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Abstract

Statistical convergence and ideal convergence of real numbers, which are of great importance in the theory of summability, are
studied by many mathematicians. Fast (1951) and Schoenberg (1959), independently, introduced the concept of statistical
convergence. Mursaleen and Edely (2003) extended this concept to the double sequences. Recently, the statistical convergence has
been extended to ideal convergence of real numbers and some important properties about ideal convergence have been investigated
by many mathematicians. Kostyrko et al. (2000) defined the ideal 7 of subset of N and investigated some properties about
J-convergence. The idea of J7,-convergence and some properties of this convergence were studied by Das et al. (2008).

Nuray et al. (2011) defined the notions of invariant uniform density of subsets E of N, J,-convergence and investigated relations
between J,-convergence and g-convergence also J-convergence and [V ],-convergence. Tortop and Diindar (2018) introduced
J,-invariant convergence of double set sequences and investigated some properties. Akin studied Wijsman lacunary J,-invariant
convergence of double sequences of sets. Asymptotically equivalent and some properties of equivalence are studied by several
authors. Modulus function was introduced by Nakano (1953). Several authors define some new concepts and give inclusion
theorems using a modulus function f. Kisi et al. (2015) introduced f-asymptotically Jg-equivalent set sequences. Akin and
Diindar (2018) and Akin et al. (2018) give definitions of f-asymptotically J,-statistical equivalence and J,4-statistical equivalence
of set sequences and study some properties.

In this study, we introduced asymptotically 7§ -statistical equivalence for double sequences of sets. Also we investigate
relationships between asymptotically 77 -statistical equivalence and strongly f-asymptotically 7§ -equivalence.
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Ozet

Toplanabilme teorisinde 6nemli bir yeri olan reel sayilarin istatistiksel ve ideal yakinsakligi kavrami birgok matematikgi tarafindan
calisilmustir. Reel say1 dizilerinin yakinsakligi genisletilerek olusturulan istatistiksel yakinsaklik kavramu ile ilgili Fast (1951) ve
Schoenberg (1959) calisma yapmustir. Mursaleen ve Edely (2003) istatistiksel yakinsaklik kavramini ¢ift dizilere tagimistir. Son
zamanlarda, istatistiksel yakinsaklik kavrami ideal yakinsaklik kavramina genisletilerek bazi matematikgiler tarafindan bir¢ok
caligmalar yapilmistir. Istatistiksel yakisakligin bir genellestirmesi olan J-yakimsaklik Kostyrko vd. (2000) tarafindan tammlanmis
olup, bu kavram N dogal sayilar kiimesinin alt kiimelerinin sinifi olan J idealinin yapisina baghdir. J,- yakinsaklik kavrami ve bu
kavramin bazi 6zellikleri Das vd. (2008) tarafindan incelendi.

Nuray vd. (2011) E[1 N’nin diizgiin invariant yogunlugu kavramini tanimladi. Nuray vd. (2011) J,-yakinsaklik ile o-yakinsaklik
ve Js-yakinsaklik ile [V ],-yakinsaklik aralarindaki iliskileri inceledi. Tortop ve Dindar (2018) ¢ift kiime dizileri igin J,-invariant
yakinsaklik kavramini tanimladi. Akin ¢ift kiime dizilerinin Wijsman lacunary J,-invariant yakinsakligi ile ilgili bir calisma yapti.
Asimptotik denklik kavrami ve bu kavramin bazi dzellikleri birgok yazar tarafindan ¢aligilmustir.

Modilus fonksiyonu ilk defa Nakano (1953) tarafindan tanimlandi. Maddox (1986), Pehlivan (1995) ve birgok yazar tarafindan f
modiiliis fonksiyonu kullanilarak bazi yeni kavramlari ve sonug teoremlerini igeren ¢aligmalar yapildi. . Kisi et al. (2015) kiime
dizilerinin f-asimptotik Jo denkligini tanimladi. Modiiliis fonsiyonunu kullanilarak lacunary ideal denk diziler ile ilgili Kumar ve
Sharma (2012) tarafindan bir ¢alisma yapildi. Akin and Diindar (2018) and Akin vd. (2018) tarafindan kiime dizilerinin
f-asimptotik J, ve Jg-istatistiksel denkligi tanimlari yapildi.

Bu calismada ¢ift kiime dizileri igin asimptotik J§ istatistiksel denklik kavrami tanimlandi. Ayn1 zamanda asimptotik 75
istatistiksel denklik ile kuvvetli f-asimptotik 7§ -denklik arasindaki iligkiler incelendi.
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Introduction and Definitions

Kostyrko et al. (2000) defined 7 of subset of N (natural numbers) and investigated 7-convergence with some
properties and proved theorems about 7-convergence. The idea of J,-convergence and some properties of this
convergence were studied by Das et al. (2008). Nuray and Rhoades (2012) defined the idea of statistical convergence
of set sequence and investigated some theorems about this notion and important properties. Kisi and Nuray (2013)
defined Wijsman J-convergence of sequence of sets and also examined some theorems about it. After, several authors
extended the convergence of real numbers sequences to convergence of sequences of sets and investigated it’s
characteristic in summability.

