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Abstract. In this paper, we study concepts of convergence and ideal convergence of

sequence of functions and investigate relationships between them and some properties

such as linearity in 2-normed spaces. Also, we prove a decomposition theorem for ideal

convergent sequences of functions in 2-normed spaces.
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1. Introduction, Definitions and Notations

Throughout the paper, N denotes the set of all positive integers and R the set
of all real numbers. The concept of convergence of a sequence of real num-
bers has been extended to statistical convergence independently by Fast [8] and
Schoenberg [29].

The idea of I-convergence was introduced by Kostyrko et al. [20] as a gener-
alization of statistical convergence which is based on the structure of the ideal
I of subset of N [8, 9]. Gökhan et al. [13] introduced the notion of pointwise
and uniform statistical convergent of double sequences of real-valued functions.
Gezer and Karakuş [12] investigated I-pointwise and uniform convergence and
I∗-pointwise and uniform convergence of function sequences and they examined



492 M. Arslan and E. Dündar

the relation between them. Baláz et al. [2] investigated I-convergence and I-
continuity of real functions. Balcerzak et al. [3] studied statistical convergence
and ideal convergence for sequences of functions Dündar and Altay [5, 6] stud-
ied the concepts of pointwise and uniformly I2-convergence and I∗

2 -convergence
of double sequences of functions and investigated some properties about them.
Furthermore, Dündar [7] investigated some results of I2-convergence of double
sequences of functions.

The concept of 2-normed spaces was initially introduced by Gähler [10, 11]
in the 1960’s. Since then, this concept has been studied by many authors.
Gürdal and Pehlivan [17] studied statistical convergence, statistical Cauchy se-
quence and investigated some properties of statistical convergence in 2-normed
spaces. Şahiner et al. [31] and Gürdal [19] studied I-convergence in 2-normed
spaces. Gürdal and Açık [18] investigated I-Cauchy and I∗-Cauchy sequences
in 2-normed spaces. Sarabadan and Talebi [27] presented various kinds of sta-
tistical convergence and I-convergence for sequences of functions with values in
2-normed spaces and also defined the notion of I-equistatistically convergence
and study I-equistatistically convergence of sequences of functions. Recently,
Savaş and Gürdal [28] concerned with I-convergence of sequences of functions
in random 2-normed spaces and introduce the concepts of ideal uniform con-
vergence and ideal pointwise convergence in the topology induced by random
2-normed spaces, and gave some basic properties of these concepts. Arslan
and Dündar [1] investigated the concepts of I-convergence, I∗-convergence, I-
Cauchy and I∗-Cauchy sequences of functions in 2-normed spaces. Also, Yegül
and Dündar [33] studied statistical convergence of sequence of functions in 2-
normed spaces. Futhermore, a lot of development have been made in this area
(see [4, 21, 22, 26, 30, 32]).

Now, we recall the concept of 2-normed space, ideal convergence and some
fundamental definitions and notations (see [2, 3, 8, 9, 14–20, 23–25, 27, 31]).

If K ⊆ N, then Kn denotes the set {k ∈ K : k ≤ n} and |Kn| denotes the
cardinality of Kn. The natural density of K is given by δ(K) = limn

1
n
|Kn|, if

it exists.

The number sequence x = (xk) is statistically convergent to L provided that
for every ε > 0, the set

K = K(ε) := {k ∈ N : |xk − L| ≥ ε}

has natural density zero; in this case, we write st− limx = L.

Let X 6= ∅. A class I of subsets of X is said to be an ideal in X provided:
(i) ∅ ∈ I,

(ii) A,B ∈ I implies A ∪B ∈ I,

(iii) A ∈ I, B ⊂ A implies B ∈ I.
I is called a nontrivial ideal if X 6∈ I. A nontrivial ideal I in X is called

admissible if {x} ∈ I, for each x ∈ X .

Example 1.1. Let If be the family of all finite subsets of N. Then, If is an
admissible ideal in N and If convergence is the usual convergence.
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Throughout the paper, we let I ⊂ 2N be an admissible ideal.

