AKÜ FEMÜBİD 21 (2021) 055202 (1086-1096) DOI: 10.35414/akufemubid.836620

AKU J. Sci. Eng. 21 (2021) 055202 (1086-1096)

Araştırma Makalesi / Research Article Amorf Çekirdekli Transformatörün Çoklu Fizik Yöntemiyle Elektromanyetik - Sıcaklık Analizi

Atabak NAJAFI¹, İres İSKENDER²

Eskişehir Osmanqazi Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü, Eskişehir¹ Çankaya Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü, Ankara²

Sorumlu yazar e-posta: ataberk.najafi@ogu.edu.tr ORCID ID: https://orcid.org/0000-0003-0319-7032 1 ORCID ID: https://orcid.org/0000-0003-1968-1857² ires@cankaya.edu.tr

Geliş Tarihi: 06.12.2020 Kabul Tarihi: 04.10.2021

Öz

Anahtar kelimeler Sıcaklık dağılımı; Amorf çekirdek; Sonlu elemanlar analizi; Elektromanyetik kuplaj

Bu makalede, Amorf nüveli transformatörün sıcaklık analizini detaylı incelemek için, ısı transferi, akışkan akışı ve elektromanyetik analizlerini kapsayan çok disiplinli bir yaklaşım kullanılmıştır. Transformatörün bobini ve çekirdeğindeki güç kayıpları incelenip, sıcaklık ve akışkan akış analizleri elektromanyetik bir model ile birleştirilmiştir. Önerilen yöntem, Amorf çekirdekli gibi özel transformatörlerde, önceki noktasal sıcaklık bilgisine ya da sıcaklık Gradyan değerlerine ihtiyaç duymadan, sıcaklık değişimini detaylı olarak tahmin edebilmektedir. Teorik çalışma sonuçları uluslararası standartlara göre Dyn11, 34.5/0.4-kV, 630-kVA'lik amorf çekirdekli transformatör üzerine uygulanan deneysel çalışma sonuçlarıyla doğrulanmıştır. Teorik ve pratik çalışma sonuçlarının karşılaştırılması, sonuçların büyük bir uyum içinde olduğunu göstermekte olup, kullanılan yöntem genç mühendislere güç transformatörlerin sıcaklık analiz çalışmalarında faydalı bir araç oluşturmaktadır.

Electromagnetic-Temperature Analysis of Amorphous Core Transformer by Multiple Physics Method

Abstract

Keywords Temperature distribution; Amorphous core; Finite element analysis; Electromagnetic coupling

To investigate the thermal analysis of the amorphous core transformer in detail, a multidisciplinary approach including heat transfer, fluid flow and electromagnet analysis has been used in this study. Thermal and fluid flow analysis have been combined with an electromagnetic model to study specific power losses in the coil and core. The proposed methodology is able to predict thermal distribution in detail in specific transformers such as amorphous core transformers, without requiring prior knowledge of nodal temperature or temperature gradient values. The results of the numerical study were confirmed by experimental results performed on a Dyn11, 34.5/0.4-kV, 630-kVA, transformer with amorphous core through thermal tests carried out according to the International Standards for oil immersed transformers. Comparison of theoretical and experimental results obtained in the study are in a good agreement and it will provide a useful tool for young engineers in thermal analyzing the power transformers.

© Afyon Kocatepe Üniversitesi

1.Giriş

Enerji konusu dünyada olduğu gibi ülkemizde de önemli bir yere sahiptir. Elektrik sebekesinde kullanılan önemli bileşenlerden birini dağıtım ve güç transformatörleri oluşturmaktadır. Ülkemizde 500000 üzerinde farklı güç değerlerine sahip dağıtım transformatörleri kullanılmaktadır. Transformatörler üzerinde meydana gelen kayıplar elektrik şebekesinin verimini önemli ölçüde etkilemektedir. Transformatörlerde meydana gelen kayıplar temel olarak iki ayrı bölümden oluşmaktadır. Bu kayıplardan biri iletken kayıpları ve diğeri ise nüve kayıplarıdır. İletken kayıpları temel olarak elektriksel yüke bağlı olup yükün artmasıyla artar ve yükün düşmesiyle azalır. Nüve kayıplar veya boştaki kayıplar yükten bağımsız olarak transformatörlerde sürekli olarak meydana gelmektedir. Buna göre transformatörlerde nüve kayıplarının azaltılması önemlidir. Ülkemizde üretilen transformatörlerin hemen hemen hepsinin nüvesi silisli saclardan yapılmaktadır. Amorf nüve kayıpları silisli saclı nüve kayıplarına nazaran %70 daha azdır. Çin ve ABD gibi bazı ülkelerde silisli saclı nüvelerin yerine Amorf nüvelerin kullanılması yavaş yavaş artmaktadır. Buna göre bu makalenin temel amacı Amorf nüve'li transformatörlerde meydana gelen kayıplardan dolayı transformatörlerde oluşan sıcaklık artışının incelenmesi veya transformatörün sıcaklık analizidir. Makalede yapılan analizde Sonlu Elemanlar Yöntemi olarak tanınan SEY programı kullanılmıştır. Demir (Fe) esaslı amorf alaşımlar, mekanik özelliklerinin yanı sıra manyetik özelliklerinden dolayı da oldukça ilginçtirler. Bu alaşımlar hâlihazırda modern transformatör çekirdeklerinde kullanılan nano yapılı laminasyon şeritleri için kullanılmaktadırlar. Amorf şeritlerin kalınlıkları genellikle onlarca mikron arasında değişmekte olup yüksek hızlı soğutma yöntemiyle üretilmektedir. Sonlu elemanlar yöntemi (SEY), diğer sayısal yöntemler gibi elektrik makinelerinin ve transformatörlerin sıcaklık analizinde yoğun uygulanmaktadır. olarak Bu yöntem, test sonuçlarından elde edilen sabitler ve analitik formülleri içeren yarı deneysel yöntemlerin yerini alma amacıyla makinenin geometrik şeklini dikkate

