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Abstract

The concept I-Cauchy and I∗-Cauchy sequences were studied by Gürdal and Ac.ık in [On I-Cauchy sequences in 2-normed

spaces, Math. Inequal. Appl. 11 (2) (2008), 349–354]. In this paper, we introduce the notions of I2-Cauchy and I∗2 -Cauchy
double sequences, and study their some properties with the property (AP2) in 2-normed spaces.
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1. Introduction

The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by

Fast [5] and Schoenberg [25]. This concept was extended to the double sequences by Mursaleen and Edely [16].

The idea of I-convergence was introduced by Kostyrko et al. [14] as a generalization of statistical convergence which

is based on the structure of the ideal I of subset of the set of natural numbers [5, 6]. Nuray and Ruckle [20] indepedently

introduced the same with another name generalized statistical convergence. Das et al. [2] introduced the concept of I-
convergence of double sequences in a metric space and studied some properties of this convergence. Dündar and Altay [4]

studied the concepts of I-Cauchy and I∗-Cauchy for double sequences and they gave the relation between I-convergence
and I∗-convergence of double sequences of functions defined between linear metric spaces. A lot of development have been

made in this area after the works of [3, 15, 17–19, 24, 26–28].

The concept of 2-normed spaces was initially introduced by Gähler [7, 8] in the 1960’s. Since then, this concept has been

studied by many authors, see for instance [9–11, 13]. Şahiner et al. [26] and Gürdal [13] studied I-convergence in 2-normed

spaces. Gürdal and Ac.ık [12] investigated I-Cauchy and I∗-Cauchy sequences in 2-normed spaces. Sarabadan et al. [22, 23]

investigated I and I∗-convergence of double sequences in 2-normed spaces. They also examined the concepts I-limit points

and I-cluster points in 2-normed spaces.
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In this paper, we introduce the notions of I2-Cauchy and I∗2 -Cauchy double sequence, and study their some properties

with the property (AP2) in 2-normed spaces.

2. Definitions and notations

Throughout the paper, N denotes the set of all positive integers and R denotes the set of all real numbers.

Now, we recall the concept of 2-normed space, ideal, ideal convergence of the sequences, double sequences and some

fundamental definitions and notations (See [1, 2, 7, 10, 12, 14, 21–23]).

A double sequence x = (xmn)m,n∈N of real numbers is said to be convergent to L ∈ R in Pringsheim’s sense if for any

ε > 0, there exists Nε ∈ N such that |xmn − L| < ε, whenever m,n > Nε. In this case, we write limm,n→∞ xmn = L.

A double sequence x = (xmn) of real numbers is said to be bounded if there exists a positive real number M such that

|xmn| < M , for all m,n ∈ N. That is,
‖x‖∞ = sup

m,n
|xmn| <∞.

Let X 6= ∅. A class I of subsets of X is said to be an ideal in X provided:

(i) ∅ ∈ I,

(ii) A,B ∈ I implies A ∪B ∈ I,

(iii) A ∈ I, B ⊂ A implies B ∈ I.

I is called a nontrivial ideal if X 6∈ I.
Let X 6= ∅. A non empty class F of subsets of X is said to be a filter in X provided:

(i) ∅ 6∈ F ,

(ii) A,B ∈ F implies A ∩B ∈ F ,

(iii) A ∈ F , A ⊂ B implies B ∈ F .

Lemma 2.1 ([14]) If I is a nontrivial ideal in X, X 6= ∅, then the class

F(I) = {M ⊂ X : (∃A ∈ I)(M = X\A)}

is a filter on X, called the filter associated with I.

A nontrivial ideal I in X is called admissible if {x} ∈ I, for each x ∈ X.

Throughout the paper, we take I2 as a nontrivial admissible ideal in N× N.
A nontrivial ideal I2 of N× N is called strongly admissible if {i} × N and N× {i} belong to I2, for each i ∈ N.
It is evident that a strongly admissible ideal is admissible also.

I02 = {A ⊂ N×N : (∃m(A) ∈ N)(i, j ≥ m(A)⇒ (i, j) 6∈ A)}. Then I02 is a nontrivial strongly admissible ideal and clearly

an ideal I2 is strongly admissible if and only if I02 ⊂ I2.
In this section, we consider the I2 and I∗2 -convergence of double sequences in the more general structure of a metric space

(X, ρ). Unless otherwise mentioned we shall denote the metric space (X, ρ) by X only.

Let (X, ρ) be a linear metric space and I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence x = (xmn) in X is

said to be I2-convergent to L ∈ X, if for any ε > 0 we have

A(ε) = {(m,n) ∈ N× N : ρ(xmn, L) ≥ ε} ∈ I2.

