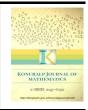


Konuralp Journal of Mathematics

Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath e-ISSN: 2147-625X



I-Convergence and **I**-Cauchy Sequence of Functions In 2-Normed Spaces

Mukaddes Arslan¹ and Erdinç Dündar^{2*}

¹İhsaniye Anadolu İmam Hatip Lisesi, 03370 Afyonkarahisar, Turkey ²Afyon Kocatepe University, Faculty of Science, Department of Mathematics, Afyonkarahisar, Turkey. *Corresponding author E-mail: erdincdundar79@gmail.com

Abstract

In this paper, we study concepts of \mathscr{I} -convergence, \mathscr{I} -Cauchy and \mathscr{I} -Cauchy sequences of functions and investigate relationships between them and some properties in 2-normed spaces.

Keywords: Ideal, Filter, Sequence of functions, *I*-Convergence, *I*-Cauchy, 2-normed spaces. 2010 Mathematics Subject Classification: 40A05, 40A30, 40A35, 46A70

1. Introduction, Definitions and Notations

Throughout the paper, \mathbb{N} denotes the set of all positive integers and \mathbb{R} the set of all real numbers. The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [8] and Schoenberg [27].

The idea of \mathscr{I} -convergence was introduced by Kostyrko et al. [20] as a generalization of statistical convergence which is based on the structure of the ideal \mathscr{I} of subset of \mathbb{N} [8,9]. Nabiev et al. [23] studied \mathscr{I} -Cauchy and \mathscr{I}^* -Cauchy sequence, and then study their certain properties. Gökhan et al. [13] introduced the notion of pointwise and uniform statistical convergence of double sequences of real-valued functions. Gezer and Karakuş [12] investigated \mathscr{I} -pointwise and uniform convergence and \mathscr{I}^* -pointwise and uniform convergence of function sequences and they examined the relation between them. Baláz et al. [1] investigated \mathscr{I} -convergence and \mathscr{I} -continuity of real functions. Balcerzak et al. [2] studied statistical convergence and ideal convergence for sequences of functions Dündar and Altay [5,6] studied the concepts of pointwise and uniformly \mathscr{I}_2 -convergence and \mathscr{I}_2^* -convergence of double sequences of functions. Furthermore, Dündar [7] investigated some results of \mathscr{I}_2 -convergence of double sequences of functions.

The concept of 2-normed spaces was initially introduced by Gähler [10, 11] in the 1960's. Since then, this concept has been studied by many authors. Gürdal and Pehlivan [17] studied statistical convergence, statistical Cauchy sequence and investigated some properties of statistical convergence in 2-normed spaces. Sahiner et al. [29] and Gürdal [19] studied \mathscr{I} -convergence in 2-normed spaces. Gürdal and Açık [18] investigated \mathscr{I} -Cauchy and \mathscr{I}^* -Cauchy sequences in 2-normed spaces. Sarabadan and Talebi [25] presented various kinds of statistical convergence and \mathscr{I} -convergence for sequences of functions with values in 2-normed spaces and also defined the notion of \mathscr{I} -equistatistically convergence of sequences of functions. Recently, Savaş and Gürdal [26] concerned with \mathscr{I} -convergence in the topology induced by random 2-normed spaces, and gave some basic properties of these concepts. Yegül and Dündar [31] studied statistical convergence of sequence of functions in 2-normed spaces. A lot of development have been made in this area after the works of [3, 4, 21, 22, 24, 28, 30].

2. Definitions and Notations

Now, we recall the concept of 2-normed space, ideal convergence and some fundamental definitions and notations [1, 2, 8, 9, 14–20, 25, 29]. If $K \subseteq \mathbb{N}$, then K_n denotes the set $\{k \in K : k \le n\}$ and $|K_n|$ denotes the cardinality of K_n . The natural density of K is given by $\delta(K) = \lim_{n \to \infty} \frac{1}{n} |K_n|$, if it exists. The number sequence $x = (x_k)$ is statistically convergent to L provided that for every $\varepsilon > 0$ the set

$$K = K(\varepsilon) := \{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\}$$

has natural density zero; in this case, we write $st - \lim x = L$. Let $X \neq \emptyset$. A class \mathscr{I} of subsets of X is said to be an ideal in X provided: (i) $\emptyset \in \mathscr{I}$, (ii) $A, B \in \mathscr{I}$ implies $A \cup B \in \mathscr{I}$, (iii) $A \in \mathscr{I}, B \subset A$ implies $B \in \mathscr{I}$.