alarak daha geliştirilmiştir (Amoiralis et al.2009). Aina vd.(2019)'da tavlanmış Fe78Si13B9 amorf alaşım çekirdeğinin, manyetik indüksiyon yoğunluğu, çekirdek kayıpları ve manyetik geçirgenliği gibi dinamik manyetik karakteristikler sistematik olarak farklı çalışma sıcaklıkları altında incelenmiştir. Yeni amorf yapılı elementlerin tanınması ve bileşim uyumlandırması ile, Wang vd .(2015)'de yüksek Fe içerikli mükemmel manyetik özelliğine sahip Fe83C1(Si,B,P)16 amorf alaşımları başarılı bir biçimde geliştirilmiştir. Son zamanlarda, cam şekillendirme yeteneği ile Fe tabanlı metalik cam yığınları (BMG), yüksek kırılma direnci ve daha yumuşak manyetik özelliklerinin araştırılması amacıyla, camsı alaşım (Fe0.75 B0.2 Si 0.05)96Nb4 'e eklenerek etkisi değerlendirilmiştir. (Fe0.75-xDyx B0.2Si0.05)96Nb4 (x=0-0.07) camsı alaşımları, çapları 4 mm'ye kadar olan 65×10-6 gibi yüksek \lambdas değerine sahip camsı alaşımlı çubuklar olarak dökülebilmektedir. Bu sayede iyi mekanik özelliklerle yumuşak manyetik özellikler birlestirilmektedir (Li et al.2014). Azuma vd .(2020)'de demir bazlı amorf ve nano-kristalin Yumuşak manyetik alaşımların geçmişi gözden geçirilip ve bu malzemelerdeki transformatörler gibi manyetik cihazlarda son zamanlardaki ilerlemeler rapor edildi. Ayrıca Daha düşük oranlı transformatörler için, daha ince bir demir bazlı amorf alaşım şeridin, sarılmış nüvenin köşelerindeki eğilme gerilimi azaltılması nedeniyle ve daha küçük girdap akımı kaybı nedeniyle çekirdek kaybı için bir avantaja sahip olduğu gösterilmiştir.

vd. Dianchun (2000)de, kuru tip transformatörlerde sonlu farklar yöntemi yardımıyla kararlı durumda katman tipi sargıların sargı sıcaklık dağılımlarını incelemiştir. Zhang ve Li (2006]'da, disk tipi sargılarda ısı transferi problemini çözebilmek için sonlu hacim yöntemini kullanan sayısal bir modeli ortaya koyarak hem radyal hem de eksenel doğrultudaki sıcaklık değişiminin 10° C'i aşabileceğini ve bu nedenle disk sargısı için iki boyutlu (eksenel simetrik) bir sıcaklık modelin gerekli olduğunu göstermişlerdir. Zhang ve Li (2020)'de sinüzoidal ve sinüzoidal olmayan uyarma altında 5kVA / 4.5 kHz amorf yüksek frekanslı transformatörün (HFT) titreşim ve gürültünün ölçümü ve analizini gerçekleştirilmiştir. Ölçülen titreşim ve gürültü verilerini karşılaştıran ve analiz eden sonuçlar, sinüzoidal olmayan uyarma altındaki HFT'nin titreşiminin, sinüzoidal uyarmanınkinden çok daha büyük olduğunu göstermektedir.

