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Abstract. In this paper, we investigate multipliers for bounded convergence of double sequences and study some properties
and relations between �2

∞, c2(b) and c2
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INTRODUCTION

Hill [8] was the first who applied methods of functional analysis to double sequences. Also, Kull [10] applied methods
of functional analysis of matrix maps of double sequences. A lot of useful developments of double sequences in
summability methods can be seen in [1, 9, 12, 15].

The study of the multipliers of one sequence space into another is a well-established area of research and has been
the object of several investigations over the last fifty years. Demirci and Orhan [3] studied the bounded multiplier space
of all bounded A-statistically convergent sequences, and using the “βN program” they gave an analogue of a result of
Fridy and Miller [6] for bounded multipliers. Connor, Demirci and Orhan [2] studied multipliers and factorizations for
bounded statistically convergent sequences and a related result. Dündar and Sever [5] studied multipliers for bounded
statistical convergence of double sequences in μ2-density. Yardımcı [16] studied multipliers for bounded I -convergent
sequences. Also, Dündar and Altay [4] investigated analogous results of multipliers for bounded I2-convergent double
sequences.

In this paper, we investigate multipliers for bounded convergence of double sequences and study some properties
and relations between �2

∞, c2(b) and c2
0(b).

DEFINITIONS AND NOTATIONS

Throughout the paper, N denotes the set of all positive integers while R represents the set of all real numbers.
Now, we recall the concepts of double sequence, Pringsheim’s convergence, multiplier for bounded convergence of

the double sequences [1, 4, 7, 8, 11, 13, 14].
A double sequence x = (xmn)m,n∈N of real numbers is said to be convergent to L ∈ R if for any ε > 0, there exists

Nε ∈ N such that
|xmn −L|< ε,

whenever m,n > Nε . In this case we write

lim
m,n→∞

xmn = L.

A double sequence x = (xmn)m,n∈N of real numbers is said to be bounded if there exists a positive real number M
such that

|xmn|< M,

for all m,n ∈ N, that is
‖x‖∞ = sup

m,n
|xmn|< ∞.

Note that in contrast to the case for single sequences, a convergent double sequence need not be bounded.
By �2

∞, c2(b) and c2
0(b), we denote the spaces of all bounded, bounded convergent and bounded null double

sequences, respectively.
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Let E and F be two double sequence spaces. A multiplier from E into F is a sequence u = (umn)m,n∈N such that

ux = (umnxmn) ∈ F,

whenever x = (xmn)m,n∈N ∈ E. The linear space of all such multipliers will be denoted by m(E,F).
If E = F, then we write m(E) instead of m(E,F).
Now we begin with quoting the lemmas due to Dündar and Altay [4] which are needed throughout the paper.

Lemma 1. [4, Theorem 3.2] If E and F are subspaces of �2
∞ that contain c2

0(b), then

c2
0(b)⊂ m(E,F)⊂ �2

∞.

Lemma 2. [4, Lemma 3.4] m
(
c2

0(b)
)
= �2

∞.

MAIN RESULTS

In this section, we deal with the multipliers on or into �2
∞, c2(b) and c2

0(b).

Theorem 3. m(�2
∞) = �2

∞.

Proof. Let u = (umn),x = (xmn) ∈ �2
∞. Then, we have

‖u‖∞ = sup
m,n

|umn|< ∞,

‖x‖∞ = sup
m,n

|xmn|< ∞.

Now, let z = ux. Then, we have

‖z‖∞ = sup
m,n

|zmn|= sup
m,n

|umnxmn| ≤ sup
m,n

|umn|sup
m,n

|xmn|< ∞

and so u ∈ m(�2
∞). This implies that

�2
∞ ⊂ m(�2

∞).

Conversely, since e ∈ �2
∞ (e is the sequence of all 1’s), we have

m(�2
∞)⊂ �2

∞.

This completes the proof of the theorem.

Theorem 4. m
(
�2

∞,c
2
0(b)

)
= c2

0(b).

Proof. Let u ∈ c2
0(b) and θ �= x ∈ �2

∞. Then, we have

‖x‖∞ = sup
m,n∈N

|xmn|< ∞,

‖u‖∞ = sup
m,n∈N

|umn|< ∞

and for ε > 0 there exists N = N(ε) ∈ N such that

|umn|< ε
‖x‖∞

for every m,n > N. Let z = xu. Then, we have

‖z‖∞ = sup
m,n∈N

|zmn|= sup
m,n∈N

|xmnumn| ≤ sup
m,n∈N

|xmn| sup
m,n∈N

|umn|< ∞,
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so z is bounded and

|xmnumn|= |xmn||umn|< ‖x‖∞
ε

‖x‖∞
= ε

for m,n > N. Hence, we have z ∈ c2
0(b). This shows that

c2
0(b)⊂ m

(
�2

∞,c
2
0(b)

)
.

Now, since e ∈ �2
∞ we have

m
(
�2

∞,c
2
0(b)

)⊂ c2
0(b).

This completes the proof of the theorem.

Theorem 5. m
(
c2

0(b), �
2
∞
)
= �2

∞.

Proof. Since c2
0(b)⊂ �2

∞ then by Theorem 3 we have

m
(
c2

0(b), �
2
∞
)⊂ �2

∞.

Now, let u ∈ �2
∞ and x ∈ c2

0(b). Then, it is clear that

ux ∈ �2
∞

and so
�2

∞ ⊂ m
(
c2

0(b), �
2
∞
)
.

Hence, we have m
(
c2

0(b), �
2
∞
)
= �2

∞.

Theorem 6. m
(
c2(b), �2

∞
)
= �2

∞.

Proof. Since c2(b)⊂ �2
∞ then by Theorem 3 we have

m
(
c2(b), �2

∞
)⊂ �2

∞.

Now, let u ∈ �2
∞ and x ∈ c2(b)⊂ �2

∞. Then, we have

ux ∈ �2
∞

and so
�2

∞ ⊂ m
(
c2(b), �2

∞
)
.

This completes the proof of the theorem.

Theorem 7. m(c2(b)) = c2(b).

Proof. Let e = (1) ∈ c2(b). Then, we have
ue = u ∈ c2(b)

for each u ∈ m(c2(b)) and so
m(c2(b))⊂ c2(b).

Now, let u �∈ c2(b). Since e ∈ c2(b), then we have

ue = u �∈ c2(b)

so c2(b)⊂ m(c2(b)).

Theorem 8. m
(
c2(b),c2

0(b)
)
= c2

0(b).
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Proof. Let u ∈ c2
0(b) and e ∈ c2(b). Then, we have

ue = u ∈ c2
0(b)

and so
c2

0(b)⊂ m
(
c2(b),c2

0(b)
)
.

Let u �∈ c2
0(b). Since e ∈ c2(b) then,

ue = u �∈ c2
0(b)

and so
u �∈ m

(
c2(b),c2

0(b)
)
.

Hence, we have
m
(
c2(b),c2

0(b)
)⊂ c2

0(b).

This completes the proof of the theorem.

Theorem 9. m
(
c2

0(b),c
2(b)

)
= �2

∞.

Proof. Since c2
0(b)⊂ �2

∞ and c2(b)⊂ �2
∞, by Lemma 1

m
(
c2

0(b),c
2(b)

)⊂ �2
∞.

Conversely, since c2
0(b)⊂ c2(b), by Lemma 2

�2
∞ ⊂ m

(
c2

0(b),c
2(b)

)
.

Therefore, we have
m
(
c2

0(b),c
2(b)

)
= �2

∞.
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