In this case, we say that x is I2-convergent and we write I2 − limm,n→∞ xmn = L.

If I2 is a strongly admissible ideal on N× N, then usual convergence implies I2-convergence.
Let (X, ρ) be a linear metric space and I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence x = (xmn) of

elements of X is said to be I∗2 -convergent to L ∈ X if and only if there exists a set M ∈ F(I2) (i.e., H = N × N\M ∈ I2)
such that limm,n→∞ xmn = L, for (m,n) ∈M and we write I∗2 − limm,n→∞ xmn = L.
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Let (X, ρ) be a linear metric space and I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence x = (xmn) of

elements of X is said to be I2-Cauchy, if for every ε > 0 there exist s = s(ε), t = t(ε) ∈ N such that

A(ε) = {(m,n) ∈ N× N : ρ(xmn, xst) ≥ ε} ∈ I2.

Let (X, ρ) be a linear metric space and I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence x = (xmn) in X is

said to be I∗2 -Cauchy sequence if there exists a set M ∈ F(I2) (i.e., H = N× N\M ∈ I2) such that for every ε > 0 and for

(m,n), (s, t) ∈M , m,n, s, t > k0 = k0(ε), ρ(xmn, xst) < ε. In this case, we write limm,n,s,t→∞ ρ(xmn, xst) = 0.

We say that an admissible ideal I2 ⊂ 2N×N satisfies the property (AP2) if for every countable family of mutually disjoint

sets {A1, A2, ...} belonging to I2, there exists a countable family of sets {B1, B2, ...} such that Aj∆Bj ∈ I02 , i.e., Aj∆Bj is

included in the finite union of rows and columns in N × N for each j ∈ N and B =
⋃∞

j=1Bj ∈ I2 (hence Bj ∈ I2 for each

j ∈ N).

Let X be a real vector space of dimension d, where 2 ≤ d <∞. A 2-norm on X is a function ‖·, ·‖ : X ×X → R which

satisfies the following statements:

(i) ‖x, y‖ = 0 if and only if x and y are linearly dependent.

(ii) ‖x, y‖ = ‖y, x‖.

(iii) ‖αx, y‖ = |α|‖x, y‖, α ∈ R.

(iv) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖.

The pair (X, ‖·, ·‖) is then called a 2-normed space. As an example of a 2-normed space we may take X = R2 being equipped

with the 2-norm ‖x, y‖ := the area of the parallelogram based on the vectors x and y which may be given explicitly by the

formula

‖x, y‖ = |x1y2 − x2y1|; x = (x1, x2), y = (y1, y2) ∈ R2.

Now, we give definitions of I-convergence, I∗-convergence of sequences and double sequences and I-Cauchy sequence,

I∗-Cauchy sequence in 2-normed space.

In this study, we suppose X to be a 2-normed space having dimension d; where 2 ≤ d <∞.

Let I ⊂ 2N be a nontrivial ideal. The sequence (xn) in 2-normed space (X, ‖·, ·‖) is said to be I-convergence to x ∈ X,

if for each ε > 0 and nonzero z ∈ X,

A(ε, z) = {n ∈ N : ‖xn − x, z‖ ≥ ε} ∈ I.

In this case, we write

I − lim
n→∞

‖xn − x, z‖ = 0 or I − lim
n→∞

‖xn, z‖ = ‖x, z‖.

Let I ⊂ 2N be a nontrivial ideal. The sequence (xn) in 2-normed space (X, ‖·, ·‖) is said to be I∗-convergence to L ∈ X,

if there exists a set M = {m1 < m2 < · · · < mk < · · · } ⊂ N, M ∈ F (I) such that limk→∞ ‖xmk −L, z‖ = 0, for each nonzero

z ∈ X.

Let (X, ‖·, ·‖) be a linear 2-normed space and I ⊂ 2N be an admissible ideal. The sequence (xn) is said to be I-Cauchy
sequence in X, if for each ε > 0 and nonzero z ∈ X there exists a number N = N(ε, z) such that

{n ∈ N : ‖xn − xN , z‖ ≥ ε} ∈ I.

Let (X, ‖·, ·‖) be a linear 2-normed space and I ⊂ 2N be an admissible ideal. The sequence (xn) is said to be I∗-Cauchy
sequence inX, if there exists a setM = {m1 < m2 < · · · < mk < · · · } ⊂ N,M ∈ F (I) such that limk,p→∞ ‖xmk−xmp , z‖ = 0,

for each nonzero z ∈ X.