Diğer bir çalışmada El Wakil vd.(2006)'da, sonlu hacim metodu kullanılarak çekirdek ve sargıyı içeren bir transformatörün 2D simülasyonu incelenmiştir. 25 MVA'lık transformatörün ONAF soğutma performansı üzerindeki hava akışı yönü ve fan ofsetinin etkisi, Hesaplamalı Akışkanlar Dinamiği (HAD) analizi kullanılarak Paramane vd.(2014)'de incelenmiştir. Tsili vd. (2012)'de sunulan 3 boyutlu yinelemeli birleştirilmiş modelde sonlu elemanlar yöntemi kullanılmış ve bu yöntem transformatörün sıcaklık performansını yöneten termo-hidrolik denklemlerin çözümünde kullanılmaktadır. Transformatör kayıpları ve sıcaklık değerleri, transformatörün değişken yüküne ve harmonik içeriğine göre tam olarak tahmin edilir. Tahmini değerler kullanılarak, sıcak nokta sıcaklığı standartlara göre hesaplanır (IEEE Standard C57.91-1995). Moonhee vd.(2010) 'da, kuru tip trafo için Sonlu elemanlar yöntemine (FEM) dayalı indüklenen akımlardan dolayı folyo sargısındaki düzgün olmayan sıcaklık dağılımlarını hesaplamak için elektromanyetik ile birleştirilerek bir sıcaklık model kullanılmıştır.

makalede Bu yağlı tip amorf çekirdekli transformatörün sıcaklık performansının analizini daha dikkatli yapmak için ısı transferi, akışkan akışı ve elektromanyetik analizleri birleştirilmiştir. Makale şu şekilde planlanmıştır: Bölüm 2'de, 630 transformatörün kVA amorf çekirdekli elektromanyetik analizi sonlu elemanlar yöntemine sunulmaktadır. dayalı olarak Bölüm 3'te, transformatörün sıcaklık performansının analizi için birlestirilmis elektromanyetik-sıcaklık modeli incelenmiş ve ilgili sonuçlar yorumlanmıştır. 3D sonlu elemanlar yöntemine dayanarak simülasyon sonuçları 4. bölümde deneysel sonuçlarla Transformatörün doğrulanmıştır. deneysel çalışmaları ve prototip imalatı Ankara'da TEK TRAFO işletmesinde yapılmış, yorum ve sonuçlar bölüm 5'te sunulmuştur.

2. Analizler

2.1.Elektromanyetik Analiz

Sonlu elemanlar yöntemi (SEY), akışkanlar dinamiği, katı ve yapısal mekanikler, ısıl iletkenlik, manyeto statik ve elektromanyetik gibi türev ve integral denklemlerini çözen sayısal bir yöntemdir. SEY'in ana fikri, karmaşık diferansiyel denklemlerle fiziksel problemleri alt problemlere ayırmak ve bu denklemleri doğrusal sistemlerde çözmektir. Bu makalede Dyn11, 34.5/0.4-kV, 630-kVA amorf nüveli dağıtım transformatörünün manyetik ve sıcaklık incelemeleri yapılmıştır. Manyetik akı incelenmesi üç boyutlu SEY'ye dağılımının POISSON dayanarak aşağıdaki denkleminin çözümüyle gerçekleştirilmiştir (Najafi ve Iskender 2014).

$$\frac{\partial}{\partial X} \left(R \frac{\partial A}{\partial X} \right) + \frac{\partial}{\partial Y} \left(R \frac{\partial A}{\partial Y} \right) + \frac{\partial}{\partial Z} \left(R \frac{\partial A}{\partial Z} \right) = \frac{-ni}{S_c}$$
(1)

Bu denklemde, A manyetik potansiyel vektörü, R nüve sacının manyetik direnci, n sarım sayısı, i akım ve Sc iletken kesitine işaret etmektedir. Sonlu elemanlar yöntemine dayalı transformatör analizinde dinamik ve statik analiz olmak üzere iki yöntem bulunmaktadır. Statik analiz çalışmasında, denklem (1)'de miknatislanma akiminin değeri bilinmelidir. Ancak başlangıç durumundan kararlı duruma kadar olan sürede akımı elde etmek icin transformatörün dinamik analizi yapılmalıdır. Bu vüzden. gerilim kaynaklarını giriş olarak modellenmesi gerekmektedir. Transformatör sargılarının içinden geçen akıma bağlı olarak oluşturduğu manyetik alan denklemi aşağıdaki gibidir (Najafi ve Iskender 2016):

$$\nabla^2 A - \mu \sigma \frac{\partial A}{\partial t} + \mu J_0 = 0 \tag{2}$$

Bu denklemde, μ manyetik geçirgenlik, σ elektriksel iletkenlik ve J0 uygulanan akım yoğunluğudur.