Let X 6= ∅. A non empty class F of subsets of X is said to be a filter in X

provided:

(i) ∅ 6∈ F ,

(ii) A,B ∈ F implies A ∩B ∈ F ,

(iii) A ∈ F , A ⊂ B implies B ∈ F .

Lemma 1.2. [20] If I is a nontrivial ideal in X, X 6= ∅, then the class F(I) =
{M ⊂ X : (∃A ∈ I)(M = X\A)} is a filter on X, called the filter associated

with I.

A sequence (fn) of functions is said to be I-convergent (pointwise) to f on
D ⊆ R if and only if for every ε > 0 and each x ∈ D, {n : |fn(x)−f(x) ≥ ε|} ∈ I.

In this case, we will write fn
I
→ f on D.

A sequence (fn) of functions is said to be I∗-convergent (pointwise) to f on
D ⊆ R if and only if ∀ε > 0 and ∀x ∈ D, ∃Kx 6∈ I and ∃n0 = n0(ε, x) ∈ Kx :
∀n ≥ n0 and n ∈ Kx, |fn(x) − f(x)| < ε.

Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm
on X is a function ‖·, ·‖ : X ×X → R which satisfies the following statements:

(i) ‖x, y‖ = 0 if and only if x and y are linearly dependent.

(ii) ‖x, y‖ = ‖y, x‖.

(iii) ‖αx, y‖ = |α|‖x, y‖, α ∈ R.

(iv) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖.

The pair (X, ‖·, ·‖) is then called a 2-normed space. As an example of a 2-
normed space we may take X = R

2 being equipped with the 2-norm ‖x, y‖ :=
the area of the parallelogram based on the vectors x and y which may be given
explicitly by the formula

‖x, y‖ = |x1y2 − x2y1|; x = (x1, x2), y = (y1, y2) ∈ R
2.

In this study, we suppose X to be a 2-normed space having dimension d;
where 2 ≤ d < ∞.

A sequence (xn) in 2-normed space (X, ‖·, ·‖) is said to be convergent to L

in X if limn→∞ ‖xn − L, y‖ = 0, for every y ∈ X . In such a case, we write
limn→∞ xn = L and call L the limit of (xn).

A sequence (xn) in 2-normed space (X, ‖·, ·‖) is said to be I-convergent to
L ∈ X , if for each ε > 0 and each nonzero z ∈ X , A(ε, z) = {n ∈ N : ‖xn−L, z‖ ≥
ε} ∈ I. In this case, we write I−limn→∞ ‖xn−L, z‖ = 0 or I−limn→∞ ‖xn, z‖ =
‖L, z‖.

A sequence (xn) in 2-normed space (X, ‖·, ·‖) is said to be I∗-convergent to
L ∈ X if and only if there exists a set M ∈ F , M = {m1 < m2 < · · · < mk <

· · · } such that limn→∞ ‖xmk
− L, z‖ = 0, for each nonzero z ∈ X.
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Let X and Y be two 2-normed spaces, {fn} be a sequence of functions and f

be a function from X to Y . {fn} is said to be convergent to f if fn(x)
‖.,.‖Y

−→ f(x)

for each x ∈ X . We write fn
‖.,.‖Y

−→ f . This can be expressed by the formula

(∀z ∈ Y )(∀x ∈ X)(∀ε > 0)(∃n0 ∈ N)(∀n ≥ n0)‖fn(x) − f(x), z‖ < ε.

Let X and Y be two 2-normed spaces, {fn} be a sequence of functions and
f be a function from X to Y . {fn} is said to be I-pointwise convergent to f , if
for every ε > 0 and each nonzero z ∈ Y, A(ε, z) = {n ∈ N : ‖fn(x) − f(x), z‖ ≥
ε} ∈ I or I − limn→∞ ‖fn(x) − f(x), z‖Y = 0 (in (Y, ‖., .‖Y )), for each x ∈ X .

In this case, we write fn
‖.,.‖Y

−→ I f . This can be expressed by the formula

(∀z ∈ Y )(∀ε > 0)(∃M ∈ I)(∀n0 ∈ N\M)(∀x ∈ X)(∀n ≥ n0)

‖fn(x) − f(x), z‖ ≤ ε.

