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Abstract

In this paper, we study the concepts of Wijsman I-invariant
convergence (IWσ ), Wijsman I∗-invariant convergence (I∗Wσ ),
Wijsman p-strongly invariant convergence ([WVσ]p) of sequences
of sets and investigate the relationships among Wijsman invariant
convergence, [WVσ]p, IWσ and I∗Wσ . Also, we introduce the
concepts of IWσ -Cauchy sequence and I∗Wσ -Cauchy sequence of
sets.
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Introduction

Throughout the paper N denotes the set of all positive integers
and R the set of all real numbers. The concept of convergence of
a sequence of real numbers has been extended to statistical
convergence independently by Fast [5], Schoenberg [22] and
studied by many authors. Nuray and Ruckle [14] indepedently
introduced the same with another name generalized statistical
convergence. The idea of I-convergence was introduced by
Kostyrko et al. [7] as a generalization of statistical convergence
which is based on the structure of the ideal I of subset of N.
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Introduction

Nuray and Rhoades [13] extended the notion of convergence of set
sequences to statistical convergence and gave some basic
theorems. Ulusu and Nuray [29] defined the Wijsman lacunary
statistical convergence of set sequences and considered its relation
with Wijsman statistical convergence defined by Nuray and
Rhoades. Kişi and Nuray [6] introduced a new convergence notion,
for sequence of sets called Wijsman I-convergence. The concept
of convergence of sequence of numbers has been extended by
several authors to convergence of set sequences (see,
[1, 2, 3, 23, 27, 28, 30, 32, 33]).
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Introduction

Several authors including Raimi [20], Schaefer [21], Mursaleen [11],
Savaş [24], Pancaroǧlu and Nuray [18] and some authors have
studied invariant convergent sequences. Nuray et al. [16] defined
the concepts of σ-uniform density of subsets A of the set N,
Iσ-convergence and investigated relationships between
Iσ-convergence and invariant convergence also Iσ-convergence
and [Vσ]p-convergence. The concept of strongly σ-convergence
was defined by Mursaleen [10]. Savaş and Nuray [26] introduced
the concepts of σ-statistical convergence and lacunary σ-statistical
convergence and gave some inclusion relations. Recently, the
concept of strong σ-convergence was generalized by Savaş [24].
Nuray and Ulusu [17] investigated lacunary I-invariant convergence
and lacunary I-invariant Cauchy sequence of real numbers.
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Introduction

In this paper, we study the concepts of Wijsman I-invariant
convergence (IWσ ), Wijsman I∗-invariant convergence (I∗Wσ ),
Wijsman p-strongly invariant convergence ([WVσ]p) and
investigate the relationships among Wijsman invariant
convergence, [WVσ]p, IWσ and I∗Wσ . Also, we introduce the
concepts of Iσ-Cauchy sequence and I∗σ-Cauchy sequence of sets.
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Now, we recall the ideal convergence, invariant convergence,
sequence of sets and basic definitions and concepts (See
[7, 9, 13, 15, 16, 17, 18, 19, 20, 21, 32, 33]).
A family of sets I ⊆ 2N is called an ideal if and only if
(i) ∅ ∈ I, (ii) For each A,B ∈ I we have A ∪ B ∈ I, (iii) For
each A ∈ I and each B ⊆ A we have B ∈ I.
An ideal is called nontrivial if N /∈ I and nontrivial ideal is called
admissible if {n} ∈ I for each n ∈ N.
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Definitions and Notations

A family of sets F ⊆ 2N is called a filter if and only if
(i) ∅ /∈ F , (ii) For each A,B ∈ F we have A ∩ B ∈ F , (iii) For
each A ∈ F and each B ⊇ A we have B ∈ F .

