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ABSTRACT

In this study, we introduce the notion of rough I2-convergence
and the set of rough I2-limit points of a double sequence and
obtained two rough I2-convergence criteria associated with this
set. Later, we proved that this set is closed and convex. Finally, we
examined the relationships between the set of cluster points and
the set of rough I2-limit points of a double sequence.
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1. Background and introduction

Throughout the articleN andR denote the set of all positive integers and the set

of all real numbers, respectively. The idea of I-convergence was introduced

by Kostyrko et al. [11] as a generalization of statistical convergence which

is based on the structure of the ideal I of a subset of the set of natural

numbers. Nuray and Ruckle [14] introduced the same with another name,

which generalized statistical convergence. Kostyrko et al. [12] studied the idea of

I-convergence and extremal I-limit points, and Demirci [6] studied the

concepts of I-limit superior and I-limit inferior. Das et al. [4] introduced the

concept of I-convergence of double sequences in a metric space and studied

some properties of this convergence. Also, Das and Malik [5] introduced the

concept of I-limit points, I-cluster points and I-limit superior and I-limit

inferior of double sequences. A lot of progress has been made in this area a�er

the works of [1, 8–10, 13, 18–21].

The idea of rough convergence was �rst introduced by Phu [15] in �nite-

dimensional normed spaces. In [15], he showed that the set LIMrx is bounded,
closed, and convex and introduced the notion of rough Cauchy sequence. He

also investigated the relations between rough convergence and other conver-

gence types and the dependence of LIMrx on the roughness degree r. In another
article [16] related to this subject, he de�ned the rough continuity of linear

operators and showed that every linear operator f : X → Y is r -continuous

at every point x ∈ X under the assumption dimY < ∞ and r > 0 where X and
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Y are normed spaces. In [17], he extended the results given in [15] to in�nite-

dimensional normed spaces. Aytar [2] found of rough statistical convergence

and de�ned the set of rough statistical limit points of a sequence and obtained

two statistical convergence criteria associatedwith this set and prove that this set

is closed and convex. Also, Aytar [3] found that the r-limit set of the sequence is

equal to the intersection of these sets and that r-core of the sequence is equal to

the union of these sets. Recently, Dündar andÇakan [7, 8] introduced the notion

of rough I-convergence and the set of rough I-limit points of a sequence and

studied the notion of rough convergence and the set of rough limit points of a

double sequence.

In this article, we introduce the notion of rough I2-convergence and the

set of rough I2-limit points of a double sequence and obtained two rough

I2-convergence criteria associated with this set. Later, we proved that this set is

closed and convex. Finally, we examined the relations between the set of cluster

points and the set of rough I2-limit points of a double sequence.

We note that our results and proof techniques presented in this article are

I analogues of those in Phu’s [15] article. Namely, the actual origin of most of

these results and proof techniques is his article. The following our theorems and

results are the I-extension of theorems and results in [15].

De�nition 1.1 ([4]). A double sequence x = (xmn)m,n∈N of real numbers is

said to be convergent to L ∈ R if for any ε > 0 , there exists Nε ∈N such that

|xmn − L| < ε, wheneverm, n > Nε. In this case we write

lim
m,n→∞

xmn = L.

De�nition 1.2 ([4]). A double sequence x = (xmn) of real numbers is said to

be bounded if there exists a positive real numberM such that |xmn|<M, for all

m, n ∈ N. That is

‖x‖∞ = sup
m,n

|xmn| < ∞.

De�nition 1.3 ([11]). Let X 6= ∅. A class I of subsets of X is said to be an ideal

in X provided:

i) ∅ ∈ I ,

ii) A,B ∈ I implies A ∪ B ∈ I ,

iii) A ∈ I , B ⊂ A implies B ∈ I .

I is called a nontrivial ideal if X 6∈ I .

A nontrivial ideal I in X is called admissible if {x} ∈ I for each x ∈ X.

De�nition 1.4 ([11]). Let X 6= ∅. A non empty classF of subsets of X is said to

be a �lter in X provided:

i) ∅ 6∈ F ,

ii) A,B ∈ F implies A ∩ B ∈ F ,

iii) A ∈ F , A ⊂ B implies B ∈ F .