Let X and Y be two 2-normed spaces, {fn} be a sequence of functions and
f be a function from X to Y . {fn} is said to be pointwise I∗-convergent to f ,
if there exists a set M ∈ F(I), (i.e., N\M ∈ I), M = {m1 < m2 < · · · < mk <

· · · }, such that for each x ∈ X and each nonzero z ∈ Y limk→∞ ‖fnk
(x), z‖ =

‖f(x), z‖ and we write I∗ − lim
n→∞

‖fn(x), z‖ = ‖f(x), z‖ or fn
I∗

→ f.

An admissible ideal I ⊂ 2N is said to satisfy the condition (AP ) if for every
countable family of mutually disjoint sets {A1, A2, ...} belonging to I there exists
a countable family of sets {B1, B2, ...} such that Ai∆Bi is a finite set for j ∈ N

and B =
⋃∞

i=1 Bi ∈ I.

Now we begin with quoting the lemmas due to Arslan and Dündar [1] which
are needed throughout the paper.

Lemma 1.3. [1] Let X and Y be two 2-normed spaces, {fn} be a sequence of

functions and f be a function from X to Y . For each x ∈ X and each nonzero

z ∈ Y ,

I∗ − lim
n→∞

‖fn(x), z‖ = ‖f(x), z‖ implies I − lim
n→∞

‖fn(x), z‖ = ‖f(x), z‖.

Lemma 1.4. [1] Let I ⊂ 2N be an admissible ideal having the property (AP ),
X and Y be two 2-normed spaces, {fn} be a sequence of functions and f be a

function from X to Y . If the sequence of functions {fn} is I-convergent, then
it is I∗-convergent.

2. Main Results

In this paper, we study concepts of convergence, I-convergence, I∗-convergence
of functions and investigate relationships between them and some properties
such as linearity in 2-normed spaces.
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Throughout the paper, we let I ⊂ 2N be an admissible ideal, X and Y be
two 2-normed spaces, {fn}n∈N and {gn}n∈N be two sequences of functions and
f, g be two functions from X to Y .

Theorem 2.1. For each x ∈ X and each nonzero z ∈ Y we have

lim
n→∞

‖fn(x), z‖ = ‖f(x), z‖ implies I − lim
n→∞

‖fn(x), z‖ = ‖f(x), z‖.

Proof. Let ε > 0 be given. Since limn→∞ ‖fn(x), z‖ = ‖f(x), z‖, for each x ∈ X

and each nonzero z ∈ Y , therefore, there exists a positive integer k0 = ko(ε, x)
such that ‖fn(x)− f(x), z‖ < ε, whenever n ≥ k0. This implies that the set

A(ε, z) = {n ∈ N : ‖fn(x) − f(x), z ≥ ε‖} ⊂ {1, 2, ..., (k0 − 1)}.

Since I be an admissible ideal and If ⊂ I, {1, 2, ..., (k0 − 1)} ∈ I. Hence, it is
clear that A(ε, z) ∈ I and consequently we have

I − lim
n→∞

‖fn(x), z‖ = ‖f(x), z‖,

for each x ∈ X and each nonzero z ∈ Y .

Theorem 2.2. If I-limit of any sequence of functions {fn} exists, then it is

unique.

Proof. Let a sequence {fn} of functions and f, g be two functions from X to Y .
Assume that

I − lim
n→∞

‖fn(x0), z‖ = ‖f(x0), z‖ and I − lim
n→∞

‖fn(x0), z‖ = ‖g(x0), z‖,

where f(x0) 6= g(x0) for a x0 ∈ X and each nonzero z ∈ Y . Since f(x0) 6= g(x0),

so we may suppose that f(x0) ≥ g(x0). Select ε = f(x0)−g(x0)
3 , so that the

neighborhoods (f(x0) − ε, f(x0) + ε) and (g(x0) − ε, g(x0) + ε) of points f(x0)
and g(x0), respectively are disjoints. Since for x0 ∈ X and each nonzero z ∈ Y ,

I − lim
n→∞

‖fn(x0), z‖ = ‖f(x0), z‖ and I − lim
n→∞

‖gn(x0), z‖ = ‖g(x0), z‖,

we have

A(ε, z) = {n ∈ N : ‖fn(x0)− f(x0), z‖ ≥ ε} ∈ I,

B(ε, z) = {n ∈ N : ‖fn(x0)− g(x0), z‖ ≥ ε} ∈ I.

