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1. Introduction, Definitions and Notations

Throughout the paper, N denotes the set of all positive integers and R the set
of all real numbers. The concept of convergence of a sequence of real num-
bers has been extended to statistical convergence independently by Fast [8] and
Schoenberg [29].

The idea of Z-convergence was introduced by Kostyrko et al. [20] as a gener-
alization of statistical convergence which is based on the structure of the ideal
Z of subset of N [8,9]. Gokhan et al. [13] introduced the notion of pointwise
and uniform statistical convergent of double sequences of real-valued functions.
Gezer and Karakus [12] investigated Z-pointwise and uniform convergence and
T*-pointwise and uniform convergence of function sequences and they examined
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the relation between them. Baldz et al. [2] investigated Z-convergence and Z-
continuity of real functions. Balcerzak et al. [3] studied statistical convergence
and ideal convergence for sequences of functions Diindar and Altay [5,6] stud-
ied the concepts of pointwise and uniformly Zs-convergence and Z3-convergence
of double sequences of functions and investigated some properties about them.
Furthermore, Diindar [7] investigated some results of Zy-convergence of double
sequences of functions.

The concept of 2-normed spaces was initially introduced by Géhler [10, 11]
in the 1960’s. Since then, this concept has been studied by many authors.
Giirdal and Pehlivan [17] studied statistical convergence, statistical Cauchy se-
quence and investigated some properties of statistical convergence in 2-normed
spaces. Sahiner et al. [31] and Giirdal [19] studied Z-convergence in 2-normed
spaces. Girdal and Agik [18] investigated Z-Cauchy and Z*-Cauchy sequences
in 2-normed spaces. Sarabadan and Talebi [27] presented various kinds of sta-
tistical convergence and Z-convergence for sequences of functions with values in
2-normed spaces and also defined the notion of Z-equistatistically convergence
and study Z-equistatistically convergence of sequences of functions. Recently,
Savag and Giirdal [28] concerned with Z-convergence of sequences of functions
in random 2-normed spaces and introduce the concepts of ideal uniform con-
vergence and ideal pointwise convergence in the topology induced by random
2-normed spaces, and gave some basic properties of these concepts. Arslan
and Diindar [1] investigated the concepts of Z-convergence, Z*-convergence, Z-
Cauchy and Z*-Cauchy sequences of functions in 2-normed spaces. Also, Yegiil
and Diindar [33] studied statistical convergence of sequence of functions in 2-
normed spaces. Futhermore, a lot of development have been made in this area
(see [4,21,22,26,30,32]).

Now, we recall the concept of 2-normed space, ideal convergence and some
fundamental definitions and notations (see [2, 3, 8, 9, 14-20, 23-25, 27, 31]).

If K C N, then K, denotes the set {k € K : k < n} and |K,| denotes the
cardinality of K,. The natural density of K is given by 6(K) = lim,, 2|K,|, if
it exists.

The number sequence x = (x) is statistically convergent to L provided that
for every € > 0, the set

K=K():={keN: |z, —L| >¢}

has natural density zero; in this case, we write st — limx = L.
Let X # (0. A class T of subsets of X is said to be an ideal in X provided:
(i) 0 ez,
(ii) A, B € 7 implies AUB € Z,
(iii) A€ Z, BC Aimplies BeT.
7 is called a nontrivial ideal if X ¢ Z. A nontrivial ideal Z in X is called
admissible if {} € Z, for each x € X.

Ezample 1.1. Let Iy be the family of all finite subsets of N. Then, Z; is an
admissible ideal in N and Z; convergence is the usual convergence.
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Throughout the paper, we let Z C 2N be an admissible ideal.
Let X # (0. A non empty class F of subsets of X is said to be a filter in X
provided:

(i) 0 ¢ F,
(ii) A, B € F implies AN B € F,
(iii) Ae F, AC B implies B € F.

Lemma 1.2. [20] If Z is a nontrivial ideal in X, X # 0, then the class F(Z) =
{M CX:(3AeI)(M=X\A)} is a filter on X, called the filter associated
with L.