Several authors have studied invariant convergent sequences [see, Mursaleen (1983), Nuray and Savag (1994),
Pancaroglu and Nuray (2013, 2013, 2014), Raimi (1963), Savas (1989, 1989), Savas and Nuray (1993), Schaefer
(1972) and Ulusu et al. (2018)].

Asymptotically equivalent and some properties of equivalence are studied by several authors [see, Kisi et al. (2015),
Pancaroglu et al. (2013), Patterson (2003), Savas (2013), Ulusu and Nuray (2013)]. Ulusu and Giille introduced the
concept of asymptotically J,-equivalence of sequences of sets. Recently, Diindar et al. studied on asymptotically ideal
invariant equivalence of double sequences.

Several authors define some new concepts and give inclusion theorems using a modulus function f [see, Khan and
Khan (2013), Kiling and Solak (2014), Maddox (1986), Nakano (1953), Pehlivan and Fisher(1995)]. Kumar and
Sharma (2012) studied IJ4 -equivalent sequences using a modulus function f. Kisi et al. (2015) introduced
f-asymptotically Jg-equivalent set sequences. Akin and Diindar (2018) and Ak et al. (2018) give definitions of
f-asymptotically J, and J,4-statistical equivalence of set sequences.

Now, we recall the basic concepts and some definitions and notations (see, [Baronti and Papini (1986), Beer (1985,
1994), Das et al. (2008), Dindar et al. (2016, 2017), Fast (1951), Kostyrko et al. (2000), Lorentz (1948), Marouf
(1993), Mursaleen (1983), Nakano (1953), Nuray et al. (2011, 2016), Pancaroglu and Nuray (2014), Akin and Diindar
(2018), Pehlivan and Fisher (1995), Raimi (1963), Tortop and Diindar, Ulusu and Diindar (2014) and Wijsman (1964,
1966)]).

Let u = (u) and v = (v;) be two non-negative sequences. If lime—’; = 1, then they are said to be asymptotically

equivalent (denoted by u~v).

Let (Y,p) be a metric space, y € Y and E be any non-empty subset of Y, we define the distance from y to E by
d(y,E) = infp(y, e).

Let o be a mapping of the positive integers into itself. A continuous linear functional ¢ on 4, the space of real

bounded sequences, is said to be an invariant mean or a ¢ mean if and only if

1. ¢(u) = 0, when the sequence u = (u;) has u; = 0 forall j,

2. ¢@)=1,where i =(1,1,1...),

3. qﬁ(ug(j)) = ¢(u), forall u € 'goo-

The mapping ¢ is supposed to be one-to-one and such that ¢™(j) # j for all positive integers j and m, where

o™(j) denotes the mth iterate of the mapping o at j. Hence, ¢ extends the limit functional on c, the space of

convergent sequences, in the sense that ¢(u) = limu for all u € c. If ¢ is a translation mapping that is ¢(j) = j +
1, the ¢ mean is often called a Banach limit.

Let (Y,p) beametricspaceand E, F, E; and F; (i = 1,2,...) be non-empty closed subsets of Y.



Let L € R. Then, we define d(y; E;, F;) as follows:

d(y, E;)

_—, e E U F'l
d(y; Ei, F) =4d(y, Fy) Y ‘ L

L, y € Ei U Fi'

7 c 2N which is a family of subsets of N is called an ideal, if the followings hold:
Hoey,
(ii) Foreach E,F €J, EUF €7,
(iii) Foreach E € J andeach F € E, we have F € J.

Let 7 < 2N beanideal. 7 < 2V is called non-trivial if N & 7. Also, for non-trivial ideal and for each n € N if {n} €
7, then 7 € 2N is admissible ideal. After that, we consider that 7 is an admissible ideal.

Let K € N and

s, = min|K N {o(n),s?(n),...,a™(M)}|

n

and

S, = max|K N {o(n),c?(n),...,a™(n)}.
If the limits V(K) = limm_,w%m and V(K) = limm_,w%" exists then, they are called a lower g-uniform density and
an upper o-uniform density of the set K, respectively. If V(K) = V(K), then V(K) = V(K) = V(K) is called the
o-uniform density of K.

Denote by 7, the classof all K € N with V(K) = 0. Itis clearly that 7, is admissible ideal.

If for every y > 0, A, = {i: |x; — L| =y} belongs to J,, i.e., V(4,) = 0 then, the sequence u = (u;) is said to be
Js-convergent to L. Itis denoted by J, — limu; = L.
Let {E;} and {F;} be two sequences. If for every y > 0 and foreach y €Y,

Ayy ={i:|d; B, F) — L] 2 v}

belongs to 7, that is, V(4;,) = 0 then, the sequences {E;} and {F;} are asymptotically J-invariant equivalent or
L

W

asymptotically 7;-equivalent of multiple L. In this instance, we write E; iGFi and if L = 1, simply asymptotically
J-invariant equivalent.
If following conditions hold for the function f: [0, ) — [0, ), then it is called a modulus function:

1. f(w) =0 ifandifonlyif u =0,

2. flu+v) < fw+fw),

3. f isnondecreasing,

4. f is continuous from the right at 0.
This after, we let f as a modulus function.
The modulus function f may be unbounded (for example f(u) = u?, 0 < q < 1) or bounded (for example f(u) =

u
eyl



If for every y > 0 and foreach y €Y,
{{eN:f(ld(y;E, F) — L)) 2y} €4

then, we say that the sequences {E;} and {F;} are said to be f-asymptotically J-invariant equivalent of multiple L
L

Wi (f)
(denoted by E; g F;)and if L =1 simply f-asymptotically J-invariant equivalent.