Lemma 1 ([7])

If I is a nontrivial ideal in X , X 6= ∅, then the class

F(I) = {M ⊂ X : (∃A ∈ I)(M = X\A)}

is a filter on X , called the filter associated with I.
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Definitions and Notations

Let I ⊂ 2N be an admissible ideal. A sequence x = (xk) of
elements of R is said to be I-convergent to L ∈ R if for every
ε > 0, A(ε) = {k ∈ N : |xk − L| ≥ ε} ∈ I. If x = (xk) is
I-convergent to L, then we write I − lim x = L.
Let σ be a mapping of the set of positive integers into itself. A
continuous linear functional φ on `∞, the space of real bounded
sequences, is said to be an invariant mean or a σ-mean if and only
if

1 φ(x) ≥ 0, when the sequence x = (xn) has xn ≥ 0 for all n,

2 φ(e) = 1, where e = (1, 1, 1, ...), and

3 φ(xσ(n)) = φ(xn) for all x ∈ `∞.
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Definitions and Notations

The mappings σ are one-to-one and such that σm(n) 6= n for all
positive integers n and m, where σm(n) denotes the mth iterate of
the mapping σ at n. Thus φ extends the limit functional on c , the
space of convergent sequences, in the sense that φ(x) = lim x for
all x ∈ c . In the case σ is translation mappings σ(n) = n + 1, the
σ-mean is often called a Banach limit and Vσ, the set of bounded
sequences all of whose invariant means are equal, is the set of
almost convergent sequences [8].
It can be shown [25] that

Vσ =
{
x = (xn) ∈ `∞ : lim

m→∞

1

m

m∑
k=1

xσk (n) = L, uniformly in n
}
.

PANCAROḠLU AKIN Wijsman I-Invariant Convergence of Sequences of Sets11/46



Abstract
Introduction

Definitions and Notations
Main Results

References

Definitions and Notations

A bounded sequence (x = xk) is said to be strongly σ-convergent
to L if

lim
n→∞

1

n

n−1∑
k=0

|xσk (m) − L| = 0, uniformly in m

and in this case, we write xk → L[Vσ]. By [Vσ], we denote the set
of all strongly σ-convergent sequences.
In the case, σ(n) = n + 1, the space [Vσ] is the set of strongly
almost convergent sequences [ĉ].
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Definitions and Notations

The concept of strong σ-convergence was generalized by Savaş
[24] as below:

[Vσ]p =
{
x = (xk) : lim

m→∞

1

m

m∑
k=1

|xσk (n)−L|p = 0 uniformly in n
}
,

where 0 < p <∞. If p = 1, then [Vσ]p = [Vσ]. It is known that
[Vσ]p ⊂ `∞.
A sequence x = (xk) is σ-statistically convergent to L if for every
ε > 0,

lim
m→∞

1

m

∣∣∣{k ≤ m : |xσk (n) − L| ≥ ε
}∣∣∣ = 0, uniformly in n.

In this case, we write Sσ − lim x = L or xk → L(Sσ).
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Definitions and Notations

Nuray et al. [16] introduced the concepts of σ-uniform density and
Iσ-convergence.
Let A ⊆ N and

sn = min
m

∣∣A ∩ {σ(m), σ2(m), ..., σn(m)
} ∣∣

and
Sn = max

m

∣∣A ∩ {σ(m), σ2(m), ..., σn(m)
} ∣∣.

If the following limits exists

V (A) = lim
n→∞

sn
n
, V (A) = lim

n→∞

Sn
n

then they are called a lower and an upper σ-uniform density of the
set A, respectively. If V (A) = V (A), then V (A) = V (A) = V (A)
is called the σ-uniform density of A.
Denote by Iσ the class of all A ⊆ N with V (A) = 0.
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Definitions and Notations

A sequence (xk) is said to be Iσ-convergent to the number L if for
every ε > 0,

Aε =
{
k : |xk − L| ≥ ε

}
∈ Iσ,

that is, V (Aε) = 0. In this case, we write Iσ − lim xk = L.
For any point x ∈ X and any non-empty subset A of X , we define
the distance from x to A by

d(x ,A) = inf
a∈A

ρ(x , a).
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Definitions and Notations

Throughout the paper, we let (X , ρ) be a metric space, I ⊂ 2N be
an admissible ideal and A,Ak be any non-empty closed subsets of
X .
A sequence {Ak} is Wijsman convergent to A if
lim
k→∞

d(x ,Ak) = d(x ,A), for each x ∈ X . In this case, we write

W − limAk = A.
A sequence {Ak} is bounded if sup

k
d(x ,Ak) <∞, for each x ∈ X .