A sequence (f,,) of functions is said to be Z-convergent (pointwise) to f on
D C Rif and only if for every € > 0 and each x € D, {n : |fn(x)— f(z) > ¢|} € T.
In this case, we will write f,, EA fonD.

A sequence (f,,) of functions is said to be Z*-convergent (pointwise) to f on
D C R if and only if Ve > 0 and Vo € D, 3K, ¢ T and 3ng = no(e,z) € K, :
Vn > ng and n € K., |fu(z) — f(2)] <e.

Let X be a real vector space of dimension d, where 2 < d < co. A 2-norm
on X is a function ||+, -] : X x X — R which satisfies the following statements:

(i) |lz,y|| = 0 if and only if = and y are linearly dependent.
() llz.yll = lly, |-
(il) [laz,y| = lafllz, yll, « € R.
(iv) llz,y + 2| < llz,yll + ||z, 2]

The pair (X, |-, -]|) is then called a 2-normed space. As an example of a 2-
normed space we may take X = R? being equipped with the 2-norm ||z, y| :=
the area of the parallelogram based on the vectors x and y which may be given
explicitly by the formula

2, yll = [#1y2 — 2y1]; @ = (21,22),y = (y1,92) € R%.

In this study, we suppose X to be a 2-normed space having dimension d;
where 2 < d < .

A sequence (x,,) in 2-normed space (X, ||-,-]|) is said to be convergent to L
in X if limp, 00 ||2n — L,y|| = 0, for every y € X. In such a case, we write
lim,, y00 &, = L and call L the limit of ().

A sequence (z,) in 2-normed space (X, |-, -||) is said to be Z-convergent to
L € X, ifforeache > 0 and each nonzero z € X, A(e,z) ={n € N: ||x,—L, z|| >
e} € Z. In this case, we write Z—lim,, oo ||2n—L, z|| = 0 or Z—limy,—, o || @0, 2| =
1L, 2]

A sequence (z,,) in 2-normed space (X, ||+, -]|) is said to be Z*-convergent to
L € X if and only if there exists aset M € F, M = {m1 <mg < -+ < my <
-+ -} such that lim, e ||@m, — L, z|| = 0, for each nonzero z € X.
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Let X and Y be two 2-normed spaces, {f,} be a sequence of functions and f

-y

be a function from X to Y. {f,} is said to be convergent to f if f,(x) == f(z)

[y

for each x € X. We write f, |—> f- This can be expressed by the formula
(Vz € Y)(Vx € X)(Ve > 0)(Tno € N)(Vn > ng)|| fn(z) — f(2), 2] <e.

Let X and Y be two 2-normed spaces, {f,} be a sequence of functions and
f be a function from X to Y. {f,} is said to be Z-pointwise convergent to f, if
for every € > 0 and each nonzero z € Y, A(e,z) = {n € N: ||fpo(z) — f(x), 2| >
et €Zor I —lim, ol fn(z)— f(z), 2]y =0 (in (Y, ]|, .|ly)), for each x € X.
In this case, we write f, Hﬂf 7 f. This can be expressed by the formula

(Vz e Y)(Ve > 0)(3M € I)(VYng € N\M)(Vx € X)(Vn > ng)
[fn(@) = f(2), 2] <e.

Let X and Y be two 2-normed spaces, {f,} be a sequence of functions and
f be a function from X to Y. {f,} is said to be pointwise Z*-convergent to f,
if there exists a set M € F(Z), (ie, N\N\M € 7), M ={m1 < ma < -+ <my, <
.-+ }, such that for each z € X and each nonzero z € Y limg_,o0 || fn, (@), 2|| =

1£(x), 2I| and we write Z* — lim | fu(x), 2|l = || £(2), 2]l or fu 5 f.
n—oo

An admissible ideal Z C 2V is said to satisfy the condition (AP) if for every
countable family of mutually disjoint sets {A;, As, ...} belonging to Z there exists
a countable family of sets { By, Ba, ...} such that A;AB; is a finite set for j € N
and B =J;2, B; € T.