Let {E;} and {F;} be two sequences. If for every y > 0 and foreach y € Y,

1 n
{n € N:;Z fUd(y; E;, F) — L]) 2 V} €Js

then, we say that the sequences {E;} and {F;} are said to be strongly f-asymptotically J-invariant equivalent of
L

Wy, (D] . . . . . .
multiple L (denoted by E; g F;) and if L = 1, simply strongly f-asymptotically J-invariant equivalent.

Let {E;} and {F;} be two sequences. If for every y > 0, y > 0 and for each y € Y,
1
{n € Ni~|{i < mild(y; B F) — L 2 v} 2 y} €9,

then, we say that the sequences {E;} and {F;} are asymptotically J-invariant statistical equivalent of multiple L
L

Wig(S) . . . L - .
(denoted by E; g F;) and if L = 1, simply asymptotically J-invariant statistical equivalent.

Let 7, be a nontrivial ideal of N x N. It is called strongly admissible ideal if {k} x N and N x {k} belongto 7, for
each k € N. This after, we let 7, as a strongly admissible ideal in N x N.

If we let a ideal as a strongly admissible ideal then, it is clear that it is admissible also.
Let
12 ={EcNxN:(3 i(F) e N)(r,s = i(E) = (r,s) € E)}.

Itis clear that 79 is a strongly admissible ideal. Also, it is evidently 7, is strongly admissible if and only if 79 c 7,.

Let (Y, p) be a metric space and y = (y;;) be a sequence in Y. If forany y > 0,
AW) ={()) ENXN:p(y, L) 2y} €7,
then, it is said to be J,-convergentto L. In this instance, y is J,-convergent and we write

i,joo0
Let E € N x N and
Smk: rrl.l_i].nIE N A{(e(D,a()), (02D, %()), ..., (@™ (@), a*GN}I
and
Sk ”}?}XlE N {(a(D),a()), (@21, a%()),-.., (@™ (@), (N}
If the limits

. m 7 . Sm.
Vo(E): = limyp oo 2, Vp(E): = iMoo -2

exists then V,(E) is called a lower and V,(E) is called an upper o-uniform density of the set E, respectively. If
V3(E) = V,(E) holds then, V,(E) = V,(E) = V,(E) is called the o-uniform density of E.



Denote by 75 the classof all E € N x N with V,(E) = 0.

This after, let (Y, p) be a separable metric space and Ej;, Fy;, E, F be any nonempty closed subsets of Y.

If for each y €Y,

mk
1 _
A 2, A0 Bt o) = 40D
i,j=1,1

uniformly ins,t then, the double sequence {E;;} is said to be invariant convergentto E in Y.

If for every y > 0,
Ay, y) ={@):1d, Ej) —d, E)| =y} €35

that is, V,(A(y,y)) =0, then, the double sequence {E;j;} is said to be Wijsman 7, -invariant convergent or
Iy, -convergent to E, In this instance, we write E;; - E(Jy,) and by Jy3, we will denote the set of all Wijsman
79 -convergent double sequences of sets.

For non-empty closed subsets E;;, F;; of Y define d(y; E;j, F;;) as follows:

d(y, Eij)
Id(y—FU) ,  YEE;UF;
d(y; Eyj, Fyj) = Y
L , y € E” U FU

Method
In the proofs of the theorems obtained in this study, used frequently in mathematics,

i.Direct proof method,
ii. Reverse proof method,
iii.Contrapositive method,

iv. Induction method

methods were used as needed.



Main Results

Definition 2.1 If forevery y > 0 andeach y € Y,

mk
1
(k) ENXN:— > F(ld(y; By Fy) — L) 2 7 { €75

i,j=1,1
then, the double sequences {E;;} and {F;;} are said to be strongly f-asymptotically 77 -equivalent of multiple L
denoted by

Wi ()]
2

- F.

E ij

ij

and if L =1, simply strongly f-asymptotically 75 -equivalent.

Definition 2.2 If for every y > 0, § > 0 and for each x € X,
1 .
fon k=1t < m.j < e A By By) — L 2 )| 2 6} € 98
then, the double sequences {E;;} and {F;;} are said to be asymptotically J,-invariant statistical equivalent of multiple

L denoted by

W/o(s)
2

E;, ~ F;

ij

and if L = 1, simply asymptotically J,-invariant statistical equivalent.

Theorem 2.1 For each y €Y, following holds:

Wy ()] Wy (S)
Ekj ~ ij=>Ek] ~ Fk]

Theorem 2.2 If f is bounded, then for each y € Y,

Wy ()] Wi, ($)

Eij ~ F” (=4 EU ~ F”
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