Exact solutions of the oskolkov equation in fluid dynamics
Künye
Durur, H. (2023). Exact Solutions of the Oskolkov Equation in Fluid Dynamics . Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi , 23 (2) , 355-361 . DOI: 10.35414/akufemubid.1119363Özet
Traveling wave solutions of the Oskolkov equation, which is a model describing the dynamics of an
incompressible visco-elastic Kelvin-Voigt fluid, are investigated in this study. Complex trigonometric and
complex hyperbolic solutions of Oskolkov equation are obtained using the sub equation method. In
these obtained solutions, graphs are presented by assigning special values to the parameters. The
presented graphics are drawn with a computer package program. Implemented method is powerful
and an effective method to achieve the exact solutions of nonlinear partial differential equations
(NPDEs). Bu çalışmada, sıkıştırılamaz bir visko-elastik Kelvin-Voigt akışkanının dinamiklerini tanımlayan bir model
olan Oskolkov denkleminin gezici dalga çözümleri araştırıldı. Alt denklem yöntemini kullanarak Oskolkov
denkleminin karmaşık trigonometrik ve karmaşık hiperbolik çözümleri elde edildi. Bu elde edilen
çözümlerde parametrelere özel değerler atanarak grafikler sunuldu. Sunulan grafikler bir bilgisayar
paket programı ile çizildi. Uygulanan yöntem, lineer olmayan kısmi diferansiyel denklemlerin tam
çözümlerini üretmek için güçlü ve etkili bir yöntemdir.
Kaynak
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri DergisiCilt
23Sayı
2Bağlantı
https://doi.org/10.35414/akufemubid.1119363https://dergipark.org.tr/tr/download/article-file/2439324
https://hdl.handle.net/11630/11307
Koleksiyonlar
- Cilt 23 : Sayı 2 [25]