Nüvede, denklem (2) den elde edilen akı yoğunluğunun dağılımı (A) aşağıda verilen denklemden elde edilmektedir:

$$B = \nabla \times A \tag{3}$$

Şekil.1 amorf Metglass 2605(HB1), amorf 2605(SA1) alaşımı ve kristal M2 dereceli silikon çelik için B-H eğrisini göstermektedir. Bu makalede 2605(SA1) amorf alaşım kullanılmıştır. Bu tür amorf alaşımlar için doyma akı yoğunluğu yaklaşık 1,42 T'dir. Kullanılan Amorf ve M5 Çekirdeğin teknik özellikleri Çizelge 1 de verilmektedir.

Çizelge 1. 2605(SA1) Amorf ve M5 Çekirdeğin teknik özellikleri

Şekil 2'de gösterildiği gibi Tek çekirdekli(Unicore) teknoloji, amorf çekirdek transformatörü

Özellikler		Amorf metal		M5	
					çelik
Yoğunluk		7.18			7.65
Özgül direnç		130.00			45.00
Tipik çekirdek kaybı (50		1.56			2.03
Hz, 1.4 Tesla)					
Kalınlık		μm		0.30	
		25			mm
Uzay faktörü		0.86			0.97
Kırılganlık		Yüksek			Düşük
Mevcut form		Ribbon	foil	(142.2	Sheet
		mm,172.2mm&213.4 mm)			Roll
Tavlama sıcaklığı		360			810
Tavlama atmosferi		Atıl gaz			Atıl gaz
Özel	tavlama	Magnetic field annealing			
gereksinimi					

tasarlamak için kullanılmıştır. Bu yönteme dayanarak, C ve E tip çekirdekli transformatörlere kıyasla akı dağılımı iyileştirilecektir.

Şekil 2. Amorf şerit bağlantılarının şematik gösterimi

Şekil 3, amorf şerit bağlantı noktalarındaki manyetik akı dağılımını ve eşdeğer elektrik devre modelini göstermektedir. Rg, şerit bağlantı boşluğu manyetik direnci olarak tanımlanır, Rs, amorf bir şeridin başka bir amorf şeritle örtüşme manyetik direnci ve Rt, iki amorf şerit arasındaki boşluk manyetik direncidir.

Şekil 3. a) Amorf şerit bağlantı akı dağılım şeması b) eşdeğer elektrik devre şeması

Şekil 3'de gösterilen tüm manyetik direnç değerleri denklem 4 ile bulunur.

$$R = \frac{vL}{s} \tag{4}$$

Amorf şerit bağlantıların geometrisi dikkate alınarak, doğrusal olmayan ve doğrusal hava boşluğunun elektrik devre modeli çizilmelidir. Doğrusal olmayan hava boşluğu eşdeğer devresi Şekil 4'te gösterilmiştir.

Şekil 4. Doğrusal olmayan hava boşluğu eşdeğer devresi

Şekil 3 ve 4'de A-A noktaları arasındaki amper yasası uygulandığında denklem 4 ve 5 elde edilir.

$$\int_{A}^{A'} H dl = 2R_L Q_L + R_S Q_S + R_g Q_g \tag{4}$$

$$\int_{A}^{A'} H dl = 2R_L Q_L + \frac{L_{ge}}{\mu_0 S_L} Q_L$$
 (5)

L_{ge}, minimum ve maksimum değerler arasında salınır. Akı yoğunluğunun oldukça düşük olduğu durumlarda La, Lt ve Ltg değerleri denklem 6'daki gibidir.

$$\int_{A}^{A'} H dl = 2R_L Q_L + \frac{L_{ge-min}}{\mu_0 S_L} Q_L$$
(6)

Akı değeri küçük olduğunda Lt oldukça büyük olacak ve 1/Lt sıfıra yakın olacağı için denklem 7 olarak elde edilir.

$$L_{ge-min} = e_0 L_{tg} \frac{2}{L_a} \tag{7}$$

Çalışmalarda transformatör nüvesine uygulanan ağ yoğunluğu Şekil 5'de gösterilmektedir. SEY çalışmalarında ağ yoğunluğu ciddi öneme sahiptir. Analizlerde yapılan işlemlerin sayısı ağ yoğunluğuna bağlıdır. Ağ yoğunluğu arttığında işlem sayısı ve süresi ciddi bir oranla artmaktadır. Ağ yoğunluğunun artması aynı zamanda işlem hatların düşmesine de neden olmaktadır. Buna göre SEY çalışmalarında yapılacak araştırmanın özelliklerine göre optimal ağ yoğunluğuna karar verilmelidir. Makalede yapılan çalışmada, manyetik nüve, sargılar ve nüve kelepçesinde ağ sayıları sırasıyla 65 350, 22 430, 40 000 olarak dikkate alınmıştır. 3 boyutlu Makalede yapılan modelleme çalışmasında tüm ağların yapımı tetrahedral şeklindedir.