D
ow

nl
oa

de
d 

by
 [

A
fy

on
 K

oc
at

ep
e 

U
ni

ve
rs

ite
si

] 
at

 0
5:

53
 1

3 
A

pr
il 

20
16

 



482 E. DÜNDAR

Lemma 1.5 ([11]). If I is a nontrivial ideal in X, X 6= ∅, then the class

F(I) = {M ⊂ X : (∃A ∈ I)(M = X\A)}

is a �lter on X, called the �lter associated with I .

De�nition 1.6 ([11]). Let (X, ρ) be a linear metric space and I ⊂ 2N be a non-

trivial ideal. a sequence (xi)i∈N of elements of X is said to be I-convergent to

ξ ∈ X (I − limi→∞ xi = ξ) if and only if for each ε > 0 the set A(ε) = {i ∈ N :

ρ(xi, ξ) ≥ ε} belongs to I . The element ξ is called the I-limit of the sequence

x = (xi)i∈N.

Note that if I is an admissible ideal, then usual convergence in X implies

I-convergence in X.

De�nition 1.7 ([6]). For a sequence x = (xi) of real numbers, the notions of

ideal limit superior and ideal limit inferior are de�ned as follows:

I − lim sup x =

{

supBx, if Bx 6= ∅

−∞, if Bx = ∅

and

I − lim inf x =

{

inf Ax, if Ax 6= ∅

+∞, if Ax = ∅
,

where Ax = {a ∈ R : {i ∈ N : xi < a} 6∈ I} and Bx = {b ∈ R : {i ∈ N : xi >

b} 6∈ I}.

De�nition 1.8 ([4]). A nontrivial ideal I2 ofN×N is called strongly admissible

if {i} × N and N × {i} belong to I2 for each i ∈ N.

It is evident that a strongly admissible ideal is admissible also.

Throughout the article, we take I2 as a strongly admissible ideal in N × N.

De�nition 1.9 ([4]). Let (X, ρ) be a metric space A double sequence x = (xmn)

in X is said to be I2-convergent to L ∈ X, if for any ε > 0 we have

A(ε) = {(m, n) ∈ N × N : ρ(xmn, L) ≥ ε} ∈ I2.

In this case we say that x is I2-convergent and we write

I2 − lim
m,n→∞

xmn = L.

If I2 is a strongly admissible ideal on N×N, then usual convergence implies

I2-convergence.

De�nition 1.10 ([5]). Let x = (xjk) be a double sequence of real numbers and

Ay = {a ∈ R : {(j, k) ∈ N × N : xjk < a} 6∈ I2}
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NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 483

and

By = {b ∈ R : {(j, k) ∈ N × N : xjk > b} 6∈ I2}.

Then I2-limit superior and I2-limit inferior of x are de�ned as follows:

I2 − lim sup x =

{

supBx, if Bx 6= ∅

−∞, if Bx = ∅

and

I2 − lim inf x =

{

inf Ax, if Ax 6= ∅

+∞, if Ax = ∅.

Within the article let r be a nonnegative real number andRn denotes the real

n-dimensional space with the norm ‖.‖. Consider a sequence x = (xi) ⊂ R
n.

De�nition 1.11 ([15]). The sequence x = (xi) is said to be r-convergent to x∗,

denoted by xi
r

−→ x∗ provided that

∀ε > 0 ∃iε ∈ N : i ≥ iε ⇒ ‖xi − x∗‖ < r + ε.

The set

LIMrx := {x∗ ∈ R
n : xi

r
−→ x∗}

is called the r-limit set of the sequence x = (xi). A sequence x = (xi) is said to

be r-convergent if LIMrx 6= ∅. In this case, r is called the convergence degree of

the sequence x = (xi). For r = 0, we get the ordinary convergence. There are

several reasons for this interest (see [15]).