This implies that the sets

Ac(ε, z) = {n ∈ N : ‖fn(x0)− f(x0), z‖ < ε},

Bc(ε, z) = {n ∈ N : ‖fn(x0)− g(x0), z‖ < ε}

belong to F(I) and Ac(ε, z)∩Bc(ε, z) is a nonempty set in F(I) for x0 ∈ X and
each nonzero z ∈ Y . Since Ac(ε, z) ∩Bc(ε, z) 6= ∅, we obtain a contradiction on
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the fact that the neighborhoods (f(x0)− ε, f(x0) + ε) and (g(x0)− ε, g(x0) + ε)
of points f(x0) and g(x0), respectively are disjoints. Hence, it is clear that for
x0 ∈ X and each nonzero z ∈ Y , ‖fn(x0), z‖ = ‖gn(x0), z‖ and consequently
we have ‖fn(x), z‖ = ‖gn(x), z‖, (i.e., f = g), for each x ∈ X and each nonzero
z ∈ Y .

Theorem 2.3. For each x ∈ X and each nonzero z ∈ Y ,

(i) If I − limn→∞ ‖fn(x), z‖ = ‖f(x), z‖ and I − limn→∞ ‖gn(x), z‖ =
‖g(x), z‖, then I − limn→∞ ‖fn(x) + gn(x), z‖ = ‖f(x) + g(x), z‖.

(ii) I − limn→∞ ‖c.fn(x), z‖ = ‖c.f(x), z‖, c ∈ R.

(iii) I − limn→∞ ‖fn(x).gn(x), z‖ = ‖f(x).g(x), z‖.

Proof. (i) Let ε > 0 be given. Since

I − lim
n→∞

‖fn(x), z‖ = ‖f(x), z‖ and I − lim
n→∞

‖gn(x), z‖ = ‖g(x), z‖,

for each x ∈ X and each nonzero z ∈ Y . Therefore,

A
(ε

2
, z
)

=
{

n ∈ N : ‖fn(x) − f(x), z‖ ≥
ε

2

}

∈ I

and

B
(ε

2
, z
)

=
{

n ∈ N : ‖gn(x) − g(x), z‖ ≥
ε

2

}

∈ I

and by the definition of ideal we have

A
(ε

2
, z
)

∪B
(ε

2
, z
)

∈ I.

Now, for each x ∈ X and each nonzero z ∈ Y we define the set

C(ε, z) = {n ∈ N : ‖(fn(x) + gn(x))− (f(x) + g(x)), z‖ ≥ ε}

and it is sufficient to prove that C(ε, z) ⊂ A
(

ε
2 , z

)

∪ B
(

ε
2 , z

)

. Let n ∈ C(ε, z).
Then for each x ∈ X and each nonzero z ∈ Y , we have

ε ≤ ‖
(

fn(x)+ gn(x)
)

−
(

f(x)+ g(x)
)

, z‖ ≤ ‖fn(x)− f(x), z‖+ ‖gn(x)− g(x), z‖.

As both of {‖fn(x) − f(x), z‖, ‖gn(x) − g(x), z‖} can not be (together) strictly
less than ε

2 and therefore either

‖fn(x) − f(x), z‖ ≥
ε

2
or ‖gn(x) − g(x), z‖ ≥

ε

2
,

for each x ∈ X and each nonzero z ∈ Y . This shows that n ∈ A
(

ε
2 , z

)

or

n ∈ B
(

ε
2 , z

)

and so we have n ∈ A
(

ε
2 , z

)

∪B
(

ε
2 , z

)

. Hence, C(ε, z) ⊂ A
(

ε
2 , z

)

∪

B
(

ε
2 , z

)

.
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(ii) Let c ∈ R and I − limn→∞ ‖fn(x), z‖ = ‖f(x), z‖, for each x ∈ X and
each nonzero z ∈ Y . If c = 0, there is nothing to prove, so we assume c 6= 0.
Then,

{

n ∈ N : ‖fn(x)− f(x), z‖ ≥
ε

|c|

}

∈ I,

for each x ∈ X and each nonzero z ∈ Y and by the definition we have

{n ∈ N : ‖c.fn(x) − c.f(x), z‖ ≥ ε} =

{

n ∈ N : ‖fn(x)− f(x), z‖ ≥
ε

|c|

}

.