 \mathscr{I} is called a nontrivial ideal if $X \notin \mathscr{I}$.

Let $X \neq \emptyset$. A non empty class \mathscr{F} of subsets of X is said to be a filter in X provided:

(i) $\emptyset \notin \mathscr{F}$,

(ii) $A, B \in \mathscr{F}$ implies $A \cap B \in \mathscr{F}$,

(iii) $A \in \mathscr{F}, A \subset B$ implies $B \in \mathscr{F}$.

Lemma 2.1 ([20]). If \mathscr{I} is a nontrivial ideal in $X, X \neq \emptyset$, then the class

$$\mathscr{F}(\mathscr{I}) = \{ M \subset X : (\exists A \in \mathscr{I}) (M = X \backslash A) \}$$

is a filter on X, called the filter associated with \mathcal{I} .

A nontrivial ideal \mathscr{I} in *X* is called admissible if $\{x\} \in \mathscr{I}$, for each $x \in X$.

Example 2.1. Let \mathscr{I}_f be the family of all finite subsets of \mathbb{N} . Then, \mathscr{I}_f is an admissible ideal in \mathbb{N} and \mathscr{I}_f convergence is the usual convergence.

Throughout the paper, we let $\mathscr{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. A sequence (f_n) of functions is said to be \mathscr{I} -convergent (pointwise) to f on $D \subseteq \mathbb{R}$ if and only if for every $\varepsilon > 0$ and each $x \in D$,

$$\{n: |f_n(x) - f(x)| \ge \varepsilon\} \in \mathscr{I}.$$

In this case, we will write $f_n \xrightarrow{\mathscr{I}} f$ on D.

A sequence (f_n) of functions is said to be \mathscr{I}^* -convergent (pointwise) to f on $D \subseteq \mathbb{R}$ if and only if $\forall \varepsilon > 0$ and $\forall x \in D$, $\exists K_x \notin \mathscr{I}$ and $\exists n_0 = n_0(\varepsilon, x) \in K_x : \forall n \ge n_0$ and $n \in K_x$, $|f_n(x) - f(x)| < \varepsilon$.

Let *X* be a real vector space of dimension *d*, where $2 \le d < \infty$. A 2-norm on *X* is a function $\|\cdot, \cdot\| : X \times X \to \mathbb{R}$ which satisfies the following statements:

(i) ||x,y|| = 0 if and only if x and y are linearly dependent.

(ii) ||x,y|| = ||y,x||.

(iii) $\|\alpha x, y\| = |\alpha| \|x, y\|, \alpha \in \mathbb{R}.$

(iv) $||x, y + z|| \le ||x, y|| + ||x, z||$.

The pair $(X, \|\cdot, \cdot\|)$ is then called a 2-normed space. As an example of a 2-normed space we may take $X = \mathbb{R}^2$ being equipped with the 2-norm $\|x,y\| :=$ the area of the parallelogram based on the vectors *x* and *y* which may be given explicitly by the formula

$$||x,y|| = |x_1y_2 - x_2y_1|; \ x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2.$$

In this study, we suppose *X* to be a 2-normed space having dimension *d*; where $2 \le d < \infty$.

A sequence (x_n) in 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be convergent to *L* in *X* if

$$\lim_{n\to\infty}\|x_n-L,y\|=0$$

for every $y \in X$. In such a case, we write $\lim_{n\to\infty} x_n = L$ and call *L* the limit of (x_n) . A sequence (x_n) in 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be \mathscr{I} -convergent to $L \in X$, if for each $\varepsilon > 0$ and each nonzero $z \in X$,

$$A(\varepsilon, z) = \{n \in \mathbb{N} : ||x_n - L, z|| \ge \varepsilon\} \in \mathscr{I}.$$

In this case, we write $\mathscr{I} - \lim_{n \to \infty} ||x_n - L, z|| = 0$ or $\mathscr{I} - \lim_{n \to \infty} ||x_n, z|| = ||L, z||$.