De�nition 1.12 ([7]). A sequence x = (xi) is said to be I-convergent to L ∈ R
n,

written as I-lim x = L, provided that the set {i ∈ N : ‖xi − L‖ ≥ ε} ∈ I , for

every ε > 0. In this case, L is called the I-limit of the sequence x.

De�nition 1.13 ([7]). c ∈ R
n is called a I-cluster point of a sequence x = (xi)

provided that

{i ∈ N : ‖xi − c‖ < ε} 6∈ I

for every ε > 0. We denote the set of all I-cluster points of the sequence x by

I(Ŵx).

A sequence x = (xi) is said to be I-bounded if there exists a positive real

numberM such that {i ∈ N : ‖xi‖ ≥ M} ∈ I .

De�nition 1.14 ([7]). A sequence x = (xi) is said to be rough I-convergent

(r-I-convergent) to x∗ with the roughness degree r, denoted by xi
r−I
−→ x∗
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484 E. DÜNDAR

provided that

{i ∈ N : ‖xi − x∗‖ ≥ r + ε}

belongs to I for every ε > 0; or equivalently, if the condition

I − lim sup ‖xi − x∗‖ ≤ r (1.1)

is satis�ed. In addition, we canwrite xi
r−I
−→ x∗ if the inequality ‖xi−x∗‖ < r+ε

holds for every ε > 0 and almost all i.

Throughout the article, we consider a sequence x = (xmn) such that (xmn) ∈

R
n,m, n ∈ N.

De�nition 1.15 ([8]). The double sequence x = (xmn) is said to be rough con-

vergent (r-convergent) to x∗ with the roughness degree r, denoted by xmn
r

−→

x∗ provided that

∀ε > 0 ∃kε ∈ N : m, n ≥ kε ⇒ ‖xmn − x∗‖ < r + ε, (1.2)

or equivalently, if

lim sup ‖xmn − x∗‖ ≤ r. (1.3)

2. Main results

De�nition 2.1. For some given real number r ≥ 0, a sequence x = (xmn) is said

to be r-I2-convergent to x∗ with the roughness degree r, denoted by xmn
r−I2
−→ x∗,

provided that

{(m, n) ∈ N × N : ‖xmn − x∗‖ ≥ r + ε} ∈ I2, (2.1)

for every ε > 0; or equivalently, if the condition

I2 − lim sup ‖xmn − x∗‖ ≤ r (2.2)

is satis�ed. In addition, we can write xmn
r−I2
−→ x∗ if the inequality ‖xmn − x∗‖ <

r + ε holds for every ε > 0 and almost all (m, n).

Now, we give the de�nitions of I2-cluster point of a double sequence and of

I2-boundedness for a double sequence.

c ∈ R
n is called a I2-cluster point of a double sequence x = (xmn) provided

that

{(m, n) ∈ N × N : ‖xmn − c‖ < ε} 6∈ I2

for every ε > 0.We denote the set of all I2-cluster points of the double sequence

x = (xmn) by I2(Ŵx).
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NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 485

Adouble sequence x = (xmn) is said to beI2-bounded if there exists a positive

real numberM such that {(m, n) ∈ N × N : ‖xmn‖ ≥ M} ∈ I2.

Remark 2.2. r-convergence implies r-I2-convergence as depending the rough-

ness degree.

Here r is called the roughness degree. If we take r = 0, then we obtain the

ordinary I2-convergence of a double sequence.

In general, the r-I2-limit of a double sequence may not be unique for the

roughness degree r > 0. So we have to consider the so-called rough I2-limit set

of a double sequence x = (xmn), which is de�ned by

I2 − LIMrx := {x∗ ∈ R
n : xmn

r−I2
−→ x∗}.

A double sequence x = (xmn) is said to be r-I2-convergent if I2 − LIMrx 6= ∅.

As noted above, we cannot say that the r-I2-limit of a double sequence is

unique for the roughness degree r > 0. The following theorem is related to this

claim.

Theorem 2.3. We have diam(I2 − LIMrx) ≤ 2r, for any sequence x = (xmn). In

general, diam(I2 − LIMrx) has no smaller bound.

Proof. Suppose that diam(I2−LIMrx) = sup{‖y−z‖ : y, z ∈ I2−LIMrx} > 2r.