L∞ denotes the set of bounded sequences of sets.
A sequence {Ak} is said to be Wijsman invariant convergent to A
if for each x ∈ X

lim
n→∞

1

n

n∑
k=1

d(x ,Aσk (m)) = d(x ,A), uniformly in m.
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Definitions and Notations

A sequence {Ak} is said to be Wijsman strongly invariant
convergent to A, if for each x ∈ X ,

lim
n→∞

1

n

n∑
k=1

|d(x ,Aσk (m))− d(x ,A)| = 0, uniformly in m.
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Definitions and Notations

Let I ⊂ 2N be an admissible ideal. A sequence {Ak} is said to be
Wijsman I-convergent to A if for every ε > 0
A(ε, x) = {k : |d(x ,Ak)− d(x ,A)| ≥ ε} ∈ I.
Let (X , ρ) be a separable metric space and I ⊆ 2N be an admissible
ideal. A sequence {Ak} is Wijsman I∗-convergent to A if and only
if there exists a set M = {m1 < m2 < · · · < mk < · · · } ∈ F(I)
such that for each x ∈ X , lim

k→∞
d(x ,Amk

) = d(x ,A).
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Definitions and Notations

A sequence {Ak} is Wijsman I-Cauchy sequence if for each ε > 0
and for each x ∈ X , there exists a number N = N(ε) such that
{n ∈ N : |d(x ,An)− d(x ,AN)| ≥ ε} ∈ I.
A sequence {Ak} is Wijsman I∗-Cauchy sequence if there exists a
set M ∈ F(I), M = {m = (mi ) : mi < mi+1, i ∈ N} ⊂ N such
that the subsequence AM = {Amk

} is Wijsman Cauchy in X that
is, lim

k,p→∞
|d(x ,Amk

)− d(x ,Amp)| = 0.

An admissible ideal I ⊂ 2N is said to satisfy the condition (AP) if
for every countable family of mutually disjoint sets {E1,E2, · · · }
belonging to I there exists a countable family of sets {F1,F2, · · · }
such that Ej∆Fj is a finite set for j ∈ N and F =

⋃∞
j=1 Fj ∈ I.
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Main Results

Definition 2

A sequence {Ak} is said to be Wijsman I-invariant convergent or
IWσ -convergent to A if for every ε > 0, the set

A(ε, x) = {k : |d(x ,Ak)− d(x ,A)| ≥ ε}

belongs to Iσ, that is, V (A(ε, x)) = 0. In this case, we write
Ak → A(IWσ ) and the set of all Wijsman I-invariant convergent
sequences of sets will be denoted IWσ .
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Main Results

Theorem 3

Let {Ak} is bounded sequence. If {Ak} is IWσ -convergent to A,
then {Ak} is Wijsman invariant convergent to A.
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Main Results

Proof: Let m, n ∈ N be arbitrary and ε > 0. For each x ∈ X , we
estimate

t(m, n, x) :=

∣∣∣∣d(x ,Aσ(m)) + d(x ,Aσ2(m)) + · · ·+ d(x ,Aσn(m))

n
−d(x ,A)

∣∣∣∣.
Then, for each x ∈ X we have

t(m, n, x) ≤ t1(m, n, x) + t2(m, n, x),

where

t1(m, n, x) :=
1

n

n∑
j=1

|d(x ,A
σj (m)

)−d(x ,A)|≥ε

|d(x ,Aσj (m))− d(x ,A)|

and

t2(m, n, x) :=
1

n

n∑
j=1

|d(x ,A
σj (m)

)−d(x ,A)|<ε

|d(x ,Aσj (m))− d(x ,A)|.

Therefore, we have t2(m, n, x) < ε, for each x ∈ X and for every
m = 1, 2, . . . . The boundedness of {Ak} is implies that there exist
L > 0 such that for each x ∈ X ,

|d(x ,Aσj (m))− d(x ,A)| ≤ L, (j = 1, 2, . . . ;m = 1, 2 . . .),

then this implies that
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Main Results

Proof:

t1(m, n, x) ≤ L

n
|{1 ≤ j ≤ n : |d(x ,Aσj (m))− d(x ,A)| ≥ ε}|

≤ L.
maxm |{1 ≤ j ≤ n : |d(x ,Aσj (m))− d(x ,A)| ≥ ε}|

n

= L.
Sn
n
.