A sequence (x_n) in 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be \mathscr{I}^* -convergent to $L \in X$ if and only if there exists a set $M \in \mathscr{F}(\mathscr{I}), M = \{m_1 < m_2 < \cdots < m_k < \cdots\}$ such that $\lim_{k \to \infty} ||x_{m_k} - L, z|| = 0$, for each nonzero $z \in X$.

A sequence (x_n) in 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be \mathscr{I} -Cauchy sequence in X, if for each $\varepsilon > 0$ and nonzero $z \in X$ there exists a number $N = N(\varepsilon, z)$ such that

$$\{k \in \mathbb{N} : \|x_k - x_N, z\| \ge \varepsilon\} \in \mathscr{I}.$$

A sequence (x_n) in 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be \mathscr{I}^* -Cauchy sequence in X, if there exists a set $M \in \mathscr{F}(\mathscr{I}), M = \{m_1 < m_2 < \cdots < m_k < \cdots\}$ such that the subsequence $x_M = (x_{m_k})$ is a Cauchy sequence on X, i.e.,

$$\lim_{k,p\to\infty} ||x_{m_k} - x_{m_p}, z|| = 0, \text{ for each nonzero } z \in X.$$

Let X and Y be two 2-normed spaces, $\{f_n\}$ be a sequence of functions and f be a function from X to Y. $\{f_n\}$ is said to be convergent to f if $f_n(x) \xrightarrow{\|.,.\|_Y} f(x)$ for each $x \in X$. We write $f_n \xrightarrow{\|.,.\|_Y} f$. This can be expressed by the formula

$$(\forall z \in Y)(\forall x \in X)(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0) ||f_n(x) - f(x), z|| < \varepsilon.$$

Let *X* and *Y* be two 2-normed spaces, $\{f_n\}$ be a sequence of functions and *f* be a function from *X* to *Y*. $\{f_n\}$ is said to be \mathscr{I} -pointwise convergent to *f*, if for every $\varepsilon > 0$ and each nonzero $z \in Y$

$$A(\varepsilon, z) = \{n \in \mathbb{N} : ||f_n(x) - f(x), z|| \ge \varepsilon\} \in \mathscr{I},$$

or $\mathscr{I} - \lim_{n \to \infty} ||f_n(x) - f(x), z||_Y = 0$ (in $(Y, ||_{\cdot}, \cdot||_Y)$), for each $x \in X$. In this case, we write $f_n \xrightarrow{||_{\cdot}, \cdot||_Y} \mathscr{I}$. This can be expressed by the formula

$$(\forall z \in Y)(\forall \varepsilon > 0)(\exists M \in \mathscr{I})(\forall n_0 \in \mathbb{N} \setminus M)(\forall x \in X)(\forall n \ge n_0) || f_n(x) - f(x), z || \le \varepsilon.$$

An admissible ideal $\mathscr{I} \subset 2^{\mathbb{N}}$ is said to satisfy the condition (AP) if for every countable family of mutually disjoint sets $\{A_1, A_2, ...\}$ belonging to \mathscr{I} there exists a countable family of sets $\{B_1, B_2, ...\}$ such that $A_i \Delta B_i$ is a finite set for $j \in \mathbb{N}$ and $B = \bigcup_{i=1}^{\infty} B_i \in \mathscr{I}$. Now we begin with quoting the lemma due to Nabiev et al. [23] which are needed throughout the paper.

Lemma 2.2 ([23]). Let $\{P_i\}_{i=1}^{\infty}$ be a countable collection of subsets of \mathbb{N} such that $P_i \in \mathscr{F}(\mathscr{I})$ for each *i*, where $\mathscr{F}(\mathscr{I})$ is a filter associated by an admissible ideal \mathscr{I} with property (AP). Then, there is a set $P \subset \mathbb{N}$ such that $P \in \mathscr{F}(\mathscr{I})$ and the set $P \setminus P_i$ is finite for all *i*.