Hence, the right side of above equality belongs to I and so

I − lim
n→∞

‖c.fn(x), z‖ = ‖c.f(x), z‖,

for each x ∈ X and each nonzero z ∈ Y .

(iii) Since I−limn→∞ ‖fn(x), z‖ = ‖f(x), z‖ for each x ∈ X and each nonzero
z ∈ Y,

{n ∈ N : ‖fn(x) − f(x), z‖ ≥ 1} ∈ I,

and so
A = {n ∈ N : ‖fn(x) − f(x), z‖ < 1} ∈ F(I),

for ε = 1 > 0. Also, for any n ∈ A, ‖fn(x), z‖ < 1 + ‖f(x), z‖ for each x ∈ X

and each nonzero z ∈ Y . Let ε > 0 be given. Chose δ > 0 such that

0 < 2δ <
ε

‖f(x), z‖+ ‖g(x), z‖+ 1
,

for each x ∈ X and each nonzero z ∈ Y . It follows from the assumption that,

B = {n ∈ N : ‖fn(x)− f(x), z‖ < δ} ∈ F(I),

C = {n ∈ N : ‖gn(x)− g(x), z‖ < δ} ∈ F(I)

for each x ∈ X and each nonzero z ∈ Y . Since F(I) is a filter, therefore
A ∩B ∩ C ∈ F(I). Then, for each n ∈ A ∩B ∩ C we have

‖fn(x).gn(x)− f(x).g(x), z‖

= ‖fn(x).gn(x)− fn(x).g(x) + fn(x).g(x) − f(x).g(x), z‖

≤ ‖fn(x), z‖.‖gn(x)− g(x), z‖+ ‖g(x), z‖.‖fn(x) − f(x), z‖

< (‖f(x), z‖+ 1).δ + (‖g(x), z‖).δ

= (‖f(x), z‖+ ‖g(x), z‖+ 1).δ

< ε

and so, we have {n ∈ N : ‖fn(x).gn(x) − f(x).g(x), z‖ ≥ ε} ∈ I, for each x ∈ X

and each nonzero z ∈ Y . This completes the proof.

Theorem 2.4. Let X, Y be two 2-normed spaces, {fn}, {gn} and {hn} be se-

quences of functions and k be a function from X to Y . For each x ∈ X and

each nonzero z ∈ Y , if
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(i) {fn} ≤ {gn} ≤ {hn}, for every n ∈ K, where N ⊇ K ∈ F(I) and

(ii) I− limn→∞ ‖fn(x), z‖ = ‖k(x), z‖ and I− limn→∞ ‖hn(x), z‖ = ‖k(x), z‖,

then I − limn→∞ ‖gn(x), z‖ = ‖k(x), z‖.

Proof. Let ε > 0 be given. By condition (ii) we have

{n ∈ N : ‖fn(x)− k(x), z‖ ≥ ε} ∈ I and {n ∈ N : ‖hn(x) − k(x), z‖ ≥ ε} ∈ I,

for each x ∈ X and each nonzero z ∈ Y . This implies that the sets

P = {n ∈ N : ‖fn(x)− k(x), z‖ < ε} and R = {n ∈ N : ‖hn(x)− k(x), z‖ < ε}

belong to F(I), for each x ∈ X each nonzero z ∈ Y . Let

Q = {n ∈ N : ‖gn(x) − k(x), z‖ < ε},

for each x ∈ X and each nonzero z ∈ Y . It is clear that the set P ∩R ∩K ⊂ Q.
Since P ∩R ∩K ∈ F(I) and P ∩ R ∩K ⊂ Q, then from the property of filter,
we have Q ∈ F(I) and so

{n ∈ N : ‖gn(x)− k(x), z‖ ≥ ε} ∈ I,

for each x ∈ X and each nonzero z ∈ Y .

