### RESEARCH

**Open Access** 

# Some Tauberian theorems for four-dimensional Euler and Borel summability

Fatih Nuray<sup>1,2\*</sup> and Richard F Patterson<sup>2</sup>

\*Correspondence: fnuray@aku.edu.tr <sup>1</sup>Department of Mathematics, Afyon Kocatepe University, Afyonkarahisar, Turkey <sup>2</sup>Department of Mathematics and Statistics, University of North Florida, Jacksonville, FL, USA

#### Abstract

The four-dimensional summability methods of Euler and Borel are studied as mappings from absolutely convergent double sequences into themselves. Also the following Tauberian results are proved: if  $x = (x_{m,n})$  is a double sequence that is mapped into  $\ell_2$  by the four-dimensional Borel method and the double sequence x satisfies  $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} |\Delta_{10}x_{m,n}| \sqrt{mn} < \infty$  and  $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} |\Delta_{01}x_{m,n}| \sqrt{mn} < \infty$ , then x itself is in  $\ell_2$ .

MSC: Primary 40B05; secondary 40C05

**Keywords:** Tauberian condition; Euler-Knopp means; Borel method; four-dimensional summability method; double sequences; Pringsheim limit

#### 1 Introduction

The best-known notion of convergence for double sequences is convergence in the sense of Pringsheim. Recall that a double sequence  $x = \{x_{k,l}\}$  of complex (or real) numbers is called convergent to a scalar *L* in the sense of Pringsheim (denoted by *P*-lim x = L) if for every  $\epsilon > 0$  there exists an  $N \in \mathbb{N}$  such that  $|x_{k,l} - L| < \epsilon$  whenever k, l > N. Such an x is described more briefly as '*P*-convergent'. It is easy to verify that  $x = \{x_{k,l}\}$  converges in the sense of Pringsheim if and only if for every  $\epsilon > 0$  there exists an integer  $N = N(\epsilon)$  such that  $|x_{i,j} - x_{k,l}| < \epsilon$  whenever  $\min\{i, j, k, l\} \ge N$ . A double sequence  $x = \{x_{k,l}\}$  is bounded if there exists a positive number M such that  $|x_{m,n}| \le M$  for all m and n, that is, if  $\sup_{m,n} |x_{m,n}| < \infty$ .

A double sequence  $x = \{x_{k,l}\}$  is said to convergence regularly if it converges in the sense of Pringsheim and, in addition, the following finite limits exist:

$$\lim_{m \to \infty} x_{m,n} = \ell_n \quad (n = 1, 2, \ldots),$$
$$\lim_{m \to \infty} x_{m,n} = \mathcal{L}_m \quad (m = 1, 2, \ldots).$$

Let  $A = (a_{m,n,k,l})$  denote a four-dimensional summability method that maps the complex double sequence *x* into the double sequence *Ax* where the *mn*th term of *Ax* is as follows:

$$(Ax)_{m,n}=\sum_{k=0}^{\infty}\sum_{l=0}^{\infty}a_{m,n,k,l}x_{k,l}.$$

In [1] Robison presented the following notion of regularity for four-dimensional matrix transformation and a Silverman-Toeplitz type characterization of such a notion.



© 2015 Nuray and Patterson; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. **Definition 1.1** The four-dimensional matrix *A* is said to be *RH*-regular if it maps every bounded *P*-convergent sequence into a *P*-convergent sequence with the same *P*-limit.

The assumption of boundedness was added because a double sequence which is *P*-convergent is not necessarily bounded. Along these same lines, Robison and Hamilton presented a Silverman-Toeplitz type multidimensional characterization of regularity in [2] and [1].

**Theorem 1.1** (Hamilton [2], Robison [1]) *The four-dimensional matrix A is RH-regular if and only if* 

 $\begin{array}{l} RH_1: \ P-\lim_{m,n} a_{m,n,k,l} = 0 \ for \ each \ k \ and \ l;\\ RH_2: \ P-\lim_{m,n} \sum_{k,l=0,0}^{\infty,\infty} a_{m,n,k,l} = 1;\\ RH_3: \ P-\lim_{m,n} \sum_{k=0}^{\infty} |a_{m,n,k,l}| = 0 \ for \ each \ l;\\ RH_4: \ P-\lim_{m,n} \sum_{l=0}^{\infty} |a_{m,n,k,l}| = 0 \ for \ each \ k;\\ RH_5: \ \sum_{k,l=0,0}^{\infty,\infty} |a_{m,n,k,l}| \ is \ P-convergent;\\ RH_6: \ there \ exist \ finite \ positive \ integers \ \Delta \ and \ \Gamma \ such \ that \ \sum_{k,l>\Gamma} |a_{m,n,k,l}| < \Delta. \end{array}$ 

The set of all absolutely convergent double sequences will be denoted  $\ell_2$ , that is,

$$\ell_2 = \left\{ x = \{x_{k,l}\} : \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} |x_{k,l}| < \infty \right\}.$$

For single sequences, in [3] Fridy and Roberts proved the following Tauberian theorem.