3. Main Results

In this paper, we study concepts of \mathscr{I} -convergence, \mathscr{I} -convergence, \mathscr{I} -Cauchy and \mathscr{I}^* -Cauchy sequences of functions and investigate relationships between them and some properties in 2-normed spaces.

Throughout the paper, we let $\mathscr{I} \subset 2^{\mathbb{N}}$ be an admissible ideal, X and Y be two 2-normed spaces, $\{f_n\}_{n \in \mathbb{N}}$ and $\{g_n\}_{n \in \mathbb{N}}$ be two sequences of functions and f, g be two functions from X to Y.

Definition 3.1. The sequence of functions $\{f_n\}$ is said to be (pointwise) \mathscr{I}^* -convergent to f, if there exists a set $M \in \mathscr{F}(\mathscr{I})$, (i.e., $\mathbb{N} \setminus M \in \mathscr{I}$), $M = \{m_1 < m_2 < \cdots < m_k < \cdots\}$, such that for each $x \in X$ and each nonzero $z \in Y$

$$\lim_{k \to \infty} \|f_{n_k}(x), z\| = \|f(x), z\|$$

and we write

$$\mathscr{I}^* - \lim_{n \to \infty} \|f_n(x), z\| = \|f(x), z\| \text{ or } f_n \xrightarrow{\mathscr{I}^*} f$$

Theorem 3.1. For each $x \in X$ and each nonzero $z \in Y$,

$$\mathscr{I}^* - \lim_{n \to \infty} ||f_n(x), z|| = ||f(x), z|| \text{ implies } \mathscr{I} - \lim_{n \to \infty} ||f_n(x), z|| = ||f(x), z||.$$

Proof. Since for each $x \in X$ and each nonzero $z \in Y$,

$$\mathscr{I}^* - \lim_{n \to \infty} \|f_n(x), z\| = \|f(x), z\|,$$

so there exists a set $H \in \mathscr{I}$ such that for $M = \mathbb{N} \setminus H = \{m_1 < m_2 < \cdots < m_k < \cdots\}$ we have

$$\lim_{k \to \infty} \|f_{n_k}(x), z\| = \|f(x), z\|.$$

Let $\varepsilon > 0$. Then, for each $x \in X$ there exists a $k_0 = k_0(\varepsilon, x) \in \mathbb{N}$ such that for each nonzero $z \in Y$, $||f_n(x) - f(x), z|| < \varepsilon$, for all $n \in M$ such that $n \ge k_0$. Then, obviously we have

$$A(\varepsilon, z) = \{n \in \mathbb{N} : ||f_n(x) - f(x), z|| \ge \varepsilon\} \subset H \cup \{m_1 < m_2 < \dots < m_{k_0}\},\$$

for each $x \in X$ and each nonzero $z \in Y$. Since $\mathscr{I} \subset 2^{\mathbb{N}}$ be an admissible ideal, then

$$H \cup \{m_1 < m_2 < \cdots < m_{k_0}\} \in \mathscr{I}$$

and therefore, $A(\varepsilon, z) \in \mathscr{I}$. This implies that $\mathscr{I} - \lim_{n \to \infty} ||f_n(x), z|| = ||f(x), z||$.

Theorem 3.2. Let $\mathscr{I} \subset 2^{\mathbb{N}}$ be an admissible ideal having the property (AP). Then,

$$\mathscr{I} - \lim_{n \to \infty} \|f_n(x), z\| = \|f(x), z\| \text{ implies } \mathscr{I}^* - \lim_{n \to \infty} \|f_n(x), z\| = \|f(x), z\|.$$