Now we begin with quoting the lemmas due to Arslan and Diindar [1] which
are needed throughout the paper.

Lemma 1.3. [1] Let X and Y be two 2-normed spaces, {fn} be a sequence of
functions and f be a function from X toY. For each x € X and each nonzero
zeY,

" = lim [|fu(@), 2] = | f (), z|| implies T — lim_{| fu(2), 2|| = [ f(2), 2]-

Lemma 1.4. [1] Let T C 2" be an admissible ideal having the property (AP),
X and Y be two 2-normed spaces, {fn} be a sequence of functions and f be a
function from X to Y. If the sequence of functions {fn} is Z-convergent, then
it 18 I*-convergent.

2. Main Results

In this paper, we study concepts of convergence, Z-convergence, Z*-convergence
of functions and investigate relationships between them and some properties
such as linearity in 2-normed spaces.
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Throughout the paper, we let Z C 2N be an admissible ideal, X and Y be
two 2-normed spaces, {fn}nen and {gn}nen be two sequences of functions and

f, g be two functions from X to Y.

Theorem 2.1. For each x € X and each nonzero z € Y we have

i || fn(2), 2| = [|f(x), 2| implies T — Tim | fn(z), 2] = || f (), 2[].
n—oo n—oo
Proof. Let € > 0 be given. Since lim,_, || fn(2), 2| = || f(z), 2|, for each z € X

and each nonzero z € Y, therefore, there exists a positive integer kg = ko (e, x)
such that || f(x) — f(z), z|| < &, whenever n > kq. This implies that the set

Ale,2) = (n € N: [[fule) = fla)o2 > e} € {12, (ko — 1)}

Since Z be an admissible ideal and Zy C Z, {1,2, ..., (ko — 1)} € Z. Hence, it is
clear that A(e, z) € 7 and consequently we have

T lim | fa(@). 2] = [1£(2). 2|
for each z € X and each nonzero z € Y. [

Theorem 2.2. If Z-limit of any sequence of functions {fn} exists, then it is
unique.

Proof. Let a sequence {f,} of functions and f, g be two functions from X to Y.
Assume that

T lim | fa(wo), 2l = | fwo), 2l and T~ Tim || fu(r0), 2] = llg(o), =]

where f(xo) # g(zo) for a zy € X and each nonzero z € Y. Since f(z¢) # g(x0),
so we may suppose that f(zg) > g(xg). Select ¢ = M, so that the
neighborhoods (f(zo) — ¢, f(x0) + €) and (g(xo) — €, g(xo) + €) of points f(xo)
and g(xo), respectively are disjoints. Since for xg € X and each nonzero z € Y,

T lim[[fu(@0). 2l = £ (2o}, 2] and T = limm_lgn(zo), =] = llg(zo). =
n—oo n—oo
we have

Ale, z) = {n e N: [[fu(xo) — f(z0), 2[| = €} € T,
B(e,2) = {n e N: [|fu(20) — g(20), 2| > e} € Z.

This implies that the sets
A(e,2) = {n e N:|[|fulzo) — f(20), 2[| <€},
Bf(e,z) = {n € N: | fu(x0) — g(x0), 2| <€}

belong to F(Z) and A°(e, z) N B®(e, ) is a nonempty set in F(Z) for zp € X and
each nonzero z € Y. Since A¢(g,2) N B¢(g, z) # 0, we obtain a contradiction on
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the fact that the neighborhoods (f(zo) — ¢, f(z0) +¢) and (g(xo) — &, g(z0) + €)
of points f(x¢) and g(xo), respectively are disjoints. Hence, it is clear that for

xo € X and each nonzero z € Y, || fu(xo), 2|l = |lgn(20), 2| and consequently
we have || fn(2), z|| = |lgn(2), 2|, (i.e., f = g), for each z € X and each nonzero
zeY. |

Theorem 2.3. For each x € X and each nonzero z € Y,

() If T = limy oo [[fu(2), 2 = [[f(@), 2]l and T — lim, o0 [lgn(2), 2] =
lg(), 2|, then T —Timy, o0 || fu(2) + gn(2), 2| = [If(2) + g(2), 2],

(i) Z — limp—o0 || fr (), 2|| = |le.f(2), 2], ¢ € R.