Hence, {Ak} is Wijsman invariant convergent to A.
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Main Results

Definition 4

Let (X , ρ) be a separable metric space. The sequence {Ak} is
Wijsman I∗-invariant convergent or I∗Wσ -convergent to A if there
exists a set M = {m1 < · · · < mk < · · · } ∈ F(Iσ) such that for
each x ∈ X ,

lim
k→∞

d(x ,Amk
) = d(x ,A).
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Main Results

Theorem 5

If a sequence {Ak} is I∗Wσ -convergent to A, then this sequence is
IWσ -convergent to A.
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Main Results

Proof: By assumption, there exists a set H ∈ Iσ such that for
M = N \ H = {m1 < · · · < mk < · · · } we have

lim
k→∞

d(x ,Amk
) = d(x ,A), (4.1)

for each x ∈ X . Let ε > 0 by (4.1), there exists k0 ∈ N such that
for each x ∈ X ,

|d(x ,Amk
)− d(x ,A)| < ε,

for each k > k0. Then, obviously

{k ∈ N : |d(x ,Ak)− d(x ,A)| ≥ ε} ⊂ H ∪ {m1 < m2 < · · · < mk0}.
(4.2)

Since Iσ is admissible, the set on the right-hand side of (4.2)
belongs to Iσ. So {Ak} is IWσ -convergent to A.
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Main Results

Theorem 6

Let Iσ ⊂ 2N be an admissible ideal with property (AP). If {Ak} is
IWσ -convergent to A, then {Ak} is I∗Wσ -convergent to A.
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Main Results

Proof: Suppose that Iσ satisfies condition (AP). Let {Ak} is
IWσ -convergent to A. Then, for ε > 0 and for each x ∈ X

{k : |d(x ,Ak)− d(x ,A)| ≥ ε} ∈ Iσ.

Put

E1 = {k : |d(x ,Ak)−d(x ,A)| ≥ 1} and En =
{
k :

1

n
≤ |d(x ,Ak)−d(x ,A)| < 1

n − 1

}
,

for n ≥ 2 and for each x ∈ X . Obviously Ei ∩ Ej = ∅, for i 6= j . By
condition (AP) there exists a sequence of {Fn}n∈N such that
Ej∆Fj are finite sets for j ∈ N and F = (

⋃∞
j=1 Fj) ∈ Iσ. It is

sufficient to prove that for M = N \ F and for each x ∈ X , we have

lim
k→∞

d(x ,Ak) = d(x ,A), k ∈ M. (4.3)
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Main Results

Proof: Let λ > 0. Choose n ∈ N such that
1

n + 1
< λ. Then, for

each x ∈ X ,

{k : |d(x ,Ak)− d(x ,A)| ≥ λ} ⊂
n+1⋃
j=1

Ej .

Since Ej∆Fj , j = 1, 2, . . . , n + 1 are finite sets, there exists k0 ∈ N
such that( n+1⋃

j=1

Fj

)
∩ {k : k > k0} =

( n+1⋃
j=1

Ej

)
∩ {k : k > k0}. (4.4)

If k > k0 and k /∈ F , then k /∈
⋃n+1

j=1 Fj and by (4.4) k /∈
⋃n+1

j=1 Ej .
But then

|d(x ,Ak)− d(x ,A)| < 1

n + 1
< λ

so (4.3) holds and {Ak} is I∗Wσ -convergent to A.PANCAROḠLU AKIN Wijsman I-Invariant Convergence of Sequences of Sets29/46
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Definition 7

A sequence {Ak} is said to be Wijsman I-invariant Cauchy
sequence or IWσ -Cauchy sequence if for every ε > 0 and for each
x ∈ X , there exists a number N = N(ε, x) ∈ N such that

A(ε, x) =
{
k : |d(x ,Ak)− d(x ,AN)| ≥ ε

}
∈ Iσ,

that is, V
(
A(ε, x)

)
= 0.
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Main Results

Definition 8

A sequence {Ak} is said to be Wijsman I∗-invariant Cauchy
sequence or I∗Wσ -Cauchy sequence if there exists a set
M = {m1 < · · · < mk < . . .} ∈ F(Iσ) such that

lim
k,p→∞

|d(x ,Amk
)− d(x ,Amp)| = 0,

for each x ∈ X .
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Main Results

We give following theorems which show relationships between
IWσ -convergence, IWσ -Cauchy sequence and I∗Wσ -Cauchy
sequence. The proof of them are similar to the proof of Theorems
in [4, 12], so we omit them.