Let I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence x = (xmn)m,n∈N in 2-normed space (X, ‖·, ·‖) is said to

be I2-convergence to L ∈ X, if for each ε > 0 and nonzero z ∈ X,

A(ε, z) = {(m,n) ∈ N× N : ‖xmn − L, z‖ ≥ ε} ∈ I2.

In this case, we write I2 − limm,n→∞ xmn = L.
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Let I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence x = (xmn)m,n∈N in 2-normed space (X, ‖·, ·‖) is said to

be I∗2 -convergence to L ∈ X, if there exists a setM ∈ F (I2) (i.e. H = N×N\M ∈ I2) such that limm,n→∞ ‖xmn−L, z‖ = 0,

for (m,n) ∈M and for each nonzero z ∈ X. In this case, we write I∗2 − limm,n→∞ xmn = L.

Lemma 2.2 ([4],Theorem 3.3) Let {Pi}∞i=1 be a countable collection of subsets of N × N such that Pi ∈ F (I2) for each

i, where F(I2) is a filter associate with a strongly admissible ideal I2 with the property (AP2). Then, there exists a set

P ⊂ N× N such that P ∈ F(I2) and the set P\Pi is finite for all i.

3. I2-Cauchy double sequences in 2-normed spaces

Now, we introduce the notions of I2-Cauchy and I∗2 -Cauchy double sequence in 2-normed space.

Definition 3.1 Let (X, ‖·, ·‖) be a linear 2-normed space and I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence

x = (xmn) in X is said to be I2-Cauchy if for each ε > 0 and nonzero z in X there exist s = s(ε, z), t = t(ε, z) ∈ N such that

A(ε, z) := {(m,n) ∈ N× N : ‖xmn − xst, z‖ ≥ ε} ∈ I2.

Theorem 3.2 Let I2 ⊂ 2N×N be a strongly admissible ideal. If x = (xmn) in X is I2-convergent then x = (xmn) is an

I2-Cauchy double sequence in 2-normed space (X, ‖·, ·‖).

Proof. Suppose that x = (xmn) is I2-convergent to L in X. Then, for each ε > 0 and nonzero z ∈ X,

A
( ε

2
, z
)

=
{

(m,n) ∈ N× N : ‖xmn − L, z‖ ≥
ε

2

}
∈ I2.

This implies that the set

Ac( ε
2
, z
)

=
{

(m,n) ∈ N× N : ‖xmn − L, z‖ <
ε

2

}
∈ F(I2)

and therefore Ac( ε
2
, z) is non-empty. So, we can choose positive integers k and l such that (k, l) 6∈ A( ε

2
, z). Then, for every

ε > 0 and nonzero z ∈ X we have

‖xkl − L, z‖ <
ε

2
.

Take

B(ε, z) = {(m,n) ∈ N× N : ‖xmn − xkl, z‖ ≥ ε},

for each ε > 0 and nonzero z ∈ X. We prove that B(ε, z) ⊂ A( ε
2
, z). Let (m,n) ∈ B(ε, z). Then, we have

ε ≤ ‖xmn − xkl, z‖ ≤ ‖xmn − L, z‖+ ‖xkl − L, z‖ < ‖xmn − L, z‖+
ε

2
.

This implies that
ε

2
< ‖xmn − L, z‖, for each nonzero z in X

and therefore (m,n) ∈ A( ε
2
, z). Since B(ε, z) ⊂ A( ε

2
, z) and A( ε

2
, z) ∈ I2, we get B(ε, z) ∈ I2. This completes the proof.

Definition 3.3 Let (X, ‖·, ·‖) be a linear 2-normed space and I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence

x = (xmn) in X is said to be I∗2 -Cauchy sequence, if there exists a set M ∈ F(I2) (i.e., H = N× N\M ∈ I2) such that for

each ε > 0 and for all (m,n), (s, t) ∈M ,

‖xmn − xst, z‖ < ε, for each nonzero z ∈ X,

where m,n, s, t > k0 = k0(ε) ∈ N. In this case, we write

lim
m,n,s,t→∞

‖xmn − xst, z‖ = 0.

Theorem 3.4 Let I2 ⊂ 2N×N be a strongly admissible ideal. If x = (xmn) is an I∗2 -Cauchy double sequence then x = (xmn)

is I2-Cauchy double sequence in 2-normed space (X, ‖·, ·‖).
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Proof. Suppose that x = (xmn) is an I∗2 -Cauchy double sequence in 2-normed space. Then, there exists a setM ∈ F(I2)

(i.e., H = N× N\M ∈ I2) such that for each ε > 0 and for all (m,n), (s, t) ∈M ,

‖xmn − xst, z‖ < ε, for each nonzero z ∈ X,

where m,n, s, t ≥ k0 = k0(ε) ∈ N. Then,

A(ε, z) = {(m,n) ∈ N× N : ‖xmn − xst, z‖ ≥ ε}

⊂ H ∪
[
M ∩

(
({1, 2, 3, . . . , (k0 − 1)} × N) ∪ (N× {1, 2, 3, . . . , (k0 − 1)})

)]
.