Proof. Let $\mathscr{I} \subset 2^{\mathbb{N}}$ satisfy the property (AP) and $\mathscr{I} - \lim_{n \to \infty} ||f_n(x), z|| = ||f(x), z||$, for each $x \in X$ and each nonzero $z \in Y$. Then, for any $\varepsilon > 0$

$$A(\varepsilon, z) = \{n \in \mathbb{N} : ||f_n(x) - f(x), z|| \ge \varepsilon\} \in \mathscr{I},$$

for each $x \in X$ and each nonzero $z \in Y$. Now put

$$A_1(\varepsilon, z) = \{ n \in \mathbb{N} : ||f_n(x) - f(x), z|| \ge 1 \}$$

and

$$A_k(\varepsilon, z) = \{n \in \mathbb{N} : \frac{1}{k} \le \|f_n(x) - f(x), z\| < \frac{1}{k-1}\}$$

for $k \ge 2$. It is clear that $A_i \cap A_j = \emptyset$ for $i \ne j$ and $A_i \in \mathscr{I}$ for each $i \in \mathbb{N}$. By property (AP) there exists a sequence $\{B_k\}_{k\in\mathbb{N}}$ of sets such that $A_j \Delta B_j$ is finite and $B = \bigcup_{j=1}^{\infty} B_j \in \mathscr{I}$.

We shall prove that, for each $x \in X$ and each nonzero $z \in Y$,

$$\lim_{k \to \infty} \|f_{n_k}(x), z\| = \|f(x), z\|, \ k \in M$$

for $M = \mathbb{N} \setminus B \in \mathscr{F}(\mathscr{I})$. Let $\delta > 0$ be given. Choose $k \in \mathbb{N}$ such that $\frac{1}{k}$. Then we have

$$\{n \in \mathbb{N} : \|f_n(x) - f(x), z\| \ge \delta\} \subset \bigcup_{j=1}^k A_j.$$

Since $A_i \Delta B_i$, j = 1, 2, ..., k, is finite set there exists $n_0 \in \mathbb{N}$ such that

$$\left(\bigcup_{j=1}^{k} B_{j}\right) \cap \{n \in \mathbb{N} : n \ge n_{0}\} = \left(\bigcup_{j=1}^{k} A_{j}\right) \cap \{n \in \mathbb{N} : n \ge n_{0}\}.$$

If $n \ge n_0$ and $n \not\in B$ then

$$n \notin \bigcup_{j=1}^{k} B_j$$
 and so $n \notin \bigcup_{j=1}^{k} A_j$.

Hence, we have $||f_n(x) - f(x), z|| < \frac{1}{k} < \delta$, for each $x \in X$ and each nonzero $z \in Y$. This implies that

$$\lim_{k \to \infty} \|f_{n_k}(x), z\| = \|f(x), z\|, \ k \in M,$$

and so, we have

$$\mathscr{I}^* - \lim_{n \to \infty} \|f_n(x), z\| = \|f(x), z\|$$

for each $x \in X$ and each nonzero $z \in Y$.

Now we give the concepts of \mathscr{I} -Cauchy sequence and \mathscr{I}^* -Cauchy sequence and investigate some properties about them.

Definition 3.2. $\{f_n\}$ is said to be \mathscr{I} -Cauchy sequence, if for every $\varepsilon > 0$ and each $x \in X$ there exists $s = s(\varepsilon, x) \in \mathbb{N}$ such that

$$\{n \in \mathbb{N} : \|f_n(x) - f_s(x), z\| \ge \varepsilon\} \in \mathscr{I},$$

for each nonzero $z \in Y$.

Theorem 3.3. If $\{f_n\}$ is \mathscr{I} -convergent, then it is \mathscr{I} -Cauchy sequence.

Proof. Suppose that $\{f_n\}$ is \mathscr{I} -convergent to f. Then, for $\varepsilon > 0$

$$A\left(\frac{\varepsilon}{2},z\right) = \left\{n \in \mathbb{N} : \|f_n(x) - f(x),z\| \ge \frac{\varepsilon}{2}\right\} \in \mathscr{I},$$

for each $x \in X$ and each nonzero $z \in Y$. This implies that

$$A^{c}\left(\frac{\varepsilon}{2},z\right) = \left\{n \in \mathbb{N} : \|f_{n}(x) - f(x),z\| < \frac{\varepsilon}{2}\right\} \in \mathscr{F}(\mathscr{I}),$$

for each $x \in X$ and each nonzero $z \in Y$ and therefore $A^c\left(\frac{\varepsilon}{2}, z\right)$ is non-empty. So, we can choose a positive integer k such that $k \notin A\left(\frac{\varepsilon}{2}, z\right)$ and $||f_k(x) - f(x), z|| < \frac{\varepsilon}{2}$. Now, we define the set