Şekil 5 .3-boyutlu Transformatörün ağ modeli

Simülasyon 1500 ms'lik sürede ve 0,2 ms'lik adımlarla geçici durum analizi ile gerçekleştirilmiştir. Analiz sonucunda elde edilen raporlara göre Şekil 6'de transformatörün primer sargı gerilimleri ile akımların grafikleri verilmiştir. Transformatörler, güç kaynağına bağlandığı ilk anda primer tarafında çekilen akımın değeri normal akım değerinin 8-12 katı kadar olabilir ve "aşırı başlangıç akımı" olarak bilinmektedir. SEY yazılımı, transformatörün birkaç döngü boyunca çekmiş

olduğu aşırı başlangıç akımını da gösterebilmektedir. Aşırı başlangıç akımı yaklaşık olarak 500 ms'de normal değerine düşmektedir.

Şekil 6. Primer sargıda a)Akım b) indüklenen gerilim

Araştırma söz konusu olan transformatörün manyetik parametrelerinin ve geometrik boyutları ile transformatör içerisindeki manyetik alan dağılımının incelenmesinde SEY kullanılmıştır. Şekil 7, incelenen amorf çekirdekli transformatördeki manyetik akı yoğunluğunu ve manyetik alanı göstermektedir. Transformatör çekirdeğinin farklı topolojilerini ve malzemelerini karşılaştırmak için elektromanyetik analizdeki ilk adım, çekirdek ve transformatörlerin diğer bölgelerindeki akı dağılımını ve manyetik alanı analiz etmektir.

Şekil 7. a) Transformatör çekirdeğindeki akı yoğunluğu dağılımı b) Transformatör etrafındaki manyetik alan

Amorf nüveli transformatörde, amorf nüvenin yuvarlak olarak hazırlanması sonucu mitre köşesi bulunmamaktadır. Bu dizme yöntemi silikon saclı yöntemle karşılaştırıldığında çekirdek kayıplarının azalmasının önemli nedenlerinden biridir. Bu tür nüvelerde birleşme bölgelerinin olmaması bu tür kayıpların meydana gelmemesinin temelini oluşturmaktadır.

Transformatörün elektromanyetik analizi detaylı bir biçimde (Najafi ve Iskender 2016, Aina et al.2016)'de incelenmiştir. Bu makalede yapılan çalışmalar ısı transferi, akışkan akış ve elektromanyetik analizlerin birleşimine dayanarak amorf nüveli transformatörlerin sıcaklık modellenmesine odaklanmıştır.

2.2. Sıcaklık Analiz

Elektromanyetik-Sıcaklık Modelin Birleştirilmesi:

Malzemelerin bazı özellikleri sıcaklığa bağlı olarak değiştiği gibi elektromanyetik alanlar da sıcaklık etkilerden etkilenmektedir. Sıcaklıktan doğrusal etkilenen elektriksel özelliklerden biri elektriksel özdirençtir. Elektriksel özdirenç değeri (ρe) sıcaklığa bağlı olarak aşağıdaki denklemden elde edilir:

$$\rho_e(T) = \rho_{e,0}[1 + a_c(T - T_0)] \tag{8}$$

Bu denklemde; $\rho_{e,0}$ referans sıcaklık değerindeki özdirenç değeri, a_c sıcaklık sabiti [K–1], ve TO referans sıcaklık [K] değeridir.

Elektriksel iletkenlik değeri denklem 9'dan elde edilir:

$$\sigma_e(T) = \frac{1}{\rho_e(T)} = \frac{\sigma_{e,0}}{1 + \alpha_c(T - T_0)}$$
(9)

 σe ,0, TO referans sıcaklığında ki elektriksel iletkenlik değeridir. Elektriksel özdirenç değeri sıcaklığa bağlı olarak değişmekte ve buna bağlı olarak ta iletken direnç değeri değişmektedir. Buna göre sıcaklık değişiyle iletken direnci tekrar hesaplanmalıdır.

$$R = \frac{\rho_e(T).l}{A_c} \tag{10}$$

Bu denklemde Ac iletkenin kesit alanı [m2] ve L iletkenin ortalama uzunluğudur [m].

