathcal{I}_2)$ and $N = N(\varepsilon)$ such that

$$D(u_{mn}, u_0) = \sup_{\alpha \in [0, 1]} \max\left\{ |u_{mn}^-(\alpha) - u_0^-(\alpha)|, |u_{mn}^+(\alpha) - u_0^+(\alpha)| \right\} < \varepsilon,$$

for all $m, n \ge N$ and $(m, n) \in M$. This implies that

$$\max\left\{|u_{mn}^{-}(\alpha)-u_{0}^{-}(\alpha)|,|u_{mn}^{+}(\alpha)-u_{0}^{+}(\alpha)|\right\}<\varepsilon,$$

hence the result follows for all $\alpha \in [0, 1]$.

To prove the converse implication, let $\varepsilon > 0$ be fixed. Then by Definition 4.5 and by Theorem 4.4, there exist $M_1 \in \mathcal{F}(\mathcal{I}_2)$ and $N_1 = N_1(\varepsilon) \in \mathbb{N}$ such that

$$\left|u_{mn}^{-}(\alpha) - u_{0}^{-}(\alpha)\right| < \varepsilon$$

for all $m, n \geq N_1$ and $(m, n) \in M_1$, and for each $\alpha \in [0, 1]$. Similarly, there exist $M_2 \in \mathcal{F}(\mathcal{I}_2)$ and $N_2 = N_2(\varepsilon) \in \mathbb{N}$ such that

$$|u_{mn}^+(\alpha) - u_0^+(\alpha)| < \varepsilon_1$$

for all $m, n \ge N_2$ and $(m, n) \in M_2$, and for each $\alpha \in [0, 1]$.

Let $N_3 = \max\{N_1, N_2\}$ and $M_3 = M_1 \cap M_2 \in \mathcal{F}(\mathcal{I}_2)$. Thus, for every $\varepsilon > 0$ there exists $M_3 \in \mathcal{F}(\mathcal{I}_2)$ such that for all $m, n \ge N_3$, $(m, n) \in M_3$,

$$\sup_{\alpha \in [0,1]} \max\left\{ |u_{mn}^{-}(\alpha) - u_{0}^{-}(\alpha)|, |u_{mn}^{+}(\alpha) - u_{0}^{+}(\alpha)| \right\} = D(u_{mn}, u_{0}) < \varepsilon.$$

This implies $\mathcal{I}_2^* - \lim_{m,n\to\infty} u_{mn} = u_0$. Hence, we have

$$\mathcal{I}_2 - \lim_{m,n \to \infty} u_{mn} = u_0.$$

References

- B. Altay and F. Başar, Some new spaces of double sequences, J. Math. Anal. Appl., 309(1) (2005), 70–90.
- [2] H. Altınok, Y. Altın and M. Işık, Statistical convergence and strong p-Cesáro summability of order β in sequences of fuzzy numbers, Iranian Journal of Fuzzy Systems, 9(2) (2012), 63–73.
- [3] B. Bede and S. G. Gal, Almost periodic fuzzy-number-valued functions, Fuzzy Sets and Systems, 147 (2004), 385–403.
- [4] C. Cakan and B. Altay, Statistically boundedness and statistical core of double sequences, J. Math. Anal. Appl., **317** (2006), 690–697.
- P. Das, P. Kostyrko, W. Wilczyński and P. Malik, I and I*-convergence of double sequences, Math. Slovaca, 58(5) (2008), 605–620.
- [6] P. Das and P. Malik, On extremal I-limit points of double sequences, Tatra Mt. Math. Publ., 40 (2008), 91–102.
- [7] E. Dündar and B. Altay \mathcal{I}_2 -uniform convergence of double sequences of functions, (under communication).
- [8] J. X. Fang and H. Huang, On the level convergence of a sequence of fuzzy numbers, Fuzzy Sets and Systems, 147 (2004), 417-415.
- [9] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
- [10] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313.

- [11] J. A. Fridy and C. Orhan, Statistical limit superior and inferior, Proc. Amer. Math. Soc., 125 (1997), 3625–3631.
- [12] J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc., 118 (1993), 1187–1192.
- [13] P. Kostyrko, T. Šalát and W. Wilczyński, *I-convergence*, Real Anal. Exchange, 26(2) (2000), 669-686.
- [14] P. Kostyrko, M. Mačaj, T. Šalát and M. Sleziak, *I-convergence and extremal I-limit points*, Math. Slovaca, 55 (2005), 443–464.
- [15] V. Kumar, On I and I*-convergence of double sequences, Math. Commun., 12 (2007), 171– 181.
- [16] V. Kumar and K. Kumar, On the ideal convergence of sequences of fuzzy numbers, Information Sciences, 178 (2008), 4670–4678.
- [17] M. Matloka, Sequences of fuzzy numbers, Busefal, 28 (1986), 28–37.
- [18] Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003), 223–231.
- [19] S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33 (1989), 123-126.
- [20] A. Nabiev, S. Pehlivan and M. Gürdal, On I-Cauchy sequence, Taiwanese J. Math., 11(2) (2007), 569–576.
- [21] F. Nuray and W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl., 245 (2000), 513–527.
- [22] F. Nuray, Lacunary statistical convergence of sequences of fuzzy numbers, Fuzzy Sets and Systems, 99 (1998), 353–355.
- [23] F. Nuray and E. Savaş, Statistical convergence of sequences of fuzzy numbers, Math. Slovaca, 45(3) (1995), 269–273.
- [24] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289–321.
- [25] D. Rath and B. C. Tripaty, On statistically convergence and statistically Cauchy sequences, Indian J. Pure Appl. Math., 25(4) (1994), 381–386.
- [26] R. Saadati, On the I-fuzzy topological spaces, Chaos, Solitons and Fractals, 37 (2008), 1419– 1426.
- [27] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139–150.
- [28] T. Šalát, B. C. Tripaty and M. Ziman, On I-convergence field, Ital. J. Pure Appl. Math., 17 (2005), 45–54.
- [29] E. Savaş, On statistical convergent sequences of fuzzy numbers, Information Sciences, 137 (2001), 277–282.
- [30] E. Savas and Mursaleen, On statistically convergent double sequences of fuzzy numbers, Information Sciences, 162 (2004), 183–192.
- [31] E. Savaş, A note on double sequences of fuzzy numbers, Turk. Jour. Math., 20(20) (1996), 175–178.
- [32] E. Savaş, (A)_Δ-double sequence spaces of fuzzy numbers via orlicz function, Iranian Journal of Fuzzy Systems, 8(2) (2011), 91–103.
- [33] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
- [34] Ö. Talo and F. Başar, Determination of the duals of classical sets of sequences of fuzzy numbers and related matrix transformations, Comput. Math. Appl., 58 (2009), 717–733.
- [35] B. Tripathy and B. C. Tripathy, On I-convergent double sequences, Soochow J. Math., 31 (2005), 549–560.
- [36] B. C. Tripathy, Statistically convergent double sequences, Tamkang J. Math., 34(3) (2003), 231–237.
- [37] B. C. Tripathy and B. Sarma, Double sequence spaces of fuzzy numbers defined by Orlicz function, Acta Math. Sci., **31B(1)** (2011), 134–140.
- [38] L. A. Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353.

Erdinç Dündar*, Department of Mathematics, Afyon Kocatepe University, 03200 Afyonkarahisarn, Turkey

E-mail address: erdincdundar790gmail.com

Özer Talo, Department of Mathematics, Celal Bayar University, 45040 Manisa, Turkey

 $E\text{-}mail \ address: \texttt{ozertalo@hotmail.com}$

*Corresponding Author