**Theorem 1.2** If *B* is a Borel matrix and  $x = (x_k)$  is a sequence such that Bx in  $\ell = \{x = (x_k) : \sum_{k=1}^{\infty} |x_k| < \infty\}$  and

$$\sum_{r=1}^{\infty} |\Delta x_r| \sqrt{r} < \infty,$$

then x is in  $\ell$ .

Our aim is to extend the results in [3] from single absolutely convergent sequences to double absolutely convergent sequences. In [4], Patterson proved that the matrix  $A = (a_{m,n,k,l})$  determines an  $\ell_2$ - $\ell_2$  method if and only if

$$\sup_{k,l} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} |a_{m,n,k,l}| < \infty.$$
(1.1)

#### 2 Euler-Knopp and Borel $\ell_2$ - $\ell_2$ methods

The four-dimensional Euler-Knopp method, for any complex numbers  $r_1$  and  $r_2$ , is defined by

$$E_{r_1,r_2}[m, n, k, l] = \begin{cases} \binom{m}{k} \binom{n}{l} r_1^{k+1} (1-r_1)^{m-k} r_2^{l+1} (1-r_2)^{n-l}, & \text{if } k \le m, l \le n, \\ 0, & \text{otherwise.} \end{cases}$$

An application of the Maclaurin series expansion of  $(1 - z_1)^{k+1}(1 - z_2)^{l+1}$  shows that each column sum of  $E_{r_1,r_2}$  converges absolutely to  $\frac{1}{r_1r_2}$  provided that  $0 < r_1 \le 1$  and  $0 < r_2 \le 1$ . If  $0 < r_1 < 1$  and  $0 < r_2 < 1$ , then P-lim<sub>*m*,*n*</sub>  $E_{r_1,r_2}[m, n, m, n] = 0$ , so  $E_{r_1,r_2}^{-1}$  is not an  $\ell_2$ - $\ell_2$  matrix. We summarize this as follows.

**Theorem 2.1** The four-dimensional Euler-Knopp method  $E_{r_1,r_2}$  is a sum-preserving  $\ell_2 - \ell_2$  matrix for which  $\ell_{2E_{r_1,r_2}} \neq \ell_2$  if and only if  $0 < r_1 < 1$  and  $0 < r_2 < 1$ , where  $\ell_{2E_{r_1,r_2}}$  is the summability field of  $E_{r_1,r_2}$ .

The four-dimensional Borel method *B* is given by the matrix

$$b_{m,n,k,l} = \frac{e^{-(m+n)}m^k n^l}{k!l!}, \quad m,n,k,l = 0, 1, 2, 3, \dots$$

By a direct application of Theorem 3.1 in [4], one can show that *B* is an  $\ell_2$ - $\ell_2$  matrix.

**Theorem 2.2** If  $r_1 > 0$  and  $r_2 > 0$  and  $x = (x_{k,l})$  is a double sequence such that  $E_{r_1,r_2}x$  is in  $\ell_2$ , then Bx is in  $\ell_2$ .

*Proof* We use the familiar technique of showing that  $BE_{r_1,r_2}$  is an  $\ell_2 - \ell_2$  matrix. Since  $Bx = BE_{r_1,r_2}^{-1}E_{r_1,r_2}x$ , this will ensure that Bx is in  $\ell_2$  whenever  $E_{r_1,r_2}x$  in  $\ell_2$ . Since  $E_{r_1,r_2}^{-1} = E_{\frac{1}{r_1},\frac{1}{r_2}}$  we replace  $s_1 = \frac{1}{r_1}$  and  $s_2 = \frac{1}{r_2}$  and show that  $BE_{s_1,s_2}$  is an  $\ell_2 - \ell_2$  matrix for all positive  $s_1$  and  $s_2$ . The *mnkl*th term of  $BE_{s_1,s_2}$  is given by

