# On Rough $\ell_{2}$-Convergence of Double Sequences 

## Erdínç Dündar

To cite this article: Erdínç Dündar (2016) On Rough $\#_{2}$-Convergence of Double Sequences, Numerical Functional Analysis and Optimization, 37:4, 480-491, DOI: 10.1080/01630563.2015.1136326

To link to this article: http://dx.doi.org/10.1080/01630563.2015.1136326

Accepted author version posted online: 31
Dec 2015.

Submit your article to this journal

Article views: 37

View related articles


View Crossmark data $\checkmark$

# On Rough $\mathcal{I}_{2}$-Convergence of Double Sequences 

Erdínç Dündar<br>Department of Mathematics, Afyon Kocatepe University, Afyonkarahisar, Turkey


#### Abstract

In this study, we introduce the notion of rough $\mathcal{I}_{2}$-convergence and the set of rough $\mathcal{I}_{2}$-limit points of a double sequence and obtained two rough $\boldsymbol{I}_{2}$-convergence criteria associated with this set. Later, we proved that this set is closed and convex. Finally, we examined the relationships between the set of cluster points and the set of rough $\mathcal{I}_{2}$-limit points of a double sequence.


## ARTICLE HISTORY

Received 17 February 2014
Revised 17 December 2015
Accepted 22 December 2015

## KEYWORDS

Double sequence; ideal
convergence; rough
convergence
MATHEMATICS SUBJECT
CLASSIFICATION
40A05

## 1. Background and introduction

Throughout the article $\mathbb{N}$ and $\mathbb{R}$ denote the set of all positive integers and the set of all real numbers, respectively. The idea of $\mathcal{I}$-convergence was introduced by Kostyrko et al. [11] as a generalization of statistical convergence which is based on the structure of the ideal $\mathcal{I}$ of a subset of the set of natural numbers. Nuray and Ruckle [14] introduced the same with another name, which generalized statistical convergence. Kostyrko et al. [12] studied the idea of $\mathcal{I}$-convergence and extremal $\mathcal{I}$-limit points, and Demirci [6] studied the concepts of $\mathcal{I}$-limit superior and $\mathcal{I}$-limit inferior. Das et al. [4] introduced the concept of $\mathcal{I}$-convergence of double sequences in a metric space and studied some properties of this convergence. Also, Das and Malik [5] introduced the concept of $\mathcal{I}$-limit points, $\mathcal{I}$-cluster points and $\mathcal{I}$-limit superior and $\mathcal{I}$-limit inferior of double sequences. A lot of progress has been made in this area after the works of $[1,8-10,13,18-21]$.

The idea of rough convergence was first introduced by Phu [15] in finitedimensional normed spaces. In [15], he showed that the set $\mathrm{LIM}^{r} x$ is bounded, closed, and convex and introduced the notion of rough Cauchy sequence. He also investigated the relations between rough convergence and other convergence types and the dependence of $\operatorname{LIM}^{r} x$ on the roughness degree $r$. In another article [16] related to this subject, he defined the rough continuity of linear operators and showed that every linear operator $f: X \rightarrow Y$ is $r$-continuous at every point $x \in X$ under the assumption $\operatorname{dim} Y<\infty$ and $r>0$ where $X$ and
$Y$ are normed spaces. In [17], he extended the results given in [15] to infinitedimensional normed spaces. Aytar [2] found of rough statistical convergence and defined the set of rough statistical limit points of a sequence and obtained two statistical convergence criteria associated with this set and prove that this set is closed and convex. Also, Aytar [3] found that the $r$-limit set of the sequence is equal to the intersection of these sets and that $r$-core of the sequence is equal to the union of these sets. Recently, Dündar and Çakan [7, 8] introduced the notion of rough $\mathcal{I}$-convergence and the set of rough $\mathcal{I}$-limit points of a sequence and studied the notion of rough convergence and the set of rough limit points of a double sequence.

In this article, we introduce the notion of rough $\mathcal{I}_{2}$-convergence and the set of rough $\mathcal{I}_{2}$-limit points of a double sequence and obtained two rough $\mathcal{I}_{2}$-convergence criteria associated with this set. Later, we proved that this set is closed and convex. Finally, we examined the relations between the set of cluster points and the set of rough $\mathcal{I}_{2}$-limit points of a double sequence.

We note that our results and proof techniques presented in this article are $\mathcal{I}$ analogues of those in Phu's [15] article. Namely, the actual origin of most of these results and proof techniques is his article. The following our theorems and results are the $\mathcal{I}$-extension of theorems and results in [15].