Transformatör yağının fiziksel özelliklerinin sıcaklıkla değişimi Şekil 8'de gösterilmiştir. Yağ özelliklerini göstermek için değişkenlerin birim değerleri (birim başına) kullanılmıştır. Değerin 45 ° bazında alınmasının sonucu Şekil 8'de C gösterilmiştir. Transformatör yağının yoğunluğu ile sıcaklık arasındaki ilişki denklem 11 ile hesaplanır(Makarov ve Emanuel, 2000):

$$\rho_{oil}(\theta) = 1098.72 - 0.712\theta \tag{11}$$

Yağın sıcaklık iletkenliği ile sıcaklık arasındaki ilişki:

$$k_{oil}(\theta) = 0.1509 - 7.101E - 0.5\theta \tag{12}$$

Yağın sıcaklık kapasitesi ile sıcaklık arasındaki ilişki denklem 13 ile elde edilir:

$$C_{oil}(\theta) = 807.163 + 3.5\theta \tag{13}$$

Yağın sıcaklık genleşme katsayısı ile sıcaklık arasındaki ilişki:

$$\beta_{oil}(\theta) = 8.6 \times 10^{-4} \tag{14}$$

Yağın viskozitesi ile sıcaklık arasındaki ilişki denklem 15 ile hesaplanır:

$$\mu_{(\theta)} = 0.08467 - 0.0004\theta + 5E - 7\theta^2 \tag{15}$$

Görüldüğü gibi sıcaklıkla viskozite değişimi diğer fiziksel parametrelerden daha fazladır. Bu nedenle, diğer parametrelerin değişimi göz ardı edilebilir(Lin vd.2020).

Şekil 8. Transformatör yağının ısıl özellikleri (birim başına).

Transformatör yağı sıkıştırılamaz bir sıvı olduğundan, yağ hareketini tanımlamak için süreklilik, enerji ve momentum denklemleri aşağıdaki denklemlerle ifade edilir:

 $\nabla . \rho w = 0 \tag{16}$

$$\rho.\nabla w = F - \nabla p + u.\nabla^2 w \tag{17}$$

$$\rho cw. \nabla T = \nabla (k \nabla T) + q \tag{18}$$

Burada ρ (kg/m³)kütle yoğunluğu (birim hacim başına kütle),w(m3/s) sıvı hızıdır. Isı, konveksiyon ve radyasyon yoluyla transformatörün Tank duvarından dağıtılır. Ayrıca tank duvarından konveksiyonla ısı dağılımı diğerinden daha yüksektir. Transformatör tank duvarının hava ile ısı konveksiyonundan kaynaklanan toplam enerji kaybını hesaplamak için Aşağıdaki denklemler kullanılır.

$$q' = hS(T_s - T_f) \tag{19}$$

$$h = \frac{\kappa}{l} N u \tag{20}$$

q' toplam enerji kaybı (w) , T_f çevre sıcaklığı (k), T_s transformatör Tank duvar sıcaklığı (k) , h ısı taşınım katsayısı($\frac{W}{m^2k}$), N usselt sayısı, S akışkanın temam ettiği yüzey alanı (m2), düşey düzlemde Nuv ve yatay düzlemde Nuh, aşağıdaki denklemlerle hesaplanabilir(Makarov ve Emanuel, 2000):

$$N_{uv} = \{0.825 + \frac{0.387Ra^{1/6}}{[1 + (\frac{0.492}{pr})^{9/16}]^{8/27}}\}^2$$
(21)

$$N_{uh} = 0.27 R a^{1/4} \tag{22}$$

Ra Rayleigh sayısı aşağıdaki gibi hesaplanır:

$$Ra = \frac{g\beta(T_s - T_f)l^3\rho}{ua}$$
(23)

Rayleigh numarası (Ra) bir akışkan için kaldırma kuvveti ile yönlendirilen akışla ilişkili boyutsuz bir sayıdır. β sıcaklık genleşme katsayısı, g yerçekimine bağlı ivmedir, α sıcaklık yayılımıdır, ısı iletim denklemindeki ısı üretme terimi, sıcaklık değişimlerine bağlıdır. Sıcaklık değişimleri, ısı üretme teriminin ve ısının yeniden hesaplanmasını gerektirmektedir.

Bu yüzden, elektromanyetik analiziyle sıcaklık analizi birleştirilmektedir. Literatürde güç transformatörleri ile ilgili yapılan sıcaklık modellerde daha önce elektromanyetik modelleri kullanılmamıştır. Aslında, elektromanyetik-sıcaklık modelleri küçük dağıtım transformatörleri ve basit indüktörlere sınırlı sayıda uygulanmıştır.

Şekil 9. Birleştirilmiş elektromanyetik-sıcaklık analizin akış şeması

Birleştirilmiş elektromanyetik ve sıcaklık problemin çözümleri aşağıdaki adımlar kullanılarak elde edilir: 1. Başlangıç sıcaklığındaki elektromanyetik model çözülür ve güç kayıpları hesaplanır.

2. Daha önce t=0 anı için elde edilen güç kayıpları kullanılarak sıcaklık model çözülür.

3. Sıcaklığa bağlı elektriksel iletkenlik, konveksiyon sabiti vb. gibi sabitler ve malzeme özellikleri güncellenir, analiz zamanı Δ t zaman adımı olarak artırılır.