(i)  — limn oo | fa(2).00 (@), 2] = |/ (@)-9(z), 2]

Proof. (i) Let € > 0 be given. Since
T tim [|ful@). 2] = | £@). 2] and T lim [lg.(e). 2] = [lg(a). =].

for each x € X and each nonzero z € Y. Therefore,

A(%,z) = {ne N: || fu(z) = f(2), 2] > E} ezl
and
B(%,z) = {n €N |gn(x) —g(z), 2| > E} ez

and by the definition of ideal we have

€ €
Now, for each x € X and each nonzero z € Y we define the set
Cle,z) ={n e N: |(fu(®) + gn(2)) = (f(x) + g(2)), 2]| = €}
and it is sufficient to prove that C(e,z) C A(%,z) U B(%,z). Let n € C(e, 2).
Then for each z € X and each nonzero z € Y, we have

e < |(fn(@) +gn(@) = (f(2) +9(2)), 2]l < I fn(@) — f(2), 2]l +llgn(x) — 9(2), 2]

As both of {||fn(z) — f(2), 2|, llgn(x) — g(x), z||} can not be (together) strictly

less than £ and therefore either

€ €
Ifn(z) = f(2), 2l 2 5 or llgn(z) — g(2), 2] = 3,

for each x € X and each nonzero z € Y. This shows that n € A(%,z) or
n e B(%,z) and so we have n € A(%,z) UB(%,Z). Hence, C(e,z) C A(%,z) U
B(%,z).
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(ii) Let ¢ € R and 7 — limy, o0 || frn (), 2|| = || f (), 2||, for each z € X and
each nonzero z € Y. If ¢ = 0, there is nothing to prove, so we assume ¢ # 0.
Then,

{neN:IIfn(fﬂ)—f( ), 2l = E |}

for each x € X and each nonzero z € Y and by the definition we have

€
{n €N Jlefule) — e f(@),2] > e} = {n EN: [[fule) — (@), 2] > H}'
Hence, the right side of above equality belongs to Z and so
T lim le.fu(@). 2] = lle.f (@), 2]

for each x € X and each nonzero z € Y .

(iil) Since Z—limy, o0 || fr(2), || = || f(z), || for each 2 € X and each nonzero
zeY,
{neN:|fu(z) - f(z),2] = 1} € I,
and so
A={neN:|fu(z) - f(z), 2] <1} € F(T),
for e =1 > 0. Also, for any n € A, || fn(2),2|| < 1+ | f(2), 2| for each z € X
and each nonzero z € Y. Let € > 0 be given. Chose § > 0 such that
5
1f (@), 2l + llg (@), 2]l + 17

for each x € X and each nonzero z € Y. It follows from the assumption that,

B ={neN:|fulz) - fz) 2] <6} € F(I),
C ={neN:|gn(r) —g(z),z|| <} € F(T)

0<20<

for each x € X and each nonzero z € Y. Since F(Z) is a filter, therefore
ANBNC € F(I). Then, for each n € AN BNC we have

[fn(@)-gn(2) — f(2).9(x), 2|

().
= [lfn(@)-gn(2) = fu(2).g(x) + fal2).g(2) = f(2).9(2), 2]
< IIfn(fC),lelgn( —9(@), 2| + llg(@), 2[|-[ fn(x) = f(2), 2]
()
(),

o ©

< (lf (@), 2l + 1).6 + ([lg(), =)0
= (I (@), 2l + llg(@), z[| + 1).0
<e€

and so, we have {n € N: || fn(2).gn(x) — f(x).9(x), 2| > e} € Z, for each z € X
and each nonzero z € Y. This completes the proof. ]