Definition 1.1 ([4]). A double sequence $x=\left(x_{m n}\right)_{m, n \in \mathbb{N}}$ of real numbers is said to be convergent to $L \in \mathbb{R}$ if for any $\varepsilon>0$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $\left|x_{m n}-L\right|<\varepsilon$, whenever $m, n>N_{\varepsilon}$. In this case we write

$$
\lim _{m, n \rightarrow \infty} x_{m n}=L
$$

Definition 1.2 ([4]). A double sequence $x=\left(x_{m n}\right)$ of real numbers is said to be bounded if there exists a positive real number $M$ such that $\left|x_{m n}\right|<M$, for all $m, n \in \mathbb{N}$. That is

$$
\|x\|_{\infty}=\sup _{m, n}\left|x_{m n}\right|<\infty .
$$

Definition 1.3 ([11]). Let $X \neq \emptyset$. A class $\mathcal{I}$ of subsets of $X$ is said to be an ideal in $X$ provided:
i) $\emptyset \in \mathcal{I}$,
ii) $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$,
iii) $\quad A \in \mathcal{I}, B \subset A$ implies $B \in \mathcal{I}$.
$\mathcal{I}$ is called a nontrivial ideal if $X \notin \mathcal{I}$.
A nontrivial ideal $\mathcal{I}$ in $X$ is called admissible if $\{x\} \in \mathcal{I}$ for each $x \in X$.
Definition 1.4 ([11]). Let $X \neq \emptyset$. A non empty class $\mathcal{F}$ of subsets of $X$ is said to be a filter in $X$ provided:
i) $\emptyset \notin \mathcal{F}$,
ii) $\quad A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$,
iii) $\quad A \in \mathcal{F}, A \subset B$ implies $B \in \mathcal{F}$.

Lemma 1.5 ([11]). If $\mathcal{I}$ is a nontrivial ideal in $X, X \neq \emptyset$, then the class

$$
\mathcal{F}(\mathcal{I})=\{M \subset X:(\exists A \in \mathcal{I})(M=X \backslash A)\}
$$

is a filter on $X$, called the filter associated with $\mathcal{I}$.
Definition 1.6 ([11]). Let $(X, \rho)$ be a linear metric space and $\mathcal{I} \subset 2^{\mathbb{N}}$ be a nontrivial ideal. a sequence $\left(x_{i}\right)_{i \in \mathbb{N}}$ of elements of $X$ is said to be $\mathcal{I}$-convergent to $\xi \in X\left(\mathcal{I}-\lim _{i \rightarrow \infty} x_{i}=\xi\right)$ if and only if for each $\varepsilon>0$ the set $A(\varepsilon)=\{i \in \mathbb{N}$ : $\left.\rho\left(x_{i}, \xi\right) \geq \varepsilon\right\}$ belongs to $\mathcal{I}$. The element $\xi$ is called the $\mathcal{I}$-limit of the sequence $x=\left(x_{i}\right)_{i \in \mathbb{N}}$.

Note that if $\mathcal{I}$ is an admissible ideal, then usual convergence in $X$ implies $\mathcal{I}$-convergence in $X$.

Definition 1.7 ([6]). For a sequence $x=\left(x_{i}\right)$ of real numbers, the notions of ideal limit superior and ideal limit inferior are defined as follows:

$$
\mathcal{I}-\lim \sup x= \begin{cases}\sup B_{x}, & \text { if } B_{x} \neq \emptyset \\ -\infty, & \text { if } B_{x}=\emptyset\end{cases}
$$

and

$$
\mathcal{I}-\lim \inf x= \begin{cases}\inf A_{x}, & \text { if } A_{x} \neq \emptyset \\ +\infty, & \text { if } A_{x}=\emptyset\end{cases}
$$

where $A_{x}=\left\{a \in \mathbb{R}:\left\{i \in \mathbb{N}: x_{i}<a\right\} \notin \mathcal{I}\right\}$ and $B_{x}=\left\{b \in \mathbb{R}:\left\{i \in \mathbb{N}: x_{i}>\right.\right.$ b\} $\notin \mathcal{I}\}$.

Definition 1.8 ([4]). A nontrivial ideal $\mathcal{I}_{2}$ of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times\{i\}$ belong to $\mathcal{I}_{2}$ for each $i \in \mathbb{N}$.

It is evident that a strongly admissible ideal is admissible also.
Throughout the article, we take $\mathcal{I}_{2}$ as a strongly admissible ideal in $\mathbb{N} \times \mathbb{N}$.
Definition 1.9 ([4]). Let $(X, \rho)$ be a metric space A double sequence $x=\left(x_{m n}\right)$ in $X$ is said to be $\mathcal{I}_{2}$-convergent to $L \in X$, if for any $\varepsilon>0$ we have

$$
A(\varepsilon)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}: \rho\left(x_{m n}, L\right) \geq \varepsilon\right\} \in \mathcal{I}_{2}
$$

In this case we say that $x$ is $\mathcal{I}_{2}$-convergent and we write

$$
\mathcal{I}_{2}-\lim _{m, n \rightarrow \infty} x_{m n}=L
$$

If $\mathcal{I}_{2}$ is a strongly admissible ideal on $\mathbb{N} \times \mathbb{N}$, then usual convergence implies $\mathcal{I}_{2}$-convergence.

Definition $1.10([5])$. Let $x=\left(x_{j k}\right)$ be a double sequence of real numbers and

$$
A_{y}=\left\{a \in \mathbb{R}:\left\{(j, k) \in \mathbb{N} \times \mathbb{N}: x_{j k}<a\right\} \notin \mathcal{I}_{2}\right\}
$$

and

$$
B_{y}=\left\{b \in \mathbb{R}:\left\{(j, k) \in \mathbb{N} \times \mathbb{N}: x_{j k}>b\right\} \notin \mathcal{I}_{2}\right\}
$$

Then $\mathcal{I}_{2}$-limit superior and $\mathcal{I}_{2}$-limit inferior of $x$ are defined as follows:

$$
\mathcal{I}_{2}-\lim \sup x= \begin{cases}\sup B_{x}, & \text { if } B_{x} \neq \emptyset \\ -\infty, & \text { if } B_{x}=\emptyset\end{cases}
$$

and

$$
\mathcal{I}_{2}-\lim \inf x= \begin{cases}\inf A_{x}, & \text { if } A_{x} \neq \emptyset \\ +\infty, & \text { if } A_{x}=\emptyset\end{cases}
$$

Within the article let $r$ be a nonnegative real number and $\mathbb{R}^{n}$ denotes the real $n$-dimensional space with the norm $\|$.$\| . Consider a sequence x=\left(x_{i}\right) \subset \mathbb{R}^{n}$.