4. Daha önce elde edilen sıcaklıkta elektromanyetik modeli çözülür.

5. Son analiz zamanına kadar 3. ve 4. adımlar tekrarlanır.

Şekil 6, birleştirilmiş elektromanyetik-sıcaklık probleminin çözümünün akış şemasını göstermektedir. Bu çalışmada önerilen manyeto termik kuplajı, Sabit durum AC manyetik hesaplaması ile (Joule etkisi ile incelenen amorf nüveli transformatörün ısıtılmış bileşenlerinde harcanan aktif güç kaybının tahminini mümkün kılan), geçici sıcaklık hesaplaması arasında bir bağlantı oluşturmaktadır. manyetik hesaplamadan elde edilen güç kayıpları, sıcaklık denklem sistemlerinin ısı kaynakları olarak tanıtılır. Diğer taraftan, sıcaklık hesaplamayla elde edilen sıcaklık, manyetik geçirgenlik, elektrik direnci ve geçirgenlik gibi elektromanyetik özelliklerin sıcaklığa bağımlılığını karşılamak için manyetik denklemlerdeki özelliklerinin malzeme değerlendirilmesi için göz önünde bulundurulur. Her bir zaman adımında, analiz edilen zaman

adımına karşılık gelen sıcaklık alanının kararlılığı elde edilene kadar, sıcaklık ve manyetik hesaplamaların lokal olarak bağlanması gerçekleştirilir.

SEY kullanılarak, transformatörün tüm aktif (nüve ve sargılar) ve pasif (tank ve dalga duvar) kısımları küçük elemanlara ayrılır ve bu elemanlar için interpolasyon fonksiyonları seçilir. Daha sonra, birleştirilmiş model, elemanın üzerine entegre edilen ağırlıklı rezidüeyi sıfıra ayarlayarak, tek bir eleman için matris denklemlerinde formüle edilir.

Galerkin yöntemi kullanılarak ağırlık fonksiyonu interpolasyon fonksiyonu secilir. için Elektromanyetik ve sıcaklık analizlerden elde edilen çözümler her elemanda birbirini etkilemektedir. Birleştirilmiş problemdeki zamana bağlı terimlerin de ayrıklaştırılmaya ihtiyacı vardır. Bunun için sonlu fark yöntemi kullanıldı, çünkü bu yöntemle elde edilen sonuçlar tüm zaman aralıkları için kararlıdır. Sekil 10a, 3 fazlı 630 kVA amorf nüveli transformatör nüvesinin sonlu elemanlar yönteminde ki sıcaklık değişimini göstermektedir. Transformatör nüvesindeki en sıcak nokta. sargıların vanında bulunan transformatör bacaklarının köşelerindedir ve bu sıcaklık 62.6 °C olarak elde edilmiştir.

(c)

Şekil 10. Sıcaklık dağılımının sayısal modeli a) transformatör nüvesinde b) transformatör yağında c) transformatör tank duvarında

Şekil 10b transformatör yağının farklı bölgelerindeki sıcaklık dağılımını göstermektedir. Sayısal çözüme göre, "yağın sıcak nokta sıcaklığı" Şekil 10b de görüldüğü gibi yağın üst bölgesinde tespit edilmiştir. Bu bölgede sıcaklık 58.42 °C'ye 10c transformatör ulaşmıştır. Şekil tank duvarındaki ısının dağılımını göstermektedir. Şekilde görüldüğü gibi transformatör tankındaki en yüksek sıcaklık 47 °C olarak tespit edilmiştir.

3.Deneysel Doğrulama

Bu bölümde önerilen birleştirilmiş sıcaklık model sonuçları ile TEK TRANSFORMER fabrikasında üretilen 630 kVA,34.5/0.4kV prototip transformatörün deneysel sonuçları karşılaştırılmıştır. Bu çalışmada, transformatörün tasarımını optimize etmek için Şekil 11'de gösterildiği gibi amorf çekirdek transformatöründe çekirdek laminasyonlarının z-tipi unicore düzenlemesi kullanılmıştır. Z tipi unicore nüvede, yuvarlanma yönünden sapan manyetik akının transformatör nüvesinin köşelerinde miktarı önemli ölçüde azalmaktadır. Önerilen sıcaklık modelini doğrulamak için, olarak ilk transformatörün boşta ve yükteki kayıpları C57.12.00.2006 IEEE standartına göre ölçülmüştür. Deneysel çalışmalardan elde edilen toplam kayıplar 5402 W olmuştur. Daha sonra, sıcaklık artış testi IEC 60076-2 standartında 7.3.2 maddesine göre gerçekleştirilmiştir ve beşer dakikalık sürelerde ilgili parametreler ölçülmüş ve kaydedilmiştir. Deneysel

çalışmalar esnasında kullanılan test düzeneği Şekil 12'de gösterilmektedir. Sıcaklıklar transformatörün 8 farklı noktasından PT-100 sensörleri yardımıyla ölçülmüştür.