Since I2 be a strongly admissible ideal, then

H ∪
[
M ∩

(
({1, 2, 3, . . . , (k0 − 1)} × N) ∪ (N× {1, 2, 3, . . . , (k0 − 1)})

)]
∈ I2.

Therefore, we have A(ε, z) ∈ I2. This shows that x = (xmn) is I2-Cauchy double sequences in 2-normed space.

Theorem 3.5 Let I2 ⊂ 2N×N be a strongly admissible ideal and x = (xmn) in X. If x = (xmn) is I∗2 -convergent, then

x = (xmn) is an I2-Cauchy double sequence in 2-normed space (X, ‖·, ·‖).

Proof. Suppose that x = (xmn) is I∗2 -convergent to L inX. Then, there exists a setM ∈ F(I2) (i.e.,H = N×N\M ∈ I2)
such that for each ε > 0 and for all (m,n) ∈M ,

‖xmn − L, z‖ <
ε

2
, for each nonzero z in X,

where m,n ≥ k0 = k0(ε) ∈ N. Since, for each ε > 0 and for all (m,n), (s, t) ∈M ,

‖xmn − xst, z‖ ≤ ‖xmn − L, z‖+ ‖xst − L, z‖ <
ε

2
+
ε

2
= ε, for each nonzero z in X,

where m,n, s, t ≥ k0 = k0(ε) ∈ N, we have

‖xmn − xst, z‖ < ε.

This shows that x = (xmn) is an I∗2 -Cauchy double sequence in X. Hence, by Theorem 3.4 x = (xmn) is an I2-Cauchy
double sequence in X.

Theorem 3.6 Let (X, ‖·, ·‖) be a linear 2-normed space. If I2 ⊂ 2N×N is a strongly admissible ideal with the property (AP2)

then the concepts I2-Cauchy double sequence and I∗2 -Cauchy double sequence coincide in X.

Proof. It is known by Theorem 3.4 that an I∗2 -Cauchy double sequence is also an I2-Cauchy, where I2 need not have

the property (AP2).

Now, it is sufficient to prove that a double sequence x = (xmn) in X is a I∗2 -Cauchy double sequence under assumption

that it is an I2-Cauchy double sequence. Let x = (xmn) inX be an I2-Cauchy double sequence. Then, there exists s = s(ε, z),

t = t(ε, z) ∈ N such that

A(ε, z) = {(m,n) ∈ N× N : ‖xmn − xst, z‖ ≥ ε} ∈ I2,

for each ε > 0 and nonzero z in X. Let

Pi =

{
(m,n) ∈ N× N : ‖xmn − xsiti , z‖ <

1

i

}
; (i = 1, 2, . . .),

where si = s( 1
i
), ti = t( 1

i
). It is clear that

Pi ∈ F(I2), (i = 1, 2, . . .).

Since I2 has the property (AP2), then by Lemma 2.2 there exists a set P ⊂ N× N such that P ∈ F(I2), and P\Pi is finite

for all i. Now we show that

lim
m,n,s,t→∞

(m,n),(s,t)∈P

‖xmn − xst, z‖ = 0, for each nonzero z in X.
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To prove this, let ε > 0 and j ∈ N such that j > 2
ε
. If (m,n), (s, t) ∈ P then P\Pj is a finite set, so there exists k = k(j)

such that (m,n), (s, t) ∈ Pj , for all m,n, s, t > k(j). Therefore,

‖xmn − xsjtj , z‖ <
1

j
and ‖xst − xsjtj , z‖ <

1

j
, for each nonzero z in X,

for all m,n, s, t > k(j). Hence, it follows that

‖xmn − xst, z‖ ≤ ‖xmn − xsjtj , z‖+ ‖xst − xsjtj , z‖ <
1

j
+

1

j
=

2

j
< ε,

for all n,m, s, t > k(j) and each nonzero z in X. Thus, for any ε > 0 there exists k = k(ε) such that for m,n, s, t > k(ε) and

(m,n), (s, t) ∈ P ∈ F(I2)

‖xmn − xst, z‖ < ε, for each nonzero z in X.

This shows that the double sequence x = (xmn) ∈ X is an I∗2 -Cauchy double sequence.
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