Definition 1.11 ([15]). The sequence $x=\left(x_{i}\right)$ is said to be $r$-convergent to $x_{*}$, denoted by $x_{i} \xrightarrow{r} x_{*}$ provided that

$$
\forall \varepsilon>0 \exists i_{\varepsilon} \in \mathbb{N}: \quad i \geq i_{\varepsilon} \Rightarrow\left\|x_{i}-x_{*}\right\|<r+\varepsilon
$$

The set

$$
\operatorname{LIM}^{r} x:=\left\{x_{*} \in \mathbb{R}^{n}: x_{i} \xrightarrow{r} x_{*}\right\}
$$

is called the $r$-limit set of the sequence $x=\left(x_{i}\right)$. A sequence $x=\left(x_{i}\right)$ is said to be $r$-convergent if $\mathrm{LIM}^{r} x \neq \emptyset$. In this case, $r$ is called the convergence degree of the sequence $x=\left(x_{i}\right)$. For $r=0$, we get the ordinary convergence. There are several reasons for this interest (see [15]).

Definition 1.12 ([7]). A sequence $x=\left(x_{i}\right)$ is said to be $\mathcal{I}$-convergent to $L \in \mathbb{R}^{n}$, written as $\mathcal{I}$ - $\lim x=L$, provided that the set $\left\{i \in \mathbb{N}:\left\|x_{i}-L\right\| \geq \varepsilon\right\} \in \mathcal{I}$, for every $\varepsilon>0$. In this case, $L$ is called the $\mathcal{I}$-limit of the sequence $x$.

Definition 1.13 ([7]). $c \in \mathbb{R}^{n}$ is called a $\mathcal{I}$-cluster point of a sequence $x=\left(x_{i}\right)$ provided that

$$
\left\{i \in \mathbb{N}:\left\|x_{i}-c\right\|<\varepsilon\right\} \notin \mathcal{I}
$$

for every $\varepsilon>0$. We denote the set of all $\mathcal{I}$-cluster points of the sequence $x$ by $\mathcal{I}\left(\Gamma_{x}\right)$.

A sequence $x=\left(x_{i}\right)$ is said to be $\mathcal{I}$-bounded if there exists a positive real number $M$ such that $\left\{i \in \mathbb{N}:\left\|x_{i}\right\| \geq M\right\} \in \mathcal{I}$.

Definition 1.14 ([7]). A sequence $x=\left(x_{i}\right)$ is said to be rough $\mathcal{I}$-convergent (r-I -convergent) to $x_{*}$ with the roughness degree $r$, denoted by $x_{i} \xrightarrow{r-\mathcal{I}} x_{*}$
provided that

$$
\left\{i \in \mathbb{N}:\left\|x_{i}-x_{*}\right\| \geq r+\varepsilon\right\}
$$

belongs to $\mathcal{I}$ for every $\varepsilon>0$; or equivalently, if the condition

$$
\begin{equation*}
\mathcal{I}-\lim \sup \left\|x_{i}-x_{*}\right\| \leq r \tag{1.1}
\end{equation*}
$$

is satisfied. In addition, we can write $x_{i} \xrightarrow{r-\mathcal{I}} x_{*}$ if the inequality $\left\|x_{i}-x_{*}\right\|<r+\varepsilon$ holds for every $\varepsilon>0$ and almost all $i$.

Throughout the article, we consider a sequence $x=\left(x_{m n}\right)$ such that $\left(x_{m n}\right) \in$ $\mathbb{R}^{n}, m, n \in \mathbb{N}$.

Definition 1.15 ([8]). The double sequence $x=\left(x_{m n}\right)$ is said to be rough convergent ( $r$-convergent) to $x_{*}$ with the roughness degree $r$, denoted by $x_{m n} \xrightarrow{r}$ $x_{*}$ provided that

$$
\begin{equation*}
\forall \varepsilon>0 \exists k_{\varepsilon} \in \mathbb{N}: m, n \geq k_{\varepsilon} \Rightarrow\left\|x_{m n}-x_{*}\right\|<r+\varepsilon, \tag{1.2}
\end{equation*}
$$

or equivalently, if

$$
\begin{equation*}
\lim \sup \left\|x_{m n}-x_{*}\right\| \leq r \tag{1.3}
\end{equation*}
$$

## 2. Main results

Definition 2.1. For some given real number $r \geq 0$, a sequence $x=\left(x_{m n}\right)$ is said to be r- $\mathcal{I}_{2}$-convergent to $x_{*}$ with the roughness degree $r$, denoted by $x_{m n} \xrightarrow{r-\mathcal{I}_{2}} x_{*}$, provided that

$$
\begin{equation*}
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-x_{*}\right\| \geq r+\varepsilon\right\} \in \mathcal{I}_{2} \tag{2.1}
\end{equation*}
$$

for every $\varepsilon>0$; or equivalently, if the condition

$$
\begin{equation*}
\mathcal{I}_{2}-\lim \sup \left\|x_{m n}-x_{*}\right\| \leq r \tag{2.2}
\end{equation*}
$$

is satisfied. In addition, we can write $x_{m n} \xrightarrow{r-\mathcal{I}_{2}} x_{*}$ if the inequality $\left\|x_{m n}-x_{*}\right\|<$ $r+\varepsilon$ holds for every $\varepsilon>0$ and almost all $(m, n)$.