Then there exist y, z ∈ I2−LIMrx such that ‖y−z‖ > 2r. Take ε ∈ (0,
‖y−z‖

2 −r).

Since y, z ∈ I2 − LIMrx, for every ε > 0, we have

A1(ε) = {(m, n) ∈ N × N : ‖xmn − y‖ ≥ r + ε} ∈ I2

and

A2(ε) = {(m, n) ∈ N × N : ‖xmn − z‖ ≥ r + ε} ∈ I2.

In this case, we have

Ac
1(ε) = {(m, n) ∈ N × N : ‖xmn − y‖ < r + ε} ∈ F(I2)

and

Ac
2(ε) = {(m, n) ∈ N × N : ‖xmn − z‖ < r + ε} ∈ F(I2).

Using the properties of F(I2), A1(ε)
c ∩ A2(ε)

c is non-empty and we get

(Ac
1(ε) ∩ Ac

2(ε)) ∈ F(I2).

Thus, we can write

‖y− z‖ ≤ ‖xmn − y‖+‖xmn − z‖ < 2(r+ ε) < 2(r+
‖y − z‖

2
− r) = ‖y− z‖,

for all (m, n) ∈ A1(ε)
c ∩ A2(ε)

c, which is a contradiction.
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486 E. DÜNDAR

Now, for proof of the second part of the theorem, consider a double sequence

x = (xmn) such that I2-lim xmn = x∗. Let ε > 0. Then, we can write

{(m, n) ∈ N × N : ‖xmn − x∗‖ ≥ ε} ∈ I2.

Thus, we have

‖xmn − y‖ ≤ ‖xmn − x∗‖ + ‖x∗ − y‖ ≤ ‖xmn − x∗‖ + r,

for each y ∈ Br(x∗) := {y ∈ R
n : ‖y − x∗‖ ≤ r}. Then, we get

‖xmn − y‖ < r + ε,

for each (m, n) ∈ {(m, n) ∈ N×N : ‖xmn−x∗‖ < ε}. Since the double sequence

x = (xmn) is I2-convergent to x∗, we have

{(m, n) ∈ N × N : ‖xmn − x∗‖ < ε} ∈ F(I2).

Thus, we have y ∈ I2 − LIMrx, and we can write

I2 − LIMrx = Br(x∗). (2.3)

Since diam(Br(x∗)) = 2r, this shows that, in general, the upper bound 2r of the

diameter of the set I2 − LIMrx cannot be decreased further.

Now we give some topological and geometrical properties of the r-I2-limit

set of a double sequence.

Theorem 2.4. The r-I2-limit set of a double sequence x = (xmn) is closed.

Proof. If I2 − LIMrx = ∅, then there is nothing to prove. Suppose that I2 −

LIMrx 6= ∅. In this case we can select an arbitrary sequence (ymn) ⊆ I2−LIMrx

such that limm,n→∞ ymn = y∗. We must show that y∗ ∈ I2 − LIMrx.

Let ε > 0 be given. Since ymn → y∗, there exists k = kε ∈ N such that

‖ymn − y∗‖ < ε, for allm, n > k.

Now select an anm0, n0 ∈ N such thatm0, n0 ≥ k. Then we can write

‖ym0n0 − y∗‖ < ε.

On the other hand, since (ymn) ⊆ I2 − LIMrx, we have ym0n0 ∈ I2 − LIMrx,

that is,

A(ε) =
{

(m, n) ∈ N × N : ‖xmn − ym0n0‖ ≥ r + ε
}

∈ I2. (2.4)

Now, let us show that the inclusion

Ac(ε) ⊆ Ac(2ε) (2.5)
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NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 487

holds, where A(2ε) = {(m, n) ∈ N × N : ‖xmn − y∗‖ ≥ r + 2ε}. Take (k, l) ∈

Ac(ε). Then we have

‖xkl − ym0n0‖ < r + ε,

and hence

‖xkl − y∗‖ ≤ ‖xkl − ym0n0‖ + ‖ym0n0 − y∗‖ < r + 2ε,

that is, (k, l) ∈ Ac(2ε), which proves (2.5). So, we have

A(2ε) ⊆ A(ε).