$$B(\varepsilon, z) = \{n \in \mathbb{N} : ||f_n(x) - f_k(x), z|| \ge \varepsilon\}$$

for each $x \in X$ and each nonzero $z \in Y$, such that we show that $B(\varepsilon, z) \subset A(\frac{\varepsilon}{2}, z)$. Let $n \in B(\varepsilon, z)$, then we have

$$\begin{split} \varepsilon &\leq \|f_n(x) - f_k(x), z\| \leq \|f_n(x) - f(x), z\| + \|f_k(x) - f(x), z\| \\ &< \|f_n(x) - f(x), z\| + \frac{\varepsilon}{2}, \end{split}$$

for each $x \in X$ and each nonzero $z \in Y$. This implies that

$$\frac{\varepsilon}{2} < \|f_n(x) - f(x), z\|$$

and so, $n \in A(\frac{\varepsilon}{2}, z)$. Hence, we have $B(\varepsilon, z) \subset A(\frac{\varepsilon}{2}, z)$ and $\{f_n\}$ is \mathscr{I} -Cauchy sequence.

Definition 3.3. The sequence $\{f_n\}$ is said to be \mathscr{I}^* -Cauchy sequence, if there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}$, such that the subsequence $\{f_M\} = \{f_{m_k}\}$ is a Cauchy sequence, i.e.,

$$\lim_{k,p\to\infty} \|f_{m_k}(x) - f_{m_p}(x), z\| = 0,$$

for each $x \in X$ and each nonzero $z \in Y$.

Theorem 3.4. If $\{f_n\}$ is a \mathscr{I}^* -Cauchy sequence, then it is \mathscr{I} -Cauchy sequence in 2-normed spaces.

Proof. Let (f_n) is a \mathscr{I}^* -Cauchy sequence in 2-normed spaces. Then, by definition there exists the set $M = \{m_1 < m_2 < ... < m_k < ...\} \subset \mathbb{N}$, $M \in \mathscr{F}(\mathscr{I})$ such that for every $\varepsilon > 0$,

$$\|f_{n_k}(x)-f_{n_p}(x),z\|<\varepsilon,$$

for every $\varepsilon > 0$, for each $x \in X$, each nonzero $z \in Y$ and $k, p > k_0 = k_0(\varepsilon, x)$. Let $N = N(\varepsilon, x) = m_{k_0} + 1$. Then, for every $\varepsilon > 0$ we have

$$\|f_{n_k}(x) - f_N(x), z\| < \varepsilon$$

for each $x \in X$, each nonzero $z \in Y$ and $k > k_0$. Now put $H = \mathbb{N} \setminus M$. It is clear that $H \in \mathscr{I}$ and

$$A(\varepsilon, z) = \{ n \in \mathbb{N} : ||f_n(x) - f_N(x), z|| \ge \varepsilon \} \subset H \cup \{ m_1 < m_2 < \dots < m_{k_0} \}.$$

Since \mathscr{I} is an admissible ideal, then $H \cup \{m_1 < m_2 < ... < m_{k_0}\} \in \mathscr{I}$. Hence, for every $\varepsilon > 0$ we find $N = N(\varepsilon, x)$ such that $A(\varepsilon, z) \in \mathscr{I}$, i.e., (f_n) is a \mathscr{I} -Cauchy sequence.

Theorem 3.5. If $\mathscr{I}^* - \lim_{n \to \infty} ||f_n(x) - f(x), z|| = 0$, then $\{f_n\}$ is a \mathscr{I} -Cauchy sequence.