Now, we give the definitions of $\mathcal{I}_{2}$-cluster point of a double sequence and of $\mathcal{I}_{2}$-boundedness for a double sequence.
$c \in \mathbb{R}^{n}$ is called a $\mathcal{I}_{2}$-cluster point of a double sequence $x=\left(x_{m n}\right)$ provided that

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-c\right\|<\varepsilon\right\} \notin \mathcal{I}_{2}
$$

for every $\varepsilon>0$. We denote the set of all $\mathcal{I}_{2}$-cluster points of the double sequence $x=\left(x_{m n}\right)$ by $\mathcal{I}_{2}\left(\Gamma_{x}\right)$.

A double sequence $x=\left(x_{m n}\right)$ is said to be $\mathcal{I}_{2}$-bounded if there exists a positive real number $M$ such that $\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}\right\| \geq M\right\} \in \mathcal{I}_{2}$.

Remark 2.2. r-convergence implies $\mathrm{r}-\mathcal{I}_{2}$-convergence as depending the roughness degree.

Here $r$ is called the roughness degree. If we take $r=0$, then we obtain the ordinary $\mathcal{I}_{2}$-convergence of a double sequence.

In general, the $\mathrm{r}-\mathcal{I}_{2}$-limit of a double sequence may not be unique for the roughness degree $r>0$. So we have to consider the so-called rough $\mathcal{I}_{2}$-limit set of a double sequence $x=\left(x_{m n}\right)$, which is defined by

$$
\mathcal{I}_{2}-\operatorname{LIM}^{r} x:=\left\{x_{*} \in \mathbb{R}^{n}: x_{m n} \xrightarrow{r-\mathcal{I}_{2}} x_{*}\right\} .
$$

A double sequence $x=\left(x_{m n}\right)$ is said to be r- $\mathcal{I}_{2}$-convergent if $\mathcal{I}_{2}-\operatorname{LIM}^{r} x \neq \emptyset$.
As noted above, we cannot say that the r - $\mathcal{I}_{2}$-limit of a double sequence is unique for the roughness degree $r>0$. The following theorem is related to this claim.

Theorem 2.3. We have diam $\left(\mathcal{I}_{2}-\operatorname{LIM}^{r} x\right) \leq 2 r$, for any sequence $x=\left(x_{m n}\right)$. In general, $\operatorname{diam}\left(\mathcal{I}_{2}-\mathrm{LIM}^{r} x\right)$ has no smaller bound.

Proof. Suppose that $\operatorname{diam}\left(\mathcal{I}_{2}-\operatorname{LIM}^{r} x\right)=\sup \left\{\|y-z\|: y, z \in \mathcal{I}_{2}-\operatorname{LIM}^{r} x\right\}>2 r$. Then there exist $y, z \in \mathcal{I}_{2}-\operatorname{LIM}^{r} x$ such that $\|y-z\|>2 r$. Take $\varepsilon \in\left(0, \frac{\|y-z\|}{2}-r\right)$. Since $y, z \in \mathcal{I}_{2}-\operatorname{LIM}^{r} x$, for every $\varepsilon>0$, we have

$$
A_{1}(\varepsilon)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-y\right\| \geq r+\varepsilon\right\} \in \mathcal{I}_{2}
$$

and

$$
A_{2}(\varepsilon)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-z\right\| \geq r+\varepsilon\right\} \in \mathcal{I}_{2} .
$$

In this case, we have

$$
A_{1}^{c}(\varepsilon)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-y\right\|<r+\varepsilon\right\} \in \mathcal{F}\left(\mathcal{I}_{2}\right)
$$

and

$$
A_{2}^{c}(\varepsilon)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-z\right\|<r+\varepsilon\right\} \in \mathcal{F}\left(\mathcal{I}_{2}\right) .
$$

Using the properties of $\mathcal{F}\left(\mathcal{I}_{2}\right), A_{1}(\varepsilon)^{c} \cap A_{2}(\varepsilon)^{c}$ is non-empty and we get

$$
\left(A_{1}^{c}(\varepsilon) \cap A_{2}^{c}(\varepsilon)\right) \in \mathcal{F}\left(\mathcal{I}_{2}\right) .
$$

Thus, we can write
$\|y-z\| \leq\left\|x_{m n}-y\right\|+\left\|x_{m n}-z\right\|<2(r+\varepsilon)<2\left(r+\frac{\|y-z\|}{2}-r\right)=\|y-z\|$, for all $(m, n) \in A_{1}(\varepsilon)^{c} \cap A_{2}(\varepsilon)^{c}$, which is a contradiction.