Because of A(ε) ∈ I2 by (2.4), we have A(2ε) ∈ I2 (i.e., y∗ ∈ I2 − LIMrx),

which completes the proof.

Theorem 2.5. The r-I2-limit set of a double sequence x = (xmn) is convex.

Proof. Assume that y1, y2 ∈ I2 − LIMrx for the sequence x = (xmn) and let

ε > 0 be given. De�ne

A1(ε) = {(m, n) ∈ N × N : ‖xmn − y1‖ ≥ r + ε} and

A2(ε) = {(m, n) ∈ N × N : ‖xmn − y2‖ ≥ r + ε}.

Because of y1, y2 ∈ I2 − LIMrx, we have A1(ε),A2(ε) ∈ I2. Hence, we have

‖xmn − [(1 − λ)y1 + λy2]‖ = ‖(1 − λ)(xmn − y1) + λ(xmn − y2)‖ < r + ε,

for each (m, n) ∈ Ac
1(ε)∩A

c
2(ε) and eachλ ∈ [0, 1]. Because of (Ac

1(ε)∩A
c
2(ε)) ∈

F(I2), by de�nition F(I2) we get

{(m, n) ∈ N × N : ‖xmn − [(1 − λ)y1 + λy2]‖ ≥ r + ε} ∈ I2,

that is,

[(1 − λ)y1 + λy2] ∈ I2 − LIMrx,

which proves the convexity of the set I2 − LIMrx.

Theorem 2.6. Suppose r > 0. Then a double sequence x = (xmn) is r-I2-

convergent to x∗ if and only if there exists a sequence y = (ymn) such that

I2 − lim y = x∗ and ‖xmn − ymn‖ ≤ r, for eachm, n ∈ N. (2.6)

Proof. Assume that x = (xmn) is r-I2-convergent to x∗. Then, by (2.2) we have

I2 − lim sup ‖xmn − x∗‖ ≤ r. (2.7)

Now, de�ne

ymn =







x∗, if ‖xmn − x∗‖ ≤ r

xmn + r
x∗ − xmn

‖xmn − x∗‖
, otherwise

.
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488 E. DÜNDAR

Then, we have

‖ymn − x∗‖ =

{

0, if ‖xmn − x∗‖ ≤ r

‖xmn − x∗‖ − r, otherwise
,

and, by de�nition of ymn,

‖xmn − ymn‖ ≤ r (2.8)

for allm, n ∈ N. By (2.7) and the de�nition of ymn, we get

I2 − lim sup ‖ymn − x∗‖ = 0,

which implies that I2 − lim ymn = x∗.

Assume that (2.6) holds. Because of I2 − lim y = x∗, we have

A(ε) = {(m, n) ∈ N × N : ‖ymn − x∗‖ ≥ r + ε} ∈ I2,

for each ε > 0. Now, de�ne the set

B(ε) = {(m, n) ∈ N × N : ‖xmn − x∗‖ ≥ r + ε}.

It is easy to see that the inclusion

B(ε) ⊆ A(ε)

holds. Because of A(ε) ∈ I2, we get B(ε) ∈ I2. Hence, x = (xmn) is r-I2-

convergent to x∗.

Lemma 2.7. For an arbitrary c ∈ I2(Ŵx) of a double sequence x = (xmn), we

have

‖x∗ − c‖ ≤ r for all x∗ ∈ I2 − LIMrx.

Proof. Assume on the contrary that there exist a point c ∈ I2(Ŵx) and x∗ ∈

I2 − LIMrx such that ‖x∗ − c‖ > r. De�ne ε := ‖x∗−c‖−r
3 . Hence, we can write

{(m, n) ∈ N × N : ‖xmn − c‖ < ε} ⊆ {(m, n) ∈ N × N : ‖xmn − x∗‖ ≥ r + ε}.

(2.9)

Because of c ∈ I2(Ŵx), we get

{(m, n) ∈ N × N : ‖xmn − c‖ < ε} 6∈ I2.