Proof. By assumption there exists a set $M = \{m_1 < m_2 < ... < m_k < ...\} \subset \mathbb{N}, M \in \mathscr{F}(\mathscr{I})$ such that $\lim_{n \to \infty} ||f_n(x) - f(x), z|| = 0$ for each $x \in X$ and each nonzero $z \in Y$. It shows that there exists $k_0 = k_0(\varepsilon, x)$ such that

$$\|f_n(x)-f(x),z\|<\frac{\varepsilon}{2}$$

for every $\varepsilon > 0$, each $x \in X$, each nonzero $z \in Y$ and $k > k_0$. Since

$$\begin{aligned} \|f_{n_k}(x) - f_{n_p}(x), z\| &< \|f_{n_k}(x) - f(x), z\| + \|f_{n_p}(x) - f(x), z\| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{aligned}$$

for each $x \in X$, each nonzero $z \in Y$ and $k > k_0$, $p > k_0$ so we have

$$\lim_{k, n \to \infty} \|f_{n_k}(x) - f_{n_p}(x), z\| = 0,$$

i.e., (f_n) is a \mathscr{I}^* -Cauchy sequence. Then by Theorem 3.4 (f_n) is a \mathscr{I} -Cauchy sequence.

Theorem 3.6. Let \mathscr{I} be an admissible ideal with property (AP). Then the concepts \mathscr{I} -Cauchy sequence and \mathscr{I}^* -Cauchy sequence coincide.

Proof. By Theorem 3.4, \mathscr{I}^* -Cauchy sequence implies \mathscr{I} -Cauchy sequence (in this case \mathscr{I} need not to have (*AP*) condition). Then, under assumption that (f_n) is a \mathscr{I} -Cauchy sequence, it suffices to prove (f_n) is a \mathscr{I}^* -Cauchy sequence. Let (f_n) is a \mathscr{I} -Cauchy sequence. Then, for every $\varepsilon > 0$ and each $x \in X$ there exists $s = s(\varepsilon, x) \in \mathbb{N}$ such that

$$\{n \in \mathbb{N} : ||f_n(x) - f_s(x), z|| \ge \varepsilon\} \in \mathscr{I}$$

for each nonzero $z \in Y$. Let

$$P_i = \left\{ n \in \mathbb{N} : \|f_n(x) - f_{m_i}(x), z\| < \frac{1}{i} \right\},\$$

i = 1, 2, ... where $m_i = s\left(\frac{1}{i}\right)$. It is clear that $P_i \in \mathscr{F}(\mathscr{I}), i = 1, 2, ...$ Since \mathscr{I} has (AP) property then by Lemma 2.2 there exists a set $P \subset \mathbb{N}$ such that $P \subset \mathscr{F}(\mathscr{I})$ and $P \setminus P_i$ is finite for all *i*. Now, we show that

$$\lim_{m,n\to\infty} \|f_n(x) - f(x), z\| = 0$$

for each $x \in X$, each nonzero $z \in Y$. Let $\varepsilon > 0$ and $j \in \mathbb{N}$ such that $j > \frac{2}{\varepsilon}$. If $m, n \in P$ then $P \setminus P_j$ is a finite set, so there exists k = k(j) such that $m \in P_j$ and $n \in P_j$, for all m, n > k(j). Therefore,

$$||f_n(x) - f_{m_j}(x), z|| < \frac{1}{j} \text{ and } ||f_m(x) - f_{m_j}(x), z|| < \frac{1}{j}$$

for all m, n > k(j), each $x \in X$ and each nonzero $z \in Y$ and so, we get

$$\begin{split} \|f_n(x) - f_m(x), z\| &< \|f_n(x) - f_{m_j}(x), z\| + \|f_m(x) - f_{m_j}(x), z\| \\ &< \frac{1}{j} + \frac{1}{j} = \frac{2}{j} < \varepsilon \end{split}$$

for m, n > k(j), each $x \in X$ and each nonzero $z \in Y$. Thus, for any $\varepsilon > 0$ and each $x \in X$ there exists $k = k(\varepsilon, x)$ such that for any m, n > k and $m, n \in P \in \mathscr{F}(\mathscr{I})$,

$$|f_n(x) - f_m(x), z|| < \varepsilon$$

for every nonzero $z \in Y$ and so, the sequence (f_n) is a \mathscr{I}^* -Cauchy sequence in 2-normed spaces.

acknowledgements

This study supported by Afyon Kocatepe University Scientific Research Coordination Unit with the project number 16.FENED.04.