Now, for proof of the second part of the theorem, consider a double sequence $x=\left(x_{m n}\right)$ such that $\mathcal{I}_{2}-\lim x_{m n}=x_{*}$. Let $\varepsilon>0$. Then, we can write

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-x_{*}\right\| \geq \varepsilon\right\} \in \mathcal{I}_{2}
$$

Thus, we have

$$
\left\|x_{m n}-y\right\| \leq\left\|x_{m n}-x_{*}\right\|+\left\|x_{*}-y\right\| \leq\left\|x_{m n}-x_{*}\right\|+r
$$

for each $y \in \overline{B_{r}}\left(x_{*}\right):=\left\{y \in \mathbb{R}^{n}:\left\|y-x_{*}\right\| \leq r\right\}$. Then, we get

$$
\left\|x_{m n}-y\right\|<r+\varepsilon
$$

for each $(m, n) \in\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-x_{*}\right\|<\varepsilon\right\}$. Since the double sequence $x=\left(x_{m n}\right)$ is $\mathcal{I}_{2}$-convergent to $x_{*}$, we have

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-x_{*}\right\|<\varepsilon\right\} \in \mathcal{F}\left(\mathcal{I}_{2}\right)
$$

Thus, we have $y \in \mathcal{I}_{2}-\operatorname{LIM}^{r} x$, and we can write

$$
\begin{equation*}
\mathcal{I}_{2}-\operatorname{LIM}^{r} x=\overline{B_{r}}\left(x_{*}\right) \tag{2.3}
\end{equation*}
$$

Since $\operatorname{diam}\left(\overline{B_{r}}\left(x_{*}\right)\right)=2 r$, this shows that, in general, the upper bound $2 r$ of the diameter of the set $\mathcal{I}_{2}-\operatorname{LIM}^{r} x$ cannot be decreased further.

Now we give some topological and geometrical properties of the r- $\mathcal{I}_{2}$-limit set of a double sequence.

Theorem 2.4. The $r$ - $\mathcal{I}_{2}$-limit set of a double sequence $x=\left(x_{m n}\right)$ is closed.
Proof. If $\mathcal{I}_{2}-\operatorname{LIM}^{r} x=\emptyset$, then there is nothing to prove. Suppose that $\mathcal{I}_{2}-$ $\operatorname{LIM}^{r} x \neq \emptyset$. In this case we can select an arbitrary sequence $\left(y_{m n}\right) \subseteq \mathcal{I}_{2}-\operatorname{LIM}^{r} x$ such that $\lim _{m, n \rightarrow \infty} y_{m n}=y_{*}$. We must show that $y_{*} \in \mathcal{I}_{2}-\operatorname{LIM}^{r} x$.

Let $\varepsilon>0$ be given. Since $y_{m n} \rightarrow y_{*}$, there exists $k=k_{\varepsilon} \in \mathbb{N}$ such that

$$
\left\|y_{m n}-y_{*}\right\|<\varepsilon, \quad \text { for all } m, n>k .
$$

Now select an an $m_{0}, n_{0} \in \mathbb{N}$ such that $m_{0}, n_{0} \geq k$. Then we can write

$$
\left\|y_{m_{0} n_{0}}-y_{*}\right\|<\varepsilon
$$

On the other hand, since $\left(y_{m n}\right) \subseteq \mathcal{I}_{2}-\operatorname{LIM}^{r} x$, we have $y_{m_{0} n_{0}} \in \mathcal{I}_{2}-\operatorname{LIM}^{r} x$, that is,

$$
\begin{equation*}
A(\varepsilon)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-y_{m_{0} n_{0}}\right\| \geq r+\varepsilon\right\} \in \mathcal{I}_{2} . \tag{2.4}
\end{equation*}
$$

Now, let us show that the inclusion

$$
\begin{equation*}
A^{c}(\varepsilon) \subseteq A^{c}(2 \varepsilon) \tag{2.5}
\end{equation*}
$$

holds, where $A(2 \varepsilon)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-y_{*}\right\| \geq r+2 \varepsilon\right\}$. Take $(k, l) \in$ $A^{c}(\varepsilon)$. Then we have

$$
\left\|x_{k l}-y_{m_{0} n_{0}}\right\|<r+\varepsilon
$$

and hence

$$
\left\|x_{k l}-y_{*}\right\| \leq\left\|x_{k l}-y_{m_{0} n_{0}}\right\|+\left\|y_{m_{0} n_{0}}-y_{*}\right\|<r+2 \varepsilon
$$

that is, $(k, l) \in A^{c}(2 \varepsilon)$, which proves (2.5). So, we have

$$
A(2 \varepsilon) \subseteq A(\varepsilon)
$$

Because of $A(\varepsilon) \in \mathcal{I}_{2}$ by (2.4), we have $A(2 \varepsilon) \in \mathcal{I}_{2}$ (i.e., $y_{*} \in \mathcal{I}_{2}-\operatorname{LIM}^{r} x$ ), which completes the proof.