Theorem 2.5. For each x ∈ X and each nonzero z ∈ Y , we let

I − lim
n→∞

‖fn(x), z‖ = ‖f(x), z‖ and I − lim
n→∞

‖gn(x), z‖ = ‖g(x), z‖.

Then, for every n ∈ K we have

(i) If fn(x) ≥ 0 then, f(x) ≥ 0 and

(ii) If fn(x) ≤ gn(x) then f(x) ≤ g(x), where K ⊆ N and K ∈ F(I).

Proof. (i) Suppose that f(x) < 0. Select ε = − f(x)
2 , for each x ∈ X . Since

I − limn→∞ ‖fn(x), z‖ = ‖f(x), z‖, so there exists the set M such that

M = {n ∈ N : ‖fn(x) − f(x), z‖ < ε} ∈ F(I),

for each x ∈ X and each nonzero z ∈ Y . Since M,K ∈ F(I), M ∩ K is a
nonempty set in F(I). So we can find out a point n0 in K such that

‖fn0
(x)− f(x), z‖ < ε.

Since f(x) < 0 and ε = −f(x)
2 for each x ∈ X , we have fn0

(x) ≤ 0. This is
a conradiction to the fact that fn(x) > 0 for every n ∈ K. Hence, we have
f(x) > 0, for each x ∈ X .
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(ii) Suppose that f(x) > g(x). Select ε = f(x)−g(x)
3 for each x ∈ X . So that

the neighborhoods (f(x0)− ε, f(x0) + ε) and (g(x0)− ε, g(x0) + ε) of f(x) and
g(x), respectively, are disjoints. Since for each x ∈ X and each nonzero z ∈ Y ,

I − lim
n→∞

‖fn(x), z‖ = ‖f(x), z‖ and I − lim
n→∞

‖gn(x), z‖ = ‖g(x), z‖

and F(I) is a filter on N, therefore we have

A = {n ∈ N : ‖fn(x) − f(x), z‖ < ε} ∈ F(I),

B = {n ∈ N : ‖gn(x) − g(x), z‖ < ε} ∈ F(I).

This implies that ∅ 6= A∩B ∩K ∈ F(I). There exists a point n0 in K such that

‖fn(x)− f(x), z‖ < ε and ‖gn(x)− g(x), z‖ < ε.

Since f(x) > g(x) and ε = f(x)−g(x)
3 for each x ∈ X , we have fn0

(x) > gn0
(x).

This is a contradiction to the fact fn(x) ≤ gn(x) for every n ∈ K. Thus, we
have f(x) ≤ g(x), for each x ∈ X .

Theorem 2.6. Let I ⊂ 2N be an admissible ideal having the property (AP ). Then,
for each x ∈ X and each nonzero z ∈ Y , the following conditions are equivalent:

(i) I − limn→∞ ‖fn(x), z‖ = ‖f(x), z‖.

(ii) There exist {gn} and {hn} to be two sequences of functions from X to

Y such that fn(x) = gn(x) + hn(x), limn→∞ ‖gn(x), z‖ = ‖f(x), z‖ and

supp hn(x) ∈ I, where supp hn(x) = {n ∈ N : hn(x) 6= 0}.

Proof. (i)⇒(ii): I − limn→∞ ‖fn(x), z‖ = ‖f(x), z‖, for each x ∈ X and each
nonzero z ∈ Y. Then, by Lemma 1.4 there exists a set M ∈ F(I), (i.e., H=
N\M ∈ I), M = {m1 < m2 < · · · < mk < · · · }, such that for each x ∈ X and
each nonzero z ∈ Y,

lim
k→∞

‖fnk
(x), z‖ = ‖f(x), z‖.