$$\begin{split} BE_{s_1,s_2}[m,n,k,l] \\ &= \sum_{i=k}^{\infty} \sum_{j=l}^{\infty} \frac{e^{-(m+n)}m^i n^j}{i!j!} \binom{i}{k} \binom{j}{l} (1-s_1)^{i-k} s_1^k (1-s_2)^{j-l} s_2^l \\ &= \frac{e^{-(m+n)}m^k n^l s_1^k s_2^l}{k!l!} \sum_{i=k}^{\infty} \sum_{j=l}^{\infty} \frac{m^{i-k} n^{j-k}}{(i-k)!(j-l)!} (1-s_1)^{i-k} (1-s_2)^{j-l} \\ &= \frac{(ms_1)^k (ns_2)^l e^{-(ms_1+ns_2)}}{k!l!}. \end{split}$$

Summing the (k, l)th column of  $BE_{s_1, s_2}$ , we get

$$\begin{split} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \left| BE_{s_1,s_2}[m,n,k,l] \right| &= \frac{1}{k!l!} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (ms_1)^k (ns_2)^l e^{-(ms_1+ns_2)} \\ &= O\left(\frac{1}{k!l!} \int_0^{\infty} \int_0^{\infty} (t_1s_1)^k (t_2s_2)^l e^{-(t_1s_1+t_2s_2)} dt_1 dt_2\right) \\ &= O\left(\frac{1}{s_1s_2}\right). \end{split}$$

Hence,

$$\sup_{k,l}\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\left|BE_{s_1,s_2}[m,n,k,l]\right| < \infty,$$

so  $BE_{s_1,s_2}$  is an  $\ell_2$ - $\ell_2$  matrix.

Theorem 2.2 and the  $\ell_2$ - $\ell_2$  property of  $E_{r_1,r_2}$  lead to the following result.

#### **Theorem 2.3** *The four-dimensional Borel matrix determines an* $\ell_2$ *-* $\ell_2$ *method.*

In addition to the inclusion relation given in Theorem 2.2, we can also show that the  $\ell_2$ - $\ell_2$  method *B* is strictly stronger than all  $E_{r_1,r_2}$  methods by the following example.

**Example 2.1** Suppose  $r_1 > 0$  and  $r_2 > 0$  and  $x_{k,l} = (-s_1)^k (-s_2)^l$  where  $s_1 \ge -1 + \frac{2}{r_1}$  and  $s_2 \ge -1 + \frac{2}{r_2}$ ; then Bx is in  $\ell_2$  but  $E_{r_1,r_2}$  is not in  $\ell_2$ . Let us consider the following methods:

$$(Bx)_{m,n} = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} e^{-(m+n)} \frac{m^k}{k!} \frac{n^l}{l!} (-s_1)^k (-s_2)^l$$
$$= e^{-(m+n)} e^{-(s_1m+s_2n)} = e^{-[(s_1+1)m+(s_2+1)n]}$$

and

$$(E_{r_1,r_2}x)_{m,n} = \sum_{k=0}^{m} \sum_{l=0}^{n} \binom{m}{k} \binom{n}{l} (1-r_1)^{m-k} (-r_1s_1)^k (1-r_2)^{n-l} (-r_2s_2)^l$$
  
=  $(1-r_1-r_1s_1)^m (1-r_2-r_2s_2)^n$ .

By solving  $-1 < 1 - r_1 - r_1 s_1 < 1$  and  $-1 < 1 - r_2 - r_2 s_2 < 1$ , we see that  $E_{r_1, r_2} x$  is in  $\ell_2$  if and only if  $-1 < s_1 < -1 + \frac{2}{r_1}$  and  $-1 < s_2 < -1 + \frac{2}{r_2}$ .

#### 3 Tauberian theorems

To prove Theorem 3.1 we need the following lemma.

Lemma 3.1 If

$$b_{m,n,k,l} = \frac{e^{-(m+n)}m^k n^l}{k!l!}$$

and r and s are positive integers, then

(i)

$$\sum_{m=r+1}^{\infty} \sum_{n=s+1}^{\infty} \sum_{k=0}^{r} \sum_{l=0}^{s} b_{m,n,k,l} = O(\sqrt{rs})$$

and

(ii)

$$\sum_{m=0}^{r} \sum_{n=0}^{s} \sum_{k=r+1}^{\infty} \sum_{l=s+1}^{\infty} b_{m,n,k,l} = O(\sqrt{rs}).$$