Theorem 2.5. The $r$ - $\mathcal{I}_{2}$-limit set of a double sequence $x=\left(x_{m n}\right)$ is convex.
Proof. Assume that $y_{1}, y_{2} \in \mathcal{I}_{2}-\operatorname{LIM}^{r} x$ for the sequence $x=\left(x_{m n}\right)$ and let $\varepsilon>0$ be given. Define

$$
\begin{aligned}
& A_{1}(\varepsilon)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-y_{1}\right\| \geq r+\varepsilon\right\} \quad \text { and } \\
& A_{2}(\varepsilon)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-y_{2}\right\| \geq r+\varepsilon\right\} .
\end{aligned}
$$

Because of $y_{1}, y_{2} \in \mathcal{I}_{2}-\operatorname{LIM}^{r} x$, we have $A_{1}(\varepsilon), A_{2}(\varepsilon) \in \mathcal{I}_{2}$. Hence, we have

$$
\left\|x_{m n}-\left[(1-\lambda) y_{1}+\lambda y_{2}\right]\right\|=\left\|(1-\lambda)\left(x_{m n}-y_{1}\right)+\lambda\left(x_{m n}-y_{2}\right)\right\|<r+\varepsilon
$$

for each $(m, n) \in A_{1}^{c}(\varepsilon) \cap A_{2}^{c}(\varepsilon)$ and each $\lambda \in[0,1]$. Because of $\left(A_{1}^{c}(\varepsilon) \cap A_{2}^{c}(\varepsilon)\right) \in$ $\mathcal{F}\left(\mathcal{I}_{2}\right)$, by definition $\mathcal{F}\left(\mathcal{I}_{2}\right)$ we get

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-\left[(1-\lambda) y_{1}+\lambda y_{2}\right]\right\| \geq r+\varepsilon\right\} \in \mathcal{I}_{2}
$$

that is,

$$
\left[(1-\lambda) y_{1}+\lambda y_{2}\right] \in \mathcal{I}_{2}-\operatorname{LIM}^{r} x,
$$

which proves the convexity of the set $\mathcal{I}_{2}-\operatorname{LIM}^{r} x$.
Theorem 2.6. Suppose $r>0$. Then a double sequence $x=\left(x_{m n}\right)$ is $r-\mathcal{I}_{2}$ convergent to $x_{*}$ if and only if there exists a sequence $y=\left(y_{m n}\right)$ such that

$$
\begin{equation*}
\mathcal{I}_{2}-\lim y=x_{*} \quad \text { and } \quad\left\|x_{m n}-y_{m n}\right\| \leq r, \quad \text { for each } m, n \in \mathbb{N} . \tag{2.6}
\end{equation*}
$$

Proof. Assume that $x=\left(x_{m n}\right)$ is $\mathrm{r}-\mathcal{I}_{2}$-convergent to $x_{*}$. Then, by (2.2) we have

$$
\begin{equation*}
\mathcal{I}_{2}-\lim \sup \left\|x_{m n}-x_{*}\right\| \leq r . \tag{2.7}
\end{equation*}
$$

Now, define

$$
y_{m n}=\left\{\begin{array}{ll}
x_{*}, & \text { if }\left\|x_{m n}-x_{*}\right\| \leq r \\
x_{m n}+r \frac{x_{*}-x_{m n}}{\left\|x_{m n}-x_{*}\right\|}, & \text { otherwise }
\end{array} .\right.
$$

Then, we have

$$
\left\|y_{m n}-x_{*}\right\|= \begin{cases}0, & \text { if }\left\|x_{m n}-x_{*}\right\| \leq r \\ \left\|x_{m n}-x_{*}\right\|-r, & \text { otherwise }\end{cases}
$$

and, by definition of $y_{m n}$,

$$
\begin{equation*}
\left\|x_{m n}-y_{m n}\right\| \leq r \tag{2.8}
\end{equation*}
$$

for all $m, n \in \mathbb{N}$. By (2.7) and the definition of $y_{m n}$, we get

$$
\mathcal{I}_{2}-\lim \sup \left\|y_{m n}-x_{*}\right\|=0
$$

which implies that $\mathcal{I}_{2}-\lim y_{m n}=x_{*}$.
Assume that (2.6) holds. Because of $\mathcal{I}_{2}-\lim y=x_{*}$, we have

$$
A(\varepsilon)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|y_{m n}-x_{*}\right\| \geq r+\varepsilon\right\} \in \mathcal{I}_{2}
$$

for each $\varepsilon>0$. Now, define the set

$$
B(\varepsilon)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-x_{*}\right\| \geq r+\varepsilon\right\} .
$$

It is easy to see that the inclusion

$$
B(\varepsilon) \subseteq A(\varepsilon)
$$

holds. Because of $A(\varepsilon) \in \mathcal{I}_{2}$, we get $B(\varepsilon) \in \mathcal{I}_{2}$. Hence, $x=\left(x_{m n}\right)$ is r- $\mathcal{I}_{2}-$ convergent to $x_{*}$.

Lemma 2.7. For an arbitrary $c \in \mathcal{I}_{2}\left(\Gamma_{x}\right)$ of a double sequence $x=\left(x_{m n}\right)$, we have

$$
\left\|x_{*}-c\right\| \leq r \text { for all } x_{*} \in \mathcal{I}_{2}-\operatorname{LIM}^{r} x
$$

Proof. Assume on the contrary that there exist a point $c \in \mathcal{I}_{2}\left(\Gamma_{x}\right)$ and $x_{*} \in$ $\mathcal{I}_{2}-\operatorname{LIM}^{r} x$ such that $\left\|x_{*}-c\right\|>r$. Define $\varepsilon:=\frac{\left\|x_{*}-c\right\|-r}{3}$. Hence, we can write $\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-c\right\|<\varepsilon\right\} \subseteq\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-x_{*}\right\| \geq r+\varepsilon\right\}$.