Let us define the sequence {gn} by

gn(x) =

{

fn(x) if n ∈ M,

f(x) if n ∈ N\M.
(1)

It is clear that {gn} is a sequence of functions and limn→∞ ‖gn(x), z‖ = ‖f(x), z‖
for each x ∈ X and each nonzero z ∈ Y. Also let

hn(x) = fn(x) − gn(x), n ∈ N, (2)

for each x ∈ X . Since

{n ∈ N : fn(x) 6= gn(x)} ⊂ N\M ∈ I,

for each x ∈ X , so we have

{n ∈ N : hn(x) 6= 0} ∈ I.
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It follows that supp hn(x) ∈ I and by (1) and (2) we get fn(x) = gn(x)+hn(x),
for each x ∈ X .

(ii)⇒(i): Suppose that there exist two sequences {gn} and {hn} such that

fn(x) = gn(x) + hn(x), lim
n→∞

‖gn(x), z‖ = ‖f(x), z‖ and supp hn(x) ∈ I, (3)

for each x ∈ X and each nonzero z ∈ Y , where supp hn(x) = {n ∈ N : hn(x) 6=
0}. We will show that I − limn→∞ ‖fn(x), z‖ = ‖f(x), z‖ for each x ∈ X and
each nonzero z ∈ Y . Define M = {nk} to be a subset of N such that

M = {n ∈ N : hn(x) = 0} = N\supp hn(x) (4)

Since
supp hn(x) = {n ∈ N : hn(x) 6= 0} ∈ I,

from (3) and (4) we have M ∈ F(I), fn(x) = gn(x) if n ∈ M . Hence, we
conclude that there exists a set M = {m1 < m2 < · · · < mk < · · · }, M ∈ F(I)
such that

lim
k→∞

‖fnk
(x), z‖ = ‖f(x), z‖,

and so I∗ − limn→∞ ‖fn(x), z‖ = ‖f(x), z‖, for each x ∈ X and each nonzero
z ∈ Y . By Lemma 1.3, it follows that I − limn→∞ ‖fn(x), z‖ = ‖f(x), z‖, for
each x ∈ X and each nonzero z ∈ Y . This completes the proof.

Corollary 2.7. Let I ⊂ 2N be an admissible ideal having the property (AP ).
Then, I − limn→∞ ‖fn(x), z‖ = ‖f(x), z‖ if and only if there exist {gn} and

{hn} be two sequences of functions from X to Y such that

fn(x) = gn(x) + hn(x), lim
n→∞

‖gn(x), z‖ = ‖f(x), z‖ and

I − lim
n→∞

‖hn(x), z‖ = 0,

for each x ∈ X and each nonzero z ∈ Y.

Proof. Let I − limn→∞ ‖fn(x), z‖ = ‖f(x), z‖ and {gn} be a sequence defined
by (1). Consider the sequence

hn(x) = fn(x)− gn(x), n ∈ N (5)

for each x ∈ X . Then, we have

lim
n→∞

‖gn(x), z‖ = ‖f(x), z‖

and since I is an admissible ideal so

I − lim
n→∞

‖gn(x), z‖ = ‖f(x), z‖,

for each x ∈ X and each nonzero z ∈ Y. By Theorem 2.3 and by (5) we have

I − lim
n→∞

‖hn(x), z‖ = 0,
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for each x ∈ X and each nonzero z ∈ Y.

Now let fn(x) = gn(x) + hn(x), where

lim
n→∞

‖gn(x), z‖ = ‖f(x), z‖ and I − lim
n→∞

‖hn(x), z‖ = 0,

for each x ∈ X and each nonzero z ∈ Y. Since I is an admissible ideal so

I − lim
n→∞

‖gn(x), z‖ = ‖f(x), z‖

and by Theorem 2.3 we get

I − lim
n→∞

‖fn(x), z‖ = ‖f(x), z‖,

for each x ∈ X and each nonzero z ∈ Y.

Remark 2.8. In Theorem 2.6, if (ii) is satisfied then the admissible ideal I need
not have the property (AP ). Since for each x ∈ X and each nonzero z ∈ Y,

{n ∈ N : ‖hn(x), z‖ ≥ ε} ⊂ {n ∈ N : hn(x) 6= 0} ∈ I,

for each ε > 0, we have

I − lim
n→∞

‖hn(x), z‖ = 0.

Hence, we have
I − lim

n→∞
‖fn(x), z‖ = ‖f(x), z‖,

for each x ∈ X and each nonzero z ∈ Y.
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