But from de�nition of I2-convergence, since

{(m, n) ∈ N × N : ‖xmn − x∗‖ ≥ r + ε} ∈ I2,

so by (2.9) we have

{(m, n) ∈ N × N : ‖xmn − c‖ < ε} ∈ I2,

which contradicts with the fact c ∈ I2(Ŵx). This completed the proof of the

lemma.
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NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 489

Theorem 2.8. (i) If c ∈ I2(Ŵx), then

I2 − LIMrx ⊆ Br(c). (2.10)

(ii)

I2 − LIMrx =
⋂

c∈I2(Ŵx)

Br(c) = {x∗ ∈ R
n : I2(Ŵx) ⊆ Br(x∗)}. (2.11)

Proof. (i) If c ∈ I2(Ŵx) then by Lemma 2.7, we have

‖x∗ − c‖ ≤ r, for all x∗ ∈ I2 − LIMrx,

otherwise we get

{(m, n) ∈ N × N : ‖xmn − x∗‖ ≥ r + ε} 6∈ I , for ε :=
‖x∗ − c‖ − r

3
.

Because of c is an I2-cluster point of (xmn), this contradicts with the fact that

x∗ ∈ I2 − LIMrx.

(ii) From (2.10), we have

I2 − LIMrx ⊆
⋂

c∈I2(Ŵx)

Br(c). (2.12)

Now, let

y ∈
⋂

c∈I2(Ŵx)

Br(c).

Then we have ‖y − c‖ ≤ r, for all c ∈ I2(Ŵx), which is equivalent to I2(Ŵx) ⊆

Br(y), i.e.,
⋂

c∈I2(Ŵx)

Br(c) ⊆ {x∗ ∈ R
n : I2(Ŵx) ⊆ Br(x∗)}. (2.13)

Now, let y 6∈ I2 − LIMrx. Then, there exists an ε > 0 such that

{(m, n) ∈ N × N : ‖xmn − y‖ ≥ r + ε} 6∈ I2

which implies the existence of an I2-cluster point c of the sequence x with

‖y − c‖ ≥ r + ε, that is,

I2(Ŵx) 6⊆ Br(y) and y 6∈ {x∗ ∈ R
n : I2(Ŵx) ⊆ Br(x∗)}.

Hence, y ∈ I2 − LIMrx follows from y ∈ {x∗ ∈ R
n : I2(Ŵx) ⊆ Br(x∗)}, i.e.,

{x∗ ∈ R
n : I2(Ŵx) ⊆ Br(x∗)} ⊆ I2 − LIMrx. (2.14)

Therefore, the inclusions (2.12)–(2.14) ensure that (2.11) holds that is,

I2 − LIMrx =
⋂

c∈I2(Ŵx)

Br(c) = {x∗ ∈ R
n : I2(Ŵx) ⊆ Br(x∗)}.
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Finally we give the relation between the set of I2-cluster points and the set of

rough I2-limit points of a double sequence.

Theorem 2.9. Let x = (xmn) be an I2-bounded sequences. If r ≥ diam(I2(Ŵx)),

then we have I2(Ŵx) ⊆ I2 − LIMrx.

Proof. Let c 6∈ I2 − LIMrx. Then there exist an ε > 0 such that

{(m, n) ∈ N × N : ‖xmn − c‖ ≥ r + ε} 6∈ I2. (2.15)

Since x = (xmn) is I2-bounded and from the inequality (2.15), there exists an

I2-cluster point c1 such that

‖c − c1‖ > r + ε1,

where ε1 :=
ε
2 . So we get

diam(I2(Ŵx)) > r + ε1,

which proves the theorem.

The converse of this theorem is also holds, i.e., if I2(Ŵx) ⊆ I2 − LIMrx, then

we have r ≥ diam(I2(Ŵx)).

Acknowledgments

The author would like to express his thanks to Professor Salih Aytar, Department ofMathematics,

Süleyman Demirel University, Isparta, Turkey for his corrections and suggestions, which have

greatly improved the readability of the paper.

References
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