Because of $c \in \mathcal{I}_{2}\left(\Gamma_{x}\right)$, we get

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-c\right\|<\varepsilon\right\} \notin \mathcal{I}_{2} .
$$

But from definition of $\mathcal{I}_{2}$-convergence, since

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-x_{*}\right\| \geq r+\varepsilon\right\} \in \mathcal{I}_{2}
$$

so by (2.9) we have

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-c\right\|<\varepsilon\right\} \in \mathcal{I}_{2}
$$

which contradicts with the fact $c \in \mathcal{I}_{2}\left(\Gamma_{x}\right)$. This completed the proof of the lemma.

Theorem 2.8. (i) If $c \in \mathcal{I}_{2}\left(\Gamma_{x}\right)$, then

$$
\begin{equation*}
\mathcal{I}_{2}-\operatorname{LIM}^{r} x \subseteq \bar{B}_{r}(c) \tag{2.10}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\mathcal{I}_{2}-\operatorname{LIM}^{r} x=\bigcap_{c \in \mathcal{I}_{2}\left(\Gamma_{x}\right)} \bar{B}_{r}(c)=\left\{x_{*} \in \mathbb{R}^{n}: \mathcal{I}_{2}\left(\Gamma_{x}\right) \subseteq \bar{B}_{r}\left(x_{*}\right)\right\} \tag{2.11}
\end{equation*}
$$

Proof. (i) If $c \in \mathcal{I}_{2}\left(\Gamma_{x}\right)$ then by Lemma 2.7, we have

$$
\left\|x_{*}-c\right\| \leq r, \text { for all } x_{*} \in \mathcal{I}_{2}-\operatorname{LIM}^{r} x
$$

otherwise we get

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-x_{*}\right\| \geq r+\varepsilon\right\} \notin \mathcal{I}, \text { for } \varepsilon:=\frac{\left\|x_{*}-c\right\|-r}{3}
$$

Because of $c$ is an $\mathcal{I}_{2}$-cluster point of $\left(x_{m n}\right)$, this contradicts with the fact that $x_{*} \in \mathcal{I}_{2}-\operatorname{LIM}^{r} x$.
(ii) From (2.10), we have

$$
\begin{equation*}
\mathcal{I}_{2}-\operatorname{LIM}^{r} x \subseteq \bigcap_{c \in \mathcal{I}_{2}\left(\Gamma_{x}\right)} \bar{B}_{r}(c) \tag{2.12}
\end{equation*}
$$

Now, let

$$
y \in \bigcap_{c \in \mathcal{I}_{2}\left(\Gamma_{x}\right)} \bar{B}_{r}(c) .
$$

Then we have $\|y-c\| \leq r$, for all $c \in \mathcal{I}_{2}\left(\Gamma_{x}\right)$, which is equivalent to $\mathcal{I}_{2}\left(\Gamma_{x}\right) \subseteq$ $\bar{B}_{r}(y)$, i.e.,

$$
\begin{equation*}
\bigcap_{c \in \mathcal{I}_{2}\left(\Gamma_{x}\right)} \bar{B}_{r}(c) \subseteq\left\{x_{*} \in \mathbb{R}^{n}: \mathcal{I}_{2}\left(\Gamma_{x}\right) \subseteq \bar{B}_{r}\left(x_{*}\right)\right\} \tag{2.13}
\end{equation*}
$$

Now, let $y \notin \mathcal{I}_{2}-\operatorname{LIM}^{r} x$. Then, there exists an $\varepsilon>0$ such that

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-y\right\| \geq r+\varepsilon\right\} \notin \mathcal{I}_{2}
$$

which implies the existence of an $\mathcal{I}_{2}$-cluster point $c$ of the sequence $x$ with $\|y-c\| \geq r+\varepsilon$, that is,

$$
\mathcal{I}_{2}\left(\Gamma_{x}\right) \nsubseteq \bar{B}_{r}(y) \quad \text { and } \quad y \notin\left\{x_{*} \in \mathbb{R}^{n}: \mathcal{I}_{2}\left(\Gamma_{x}\right) \subseteq \bar{B}_{r}\left(x_{*}\right)\right\}
$$

Hence, $y \in \mathcal{I}_{2}-\operatorname{LIM}^{r} x$ follows from $y \in\left\{x_{*} \in \mathbb{R}^{n}: \mathcal{I}_{2}\left(\Gamma_{x}\right) \subseteq \bar{B}_{r}\left(x_{*}\right)\right\}$, i.e.,

$$
\begin{equation*}
\left\{x_{*} \in \mathbb{R}^{n}: \mathcal{I}_{2}\left(\Gamma_{x}\right) \subseteq \bar{B}_{r}\left(x_{*}\right)\right\} \subseteq \mathcal{I}_{2}-\operatorname{LIM}^{r} x \tag{2.14}
\end{equation*}
$$

Therefore, the inclusions (2.12)-(2.14) ensure that (2.11) holds that is,

$$
\mathcal{I}_{2}-\operatorname{LIM}^{r} x=\bigcap_{c \in \mathcal{I}_{2}\left(\Gamma_{x}\right)} \bar{B}_{r}(c)=\left\{x_{*} \in \mathbb{R}^{n}: \mathcal{I}_{2}\left(\Gamma_{x}\right) \subseteq \bar{B}_{r}\left(x_{*}\right)\right\}
$$

Finally we give the relation between the set of $\mathcal{I}_{2}$-cluster points and the set of rough $\mathcal{I}_{2}$-limit points of a double sequence.