Theorem 2.4. Let X, Y be two 2-normed spaces, {fn}, {gn} and {h,} be se-
quences of functions and k be a function from X toY. For each ©z € X and
each nonzero z € Y, if
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(1) {fn} <A{gn} < {hn}, for everyn € K, where N2 K € F(Z) and
(i) Z—limp o0 || fr(2), 2]l = [1k(2), 2] and T=1imp, o0 [|hn(2), 2] = [|k(2), 2|,

then T —limp, o0 [|gn(2), 2| = [k(2), 2|
Proof. Let £ > 0 be given. By condition (ii) we have
{neN:||fo(x) —k(z),z]| >} €T and {n € N: ||hp(x) — k(z), 2| > €} € Z,
for each x € X and each nonzero z € Y. This implies that the sets
P={neN:|fu(z) —k(z),z|| <e}and R={n e N: ||h,(x) — k(x), 2| < e}
belong to F(Z), for each x € X each nonzero z € Y. Let
Q={neN:|lgn(z) = k(z), 2| <e},

for each x € X and each nonzero z € Y. It is clear that the set PN RN K C Q.
Since PNRNK € F(Z) and PN RN K C @, then from the property of filter,
we have ) € F(Z) and so

{neN:llgn(z) = k(2),2]| = e} € T,

for each x € X and each nonzero z € Y. [ |

Theorem 2.5. For each x € X and each nonzero z € Y, we let
Z - lim |[fn(z), 2] = [If(2), 2] and T — lim ||gn(z), 2| = [lg(z), 2]
n—o0 n—o0

Then, for every n € K we have

(i) If fu(x) > 0 then, f(z) >0 and
(i) If fn(z) < gn(x) then f(z) < g(x), where K CN and K € F(Z).

Proof. (i) Suppose that f(z) < 0. Select ¢ = —@, for each z € X. Since

7 —limy o0 || fr(2), 2|| = || f(), 2||, so there exists the set M such that
M ={neN:|fu(z) - f(x),2]| <e} € F(I),

for each # € X and each nonzero z € Y. Since M, K € F(I), MNK is a
nonempty set in F(Z). So we can find out a point ng in K such that

| fro (z) — f(2), 2]| < &

Since f(z) < 0 and € = %(z) for each z € X, we have f,, () < 0. This is
a conradiction to the fact that f,(z) > 0 for every n € K. Hence, we have
f(z) >0, for each z € X.
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(ii) Suppose that f(x) > g(x). Select € = M for each z € X. So that
the neighborhoods (f(zo) — €, f(zo) + ¢) and (g(xo) — €, g(zo) + €) of f(x) and
g(x), respectively, are disjoints. Since for each z € X and each nonzero z € Y,

T— lm [[fu(e),2] = |f(@). 2] and T~ lim llgu(z), 2] = lg(z), 2]
and F(Z) is a filter on N, therefore we have

A= {neN: |fule) - f@),2] < e} € F(D),
B = {neN:|ga(@) - g(), 2|l < e} € F(Z).

This implies that ) # ANBNK € F(Z). There exists a point ng in K such that
[fn(2) = f(2), 2] < & and [|gn(2) — g(2), 2[| <e.

Since f(x) > g(z) and € = M for each x € X, we have f,,(z) > gn,(2).
This is a contradiction to the fact f,(x) < gn(z) for every n € K. Thus, we
have f(x) < g(z), for each z € X. [

Theorem 2.6. Let T C 2% be an admissible ideal having the property (AP). Then,
for each x € X and each nonzero z € Y, the following conditions are equivalent:
() Z = limp o0 [ fu(2), 2l = [|f (2), 2.
(ii) There exist {gn} and {h,} to be two sequences of functions from X to
Y such that fn(z) = gn(2) + hn(x), limpooo |lgn (@), 2| = [[f(2), 2| and
supp hp(z) € I, where supp hy(z) = {n € N: h,(z) # 0}.