*Proof* Let  $p = \lfloor \sqrt{r} \rfloor$  and  $q = \lfloor \sqrt{s} \rfloor$ , and let us write the sum in (i) as

$$\sum_{m=r+1}^{\infty} \sum_{n=s+1}^{\infty} \sum_{k=0}^{r-p} \sum_{l=0}^{s-q} b_{m,n,k,l} + \sum_{m=r+1}^{\infty} \sum_{n=s+1}^{\infty} \sum_{k=r-p+1}^{r} \sum_{l=s-q+1}^{s} b_{m,n,k,l} = \phi_{r,s} + \varphi_{r,s}.$$

$$\sum_{k=0}^{s_1} \sum_{l=0}^{s_2} \frac{m^m n^l}{k! l!} = \frac{m^{s_1} n^{s_2}}{s_1! s_2!} \left( 1 + \frac{s_1}{m} + \frac{s_1}{m} \frac{s_1 - 1}{m} + \cdots \right) \left( 1 + \frac{s_2}{n} + \frac{s_2}{n} \frac{s_2 - 1}{n} + \cdots \right)$$
$$\leq \frac{m^{s_1} n^{s_2}}{s_1! s_2!} \left( 1 + \frac{s_1}{m} + \left(\frac{s_1}{m}\right)^2 + \cdots \right) \left( 1 + \frac{s_2}{m} + \left(\frac{s_2}{m}\right)^2 + \cdots \right)$$
$$= \frac{m^{s_1} n^{s_2}}{s_1! s_2!} \frac{m}{m - s_1} \frac{n}{n - s_2}.$$

In  $\phi_{r,s}$ , let  $s_1 = r - p$ ,  $s_2 = s - q$ , and

$$\max_{m \ge r+1; n \ge s+1} \frac{mn}{(m-r+p)(n-s+q)} = \frac{(r+1)(s+1)}{(p+1)(q+1)} \le (\sqrt{r}+1)(\sqrt{s}+1),$$

thus

$$\phi_{r,s} < (\sqrt{r}+1)(\sqrt{s}+1)\frac{1}{(r-p)!(s-q)!} \sum_{m=r+1}^{\infty} \sum_{n=s+1}^{\infty} e^{-(m+n)}m^{r-p}n^{s-q} \le (\sqrt{r}+1)(\sqrt{s}+1).$$

In  $\varphi_{r,s}$ , observe that

$$\sum_{k=r-p+1}^{r} \sum_{l=s-q+1}^{s} b_{m,n,k,l} \le \sqrt{rs} \max_{k \ge r; l \ge s} b_{m,n,k,l} = \sqrt{rs} e^{-(m+n)} \frac{m^r n^s}{r!s!},$$

thus

$$\varphi_{r,s} \leq \sqrt{rs} \frac{1}{r!s!} \sum_{m=r+1}^{\infty} \sum_{n=s+1}^{\infty} e^{-(m+n)} m^r n^s \leq \sqrt{rs}.$$

Hence, (i) is proved. Next write the sum in (ii) as

$$\sum_{m=0}^{r} \sum_{n=0}^{s} \sum_{k=r+1}^{r+p-1} \sum_{l=s+1}^{s+q-1} b_{m,n,k,l} + \sum_{m=0}^{r} \sum_{n=0}^{s} \sum_{k=r+p}^{\infty} \sum_{l=s+q}^{\infty} b_{m,n,k,l} = \lambda_{r,s} + \mu_{r,s}.$$

Assume that  $\lambda_{r,s} = 0$  if p = 1, q = 1. Then

$$\begin{split} \lambda_{r,s} &\leq (p-1)(q-1)\sum_{m=0}^{r}\sum_{n=0}^{s}e^{-(m+n)}\max_{k>r;l>s}\frac{m^{k}n^{l}}{k!l!} \\ &\leq (\sqrt{r}-1)(\sqrt{s}-1)\frac{1}{(r+1)!(s+1)!}\sum_{m=0}^{r}\sum_{n=0}^{s}e^{-(m+n)}m^{r+1}n^{s+1} \\ &\leq (\sqrt{r}-1)(\sqrt{s}-1). \end{split}$$