References

- [1] V. Baláz, J. Červeňanský, P. Kostyrko, T. Šalát, J-convergence and J-continuity of real functions, Acta Mathematica, Faculty of Natural Sciences, Constanting the Philosopher University, Nitra, 5 (2004), 43–50. M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl., **328** (2007),
- [2] 715-729.
- [3] H. Çakallı and S. Ersan, New types of continuity in 2-normed spaces, Filomat, 30(3) (2016), 525–532.
- [4] O. Duman, C. Orhan, μ-statistically convergent function sequences, Czechoslovak Mathematical Journal, 54(129) (2004), 413–422.
- [5] E. Dündar, B. Altay, I2-convergence of double sequences of functions, Electronic Journal of Mathematical Analysis and Applications, 3(1) (2015), 111–121. E. Dündar, B. Altay, *I*₂-uniform convergence of double sequences of functions, *Filomat*, **30**(5) (2016), 1273–1281.
- [6]
- [7] E. Dündar, On some results of I2-convergence of double sequences of functions, Mathematical Analysis Sciences and Applications E-notes, 3(1) (2015), 44–52.
- [8] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
- [9] J.A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.
- [101] S. Gähler, 2-metrische Räume und ihre topologische struktur, Math. Nachr., 26 (1963), 115-148.
- [11] S. Gähler, 2-normed spaces, Math. Nachr., 28 (1964), 1-43.
- [12] F. Gezer, S. Karakuş, I and I* convergent function sequences, Math. Commun., 10 (2005), 71-80.
- [13] A. Gökhan, M. Güngör and M. Et, Statistical convergence of double sequences of real-valued functions, Int. Math. Forum, 2(8) (2007), 365-374.
- [14] H. Gunawan, M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27 (10) (2001), 631-639.
- [15] H. Gunawan, M. Mashadi, On finite dimensional 2-normed spaces, *Sochow J. Math.*, 27(3) (2001), 321–329.
 [16] M. Gürdal, S. Pehlivan, The statistical convergence in 2-Banach spaces, *Thai J. Math.*, 2(1) (2004), 107–113.
- [17] M. Gürdal, S. Pehlivan, Statistical convergence in 2-normed spaces, *Southeast Asian Bulletin of Mathematics*, 33 (2009), 257–264.
 [18] M. Gürdal, I. Açık, On *I*-Cauchy sequences in 2-normed spaces, *Math. Inequal. Appl.*, 11(2) (2008), 349–354.
- [19] M. Gürdal, On ideal convergent sequences in 2-normed spaces, Thai J. Math., 4(1) (2006), 85-91.
- [20] P. Kostyrko, T. Šalát, W. Wilczyński, *I*-convergence, Real Anal. Exchange, 26(2) (2000), 669-686.
- [21] M. Mursaleen, S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62 (2012), 49-62.
- [22] M. Mursaleen, A. Alotaibi, On *I*-convergence in random 2-normed spaces, *Math. Slovaca*, **61** (6) (2011), 933–940.
- [23] A. Nabiev, S. Pehlivan and M. Gürdal, On J-Cauchy sequences, Taiwanese J. Math. 11(2) (2007), 569-576.
- [24] F. Nuray, W.H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl., 245 (2000), 513–527.
- [25] S. Sarabadan, S. Talebi, Statistical convergence and ideal convergence of sequences of functions in 2-normed spaces, Internat. J. Math. Math. Sci., 2011 (2011), 10 pages.
- [26] E. Savaş, M. Gürdal, Ideal Convergent Function Sequences in Random 2-Normed Spaces, Filomat, 30(3) (2016), 557-567.
- [27] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
- [28] A. Sharma, K. Kumar, Statistical convergence in probabilistic 2-normed spaces, Mathematical Sciences, 2(4) (2008), 373-390.
- [29] A. Şahiner, M. Gürdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, *Taiwanese J. Math.*, 11 (2007), 1477–1484.
 [30] B.C. Tripathy, M. Sen, S. Nath, *I*-convergence in probabilistic *n*-normed space, *Soft Comput.*, 16 (2012), 1021–1027.
- [31] S. Yegül, E. Dündar, On Statistical Convergence of Sequences of Functions In 2-Normed Spaces, Journal of Classical Analysis, 10(1) (2017), 49–57.