Theorem 2.9. Let $x=\left(x_{m n}\right)$ be an $\mathcal{I}_{2}$-bounded sequences. If $r \geq \operatorname{diam}\left(\mathcal{I}_{2}\left(\Gamma_{x}\right)\right)$, then we have $\mathcal{I}_{2}\left(\Gamma_{x}\right) \subseteq \mathcal{I}_{2}-\operatorname{LIM}^{r} x$.

Proof. Let $c \notin \mathcal{I}_{2}-\operatorname{LIM}^{r} x$. Then there exist an $\varepsilon>0$ such that

$$
\begin{equation*}
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-c\right\| \geq r+\varepsilon\right\} \notin \mathcal{I}_{2} . \tag{2.15}
\end{equation*}
$$

Since $x=\left(x_{m n}\right)$ is $\mathcal{I}_{2}$-bounded and from the inequality (2.15), there exists an $\mathcal{I}_{2}$-cluster point $c_{1}$ such that

$$
\left\|c-c_{1}\right\|>r+\varepsilon_{1}
$$

where $\varepsilon_{1}:=\frac{\varepsilon}{2}$. So we get

$$
\operatorname{diam}\left(\mathcal{I}_{2}\left(\Gamma_{x}\right)\right)>r+\varepsilon_{1}
$$

which proves the theorem.
The converse of this theorem is also holds, i.e., if $\mathcal{I}_{2}\left(\Gamma_{x}\right) \subseteq \mathcal{I}_{2}-\operatorname{LIM}^{r} x$, then we have $r \geq \operatorname{diam}\left(\mathcal{I}_{2}\left(\Gamma_{x}\right)\right)$.

## Acknowledgments

The author would like to express his thanks to Professor Salih Aytar, Department of Mathematics, Süleyman Demirel University, Isparta, Turkey for his corrections and suggestions, which have greatly improved the readability of the paper.

## References

1. B. Altay and F. Başar (2005). Some new spaces of double sequences. J. Math. Anal. Appl. 309(1):70-90.
2. S. Aytar (2008). Rough statistical convergence. Numer. Funct. Anal. and Optimiz. 29 (3-4):291-303.
3. S. Aytar (2008). The rough limit set and the core of a real requence. Numer. Funct. Anal. and Optimiz. 29(3-4):283-290.
4. P. Das, P. Kostyrko, W. Wilczyński, and P. Malik (2008). $\mathcal{I}$ and $\mathcal{I}^{*}$-convergence of double sequences. Math. Slovaca 58(5):605-620.
5. P. Das and P. Malik (2008). On extremal I-limit points of double sequences. Tatra Mt. Math. Publ. 40:91-102.
6. K. Demirci (2001). I-limit superior and limit inferior. Math. Commun. 6:165-172.
7. E. Dündar and C. Çakan (2014). Rough $\mathcal{I}$-convergence. Gulf J. Math. 2(1):45-51.
8. E. Dündar and C. Çakan (2014). Rough convergence of double sequences. Demonstratio Mathematica 47(3):638-651.
9. H. Fast (1951). Sur la convergenc statistique. Colloq. Math. 2:241-244.
10. J. A. Fridy (1985). On statistical convergence. Analysis 5:301-313.
11. P. Kostyrko, T. S̆alát, and W. Wilczyński (2000). I-convergence. Real Anal. Exchange 26(2):669-686.
12. P. Kostyrko, M. Macaj, T. Šalát, and M. Sleziak (2005). I-convergence and extremal $\mathcal{I}$-limit points. Math. Slovaca 55:443-464.
13. H. I. Miller (1995). A measure theoretical subsequence characterization of statistical convergence. Trans. Amer. Math. Soc. 347:1811-1819.
14. F. Nuray and W. H. Ruckle (2000). Generalized statistical convergence and convergence free spaces. J. Math. Anal. Appl. 245:513-527.
15. H. X. Phu (2001). Rough convergence in normed linear spaces. Numer. Funct. Anal. and Optimiz. 22:199-222.
16. H. X. Phu (2002). Rough continuity of linear operators. Numer. Funct. Anal. and Optimiz. 23:139-146.
17. H. X. Phu (2003). Rough convergence in infinite dimensional normed spaces. Numer. Funct. Anal. and Optimiz. 24:285-301.
18. A. Pringsheim (1900). Zur theorie der zweifach unendlichen Zahlenfolgen. Math. Ann. 53:289-321.
19. T. S̆alát, B. C. Tripathy, and M. Ziman (2005). On I-convergence field. Italian J. Pure \& Appl. Math. 17:45-54.
20. T. Šalát (1980). On statistically convergent sequences of real numbers. Math. Slovaca 30: 139-150.
21. I. J. Schoenberg (1959). The integrability of certain functions and related summability methods. Amer. Math. Monthly 66:361-375.