If  $s_1 \ge m$  and  $s_2 \ge n$ , then

$$\sum_{k=s_1}^{\infty} \sum_{l=s_2}^{\infty} \frac{m^k n^l}{k! l!}$$
  
=  $\frac{m^{s_1} n^{s_2}}{s_1! s_2!} \left( 1 + \frac{m}{s_1 + 1} + \frac{m}{s_1 + 1} \frac{m}{s_1 + 2} + \cdots \right) \left( 1 + \frac{n}{s_2 + 1} + \frac{n}{s_2 + 1} \frac{n}{s_2 + 2} + \cdots \right)$ 

$$\leq \frac{m^{s_1}n^{s_2}}{s_1!s_2!} \left(1 + \frac{m}{s_1+1} + \left(\frac{m}{s_1+1}\right)^2 + \cdots\right) \left(1 + \frac{n}{s_2+1} + \left(\frac{n}{s_2+1}\right)^2 + \cdots\right)$$
$$= \frac{m^{s_1}n^{s_2}}{s_1!s_2!} \frac{(s_1+1)(s_2+1)}{(s_1+1-m)(s_2+1-n)}.$$

Let  $s_1 = r + p$  and  $s_2 = s + q$ , we have

$$\begin{aligned} \mu_{r,s} &\leq \frac{1}{(r+p)!(s+q)!} \sum_{m=0}^{r} \sum_{n=0}^{s} e^{-(m+n)} m^{r+p} n^{s+q} \left( \frac{r+p+1}{r+p+1-m} \right) \left( \frac{s+q+1}{s+q+1-n} \right) \\ &\leq \frac{r+p+1}{p+1} \frac{s+q+1}{q+1} \frac{1}{(r+p)!(s+q)!} \sum_{m=0}^{r} \sum_{n=0}^{s} e^{-(m+n)} m^{r+p} n^{s+q} \\ &\leq (\sqrt{r}+1)(\sqrt{s}+1). \end{aligned}$$

Thus the lemma is proved.

We are now ready to prove the following result.

**Theorem 3.1** If x is a double sequence such that Bx is in  $\ell_2$ ,

$$\sum_{r=0}^{\infty}\sum_{s=0}^{\infty}|\Delta_{10}x_{s,r}|\sqrt{rs}<\infty$$
(3.1)

and

$$\sum_{r=0}^{\infty}\sum_{s=0}^{\infty}|\Delta_{01}x_{s,r}|\sqrt{rs}<\infty,$$
(3.2)

*then* x *in*  $\ell_2$  *where*  $\Delta_{10}x_{r,s} = x_{r,s} - x_{r+1,s}$  *and*  $\Delta_{01}x_{r,s} = x_{r,s} - x_{r,s+1}$ .

*Proof* It is suffices to show that Bx - x is in  $\ell_2$ ; that is,

$$\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\left|\sum_{k=0}^{\infty}\sum_{l=0}^{\infty}b_{m,n,k,l}x_{k,l}-x_{m,n}\right|<\infty.$$

Since

$$\sum_{k=0}^{\infty}\sum_{l=0}^{\infty}b_{m,n,k,l}=1$$

for each *m*, *n*, the above sum can be written as

$$\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\left|\sum_{k=0}^{\infty}\sum_{l=0}^{\infty}b_{m,n,k,l}(x_{k,l}-x_{m,n})\right|$$

and we need only show the following:

$$S=\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\sum_{k=0}^{\infty}\sum_{l=0}^{\infty}b_{m,n,k,l}|x_{k,l}-x_{m,n}|<\infty.$$

Let  $S = S_1 + S_2$ , where

$$S_1 = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{m} \sum_{l=0}^{n} b_{m,n,k,l} |x_{k,l} - x_{m,n}|$$

and

$$S_2 = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=m+1}^{\infty} \sum_{l=n+1}^{\infty} b_{m,n,k,l} |x_{k,l} - x_{m,n}|.$$

Since

$$\begin{aligned} |x_{k,l} - x_{m,n}| &= |x_{m,n} - x_{k,l}| = \left| \sum_{s=m}^{k-1} \Delta_{10} x_{s,n} + \sum_{r=n}^{l-1} \Delta_{01} x_{k,r} \right|, \\ S_1 &\leq \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{m-1} \sum_{l=0}^{n-1} b_{m,n,k,l} \left( \sum_{s=m}^{k-1} |\Delta_{10} x_{s,n}| + \sum_{r=n}^{l-1} |\Delta_{01} x_{k,r}| \right) \\ &\leq \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} |\Delta_{10} x_{r,s}| \sum_{m=r+1}^{\infty} \sum_{n=s+1}^{\infty} \sum_{k=0}^{r} \sum_{l=0}^{s} b_{m,n,k,l} \\ &+ \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} |\Delta_{01} x_{r,s}| \sum_{m=r+1}^{\infty} \sum_{n=s+1}^{\infty} \sum_{k=0}^{r} \sum_{l=0}^{s} b_{m,n,k,l} \\ &= \left( \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} |\Delta_{10} x_{r,s}| + \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} |\Delta_{01} x_{r,s}| \right) \zeta_{r,s}, \quad \text{say.} \end{aligned}$$