Theorem 9

If a sequence {Ak} is IWσ -convergent, then {Ak} is an IWσ -Cauchy
sequence.

Theorem 10

If a sequence {Ak} is I∗Wσ -Cauchy sequence, then {Ak} is
IWσ -Cauchy sequence.
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Theorem 11

Let Iσ has property (AP). Then the concepts IWσ -Cauchy
sequence and I∗Wσ -Cauchy sequence coincides.

Definition 12

The sequence {Ak} is said to be Wijsman p-strongly invariant
convergent to A, if for each x ∈ X ,

lim
n→∞

1

n

n∑
k=1

|d(x ,Aσk (m))− d(x ,A)|p = 0, uniformly in m,

where 0 < p <∞. In this case, we write Ak → A[WVσ]p and the
set of all Wijsman p-strongly invariant convergent sequences of
sets will be denoted [WVσ]p.
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Theorem 13

Let Iσ ⊂ 2N be an admissible ideal and 0 < p <∞.

(i) If Ak → A([WVσ]p), then Ak → A(IWσ ).

(ii) If {Ak} ∈ L∞ and Ak → A(IWσ ), then
Ak → A([WVσ]p).

(iii) If {Ak} ∈ L∞, then {Ak} is IWσ -convergent to A if
and only if Ak → A([WVσ]p).
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Proof: (i): If Ak → A([WVσ]p), then for ε > 0 and for each
x ∈ X we can write
n∑

j=1

|d(x ,Aσj (m))− d(x ,A)|p ≥
n∑

j=1
|d(x ,A

σj (m)
)−d(x ,A)|≥ε

|d(x ,Aσj (m))− d(x ,A)|p

≥ εp|{j ≤ n : |d(x ,Aσj (m))− d(x ,A)| ≥ ε}|
≥ εp max

m
|{j ≤ n : |d(x ,Aσj (m))− d(x ,A)| ≥ ε}|

and

1

n

n∑
j=1

|d(x ,Aσj (m))− d(x ,A)|p ≥ εp.
maxm |{1 ≤ j ≤ n : |d(x ,Aσj (m))− d(x ,A)| ≥ ε}|

n

= εp
Sn
n

for every m = 1, 2, . . . . This implies lim
n→∞

Sn
n

= 0 and so {Ak} is

(IWσ )-convergent to A.
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Proof: (ii): Suppose that {Ak} ∈ L∞ and Ak → A(IWσ ). Let
ε > 0. By assumption we have V (Aε) = 0. Since {Ak} is bounded,
{Ak} implies that there exist L > 0 such that for each x ∈ X ,

|d(x ,Aσj (m))− d(x ,A)| ≤ L,

for all j and m. Then, we have

1

n

n∑
j=1

|d(x ,Aσj (m))− d(x ,A)|p =
1

n

n∑
j=1

|d(x ,A
σj (m)

)−d(x ,A)|≥ε

|d(x ,Aσj (m))− d(x ,A)|p

+
1

n

n∑
j=1

|d(x ,A
σj (m)

)−d(x ,A)|<ε

|d(x ,Aσj (m))− d(x ,A)|p

≤ L.
maxm |{1 ≤ j ≤ n : |d(x ,Aσj (m))− d(x ,A)| ≥ ε}|

n
+ εp

≤ L.
Sn
n

+ εp,

for each x ∈ X . Hence, for each x ∈ X we obtain

lim
n→∞

1

n

n∑
j=1

|d(x ,Aσj (m))− d(x ,A)|p = 0, uniformly in m.

(iii): This is immediate consequence of i and ii .
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Main Results

Now, we shall state a theorem that gives a relationships betweeen
WSσ and IWσ .

Theorem 14

A sequence {Ak} is WSσ-convergent to A if and only if it is
IWσ -convergent to A.
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