Proof. (1)=-(ii): T — limp_e0 || fn(2), ]| = ||f(x), 2||, for each € X and each
nonzero z € Y. Then, by Lemma 1.4 there exists a set M € F(Z), (i.e., H=
NMeI), M={m <mg<---<my<---}, such that for each z € X and
each nonzero z € Y,

([ fo (@), 2] = [ f (), 2]

Let us define the sequence {g,} by

folz)  if meM,
gn(x) = { fz) it neN\M. (1)

It is clear that {g,} is a sequence of functions and lim,,« ||gn(2), || = || f(2), 2||
for each € X and each nonzero z € Y. Also let
hn(z) = fo(z) — gn(z), n €N, (2)

for each x € X. Since
{n € N: fu(@) # ga(2)} CN\M €T,
for each x € X, so we have

{n eN: h,(x) #0} €T
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It follows that supp hy,(z) € Z and by (1) and (2) we get fr(z) = gn(z) + hn(z),
for each z € X.
(ii)=-(i): Suppose that there exist two sequences {g,} and {h,} such that

Fol) = gue) + ), T Jlga(2), 2]l = | (), 2] and supp ha(2) € Z, (3)

for each € X and each nonzero z € Y, where supp hy,(z) = {n € N: h,(z) #
0}. We will show that Z — lim,—, o || fn(z), 2| = || f(x), z|| for each x € X and
each nonzero z € Y. Define M = {ny} to be a subset of N such that

M ={neN:h,(x) =0} = N\supp h,(z) (4)
Since
supp hp(z) ={n € N: h,(z) #0} € Z,

from (3) and (4) we have M € F(I), fo(zx) = gn(z) if n € M. Hence, we
conclude that there exists a set M = {m; <mg <---<mp <---}, M € F(I)
such that

and so Z* — lim, 00 || fr(2), 2|| = || f(x), z||, for each x € X and each nonzero
z € Y. By Lemma 1.3, it follows that Z — lim,_, || fn(), 2| = || f(x), 2], for
each x € X and each nonzero z € Y. This completes the proof. ]

Corollary 2.7. Let T C 2N be an admissible ideal having the property (AP).
Then, T — lim, 0 || fnu(x), 2] = ||f(2), 2| if and only if there exist {gn} and
{hn} be two sequences of functions from X toY such that

Ful@) = gu(@) + ha(a). lm [lgn(2). 2] = | F(2).] and
7— nh_{rgo [hn(x), z|| = 0,
for each © € X and each nonzero z € Y.

Proof. Let T — lim,, 0 || fn (), 2]| = || f(x), z]| and {g,} be a sequence defined
by (1). Consider the sequence

hn(7) = fo(®) — gn(z), n €N (5)
for each x € X. Then, we have
T [lgn (@), 2] = | 7(2). ]
and since 7 is an admissible ideal so
T~ lim [lga(e). 2l = | £(z). 2],
for each z € X and each nonzero z € Y. By Theorem 2.3 and by (5) we have

T lim |ha(z), 2] =0,
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for each x € X and each nonzero z € Y.
Now let f(z) = gn(x) + hp(z), where
lim lga(2). 2] = |/(2). 2] and T~ tim [ha(z). 2] =0,

n—oo

for each x € X and each nonzero z € Y. Since Z is an admissible ideal so
Z - lim |gn(z), 2| = || f(2), 2|
n—oo
and by Theorem 2.3 we get
T lim | fa(@). 2] = [I£(2). I,

for each z € X and each nonzero z € Y. [

Remark 2.8. In Theorem 2.6, if (ii) is satisfied then the admissible ideal Z need
not have the property (AP). Since for each 2 € X and each nonzero z € Y,

{n eN:||hp(z), 2] > e} C{neN:h,(z) #0} €Z,
for each € > 0, we have

T lim [hn(a), 2] = 0.

Hence, we have
Z— lim [|fn(z), 2] = [|f(2), 2],
n—oo

for each z € X and each nonzero z € Y.
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