Also,

$$S_{2} \leq \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=m+1}^{\infty} \sum_{l=n+1}^{\infty} b_{m,n,k,l} \left( \sum_{s=m}^{k-1} |\Delta_{10}x_{s,n}| + \sum_{r=n}^{l-1} |\Delta_{01}x_{k,r}| \right)$$
  
$$\leq \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} |\Delta_{10}x_{r,s}| \sum_{m=0}^{r} \sum_{n=0}^{s} \sum_{k=r+1}^{\infty} \sum_{l=s+1}^{\infty} b_{m,n,k,l}$$
  
$$+ \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} |\Delta_{01}x_{r,s}| \sum_{m=0}^{r} \sum_{n=0}^{s} \sum_{k=r+1}^{\infty} \sum_{l=s+1}^{\infty} b_{m,n,k,l}$$
  
$$= \left( \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} |\Delta_{10}x_{r,s}| + \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} |\Delta_{01}x_{r,s}| \right) \varsigma_{r,s}, \quad \text{say.}$$

By Lemma 3.1,  $\zeta_{r,s} = O(\sqrt{rs})$  and  $\zeta_{r,s} = O(\sqrt{rs})$ , we have

$$S_1 + S_2 \leq \lambda \left( \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} |\Delta_{10} x_{s,r}| \sqrt{rs} + \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} |\Delta_{01} x_{s,r}| \sqrt{rs} \right) < \infty,$$

which proves the theorem.

Combining Theorem 3.1 with Theorem 2.2, we are lead to the following  $\ell_2$ - $\ell_2$  Tauberian theorem for the four-dimensional Euler-Knopp means.

**Theorem 3.2** If  $r_1 > 0$ ,  $r_2 > 0$ , and x is a double sequence satisfying (3.1) such that  $E_{r_1,r_2}$  is in  $\ell_2$ , then x is in  $\ell_2$ .

**Example 3.1** The following double sequence is not mapped into  $\ell_2$  by B or by  $E_{r_1,r_2}$ , with  $r_1 > 0$ ,  $r_2 > 0$ . Define  $x = \{x_{k,l}\}$  by

$$x_{0,0} = \frac{\pi^2}{3}$$
 and  $\Delta_{01} x_{k,j} = \frac{1}{(j+1)^2}$ ,  $\Delta_{10} x_{i,0} = \frac{1}{(i+1)^2}$ ,  $i, j = 1, 2, 3, ...$ 

Then *x* satisfies (3.1) and (3.2), but *x* is not in  $\ell_2$  because if  $k \ge 1$  and  $l \ge 1$ ,

$$\begin{aligned} x_{k,l} &= x_{0,0} - \sum_{i=0}^{k-1} \Delta_{10} x_{i,0} - \sum_{j=0}^{l-1} \Delta_{01} x_{k,j} \\ &= \frac{\pi^2}{3} - \sum_{i=0}^{k-1} \frac{1}{(i+1)^2} - \sum_{j=0}^{l-1} \frac{1}{(j+1)^2} \\ &= \frac{\pi^2}{6} - \sum_{i=0}^{k-1} \frac{1}{(i+1)^2} + \frac{\pi^2}{6} - \sum_{j=0}^{l-1} \frac{1}{(j+1)^2} \\ &= \sum_{i=k}^{\infty} \frac{1}{(i+1)^2} + \sum_{j=l}^{\infty} \frac{1}{(j+1)^2} \sim \frac{1}{k} - \frac{1}{l}. \end{aligned}$$

Hence, by Theorem 3.1, Bx is not in  $\ell_2$ .

#### **Competing interests**

The authors declare that they have no competing interests.

#### Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

#### Received: 29 October 2014 Accepted: 20 January 2015 Published online: 24 February 2015

#### References

- 1. Robison, GM: Divergent double sequences and series. Trans. Am. Math. Soc. 28, 50-73 (1926)
- 2. Hamilton, HJ: Transformations of multiple sequences. Duke Math. J. 2, 29-60 (1936)
- Fridy, JA, Roberts, KL: Some Tauberian theorems for Euler and Borel summability. Int. J. Math. Math. Sci. 3(4), 731-738 (1980)
- 4. Patterson, RF: Four dimensional matrix characterization of absolute summability. Soochow J. Math. **30**(1), 21-26 (2004)

## Submit your manuscript to a SpringerOpen<sup>®</sup> journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com