Şekil 11. Amorf çekirdekli prototip transformatör imalatı

Şekil 12. Sıcaklık artış deneyindeki devre bağlantı şeması

transformatörün Sensörler sekiz noktasında sıcaklıkları ölçmek için kullanılmıştır. Bir sensör, transformatörün nüvesindeki sıcaklığı ölçmek için nüvenin bacağına monte edilmiştir. Üç sensör yağ sıcaklığını ölçmek için yağın farklı yerlerine yerleştirilmiştir. Bir sensör ise ortam sıcaklığını ölçmek için transformatöre bir metre uzaklığına ve diğer dört sensör, kazan duvarlarındaki ve transformatörün kapak yüzeyindeki sıcaklığı ölçmek için kullanılmıştır. Deneysel çalışmalardan elde edilen sıcaklık artış sonuçları, nominal yük altındaki transformatörün yağ sıcaklığı, kapak ve tank duvarlarındaki sıcaklık dağılımı Şekil 13'de gösterilmektedir. Şekilde görüldüğü gibi transformatörüm yağ sıcaklığını ölçmek için kullanılan sensörler 63.12, 55.58,53.4 dereceği göstermektedir. Ortam sıcaklığını ölçmek için transformatörden bir metre uzağa yerleştirilen sensör yaklaşık 31 derece gösterir. Tank duvarında ve tank kapağı yüzeyine yerleştirilen sensörler sırasıyla 55.03,46.04,53.02 ve 57.5 dereceyi göstermektedir. Transformatörün nüvesindeki sıcaklığı ölçmek için kullanılan sensör 59.69 dereceği göstermektedir. Deneysel sonuçlarıyla benzetim sonuçlarının karşılaştırılması ölçülen önerilen birleştirilmiş sonuçlarıyla sıcaklık modelden elde edilen sonuçlarla çok iyi bir uyum içinde olduğunu tespit edilmiştir.

Şekil 13. Transformatör tank duvarının faklı bölgelerinde ve transformatör yağında ölçülen sıcaklıklar

4. Sonuçlar

Bu makalede amorf-nüveli yağlı-tip dağıtım transformatörün sıcaklık analizi yapılmıştır. Bu çalışmada manyetik alan ile sıcaklık modellerinin birleştirilmiş ortak modeli kullanılmıştır. 630 kVA'lık amorf nüveli transformatör için sıcaklık dağılımı sonlu elemanlar yöntemi programı yardımıyla hesaplanmıştır. Transformatör nüvesinin sıcaklık dağılımı zamanın bir fonksiyonu olarak hesaplanmış ve kararlı durumda en sıcak noktanın sıcaklığı nüve bacaklarının merkezinde belirlenmiştir. Kullanılan model ısı iletim denklemini elektromanyetik denklem ile birleştirdiğinden, farklı çalışma

kosulları altında sargi sıcaklıklarını tahmin edebilmektedir. Makalede önerilen yöntemle elde edilen sonuçlarla deneysel sonuçlarının çok uyumlu olduğu görünmüştür. Buna göre önerilen yöntem transformatör üreticileri tarafından güç transformatörün tasarımı aşamasında kullanılabilir. Transformatör firmalarında ulusal ve uluslararası standartlara göre uygulanması öngörülen bazı rutin ve özel test sonuçlarını bu makalede önerilen yöntemle tahmin edilmesi mümkündür. Bu testlerden biri sıcaklık artış testidir ve bu test genel olarak 16 saat sürmektedir. Makalede önerilen yöntem yardımıyla 16 saatlik bir süre beklemeden test sonuçlarının tahmin edilmesi mümkündür. Simülasyon 1500 ms'lik sürede ve 0,2 ms'lik adımlarla geçici durum analizi ile gerçekleştirilmiştir. Bu yöntem ayrıca, ilgili işletme için hem zaman kazandırır hem de üzün süreli testlerde tüketilen elektrik enerji kaybının önünü almaktadır.

References

- Amoiralis, E., Tsili, M., Kladas, A., 2009 .Transformer design and optimization: a literature survey. IEEE transactions on Power Delivery , **24** (**4**), 1999-2024.
- Aina,H., Anding,W., Shiqiang.,Y.,2016 .Dynamic magnetic characteristics of Fe78Si13B9 amorphous alloy subjected to operating temperature. Journal of Magnetism and Magnetic Materials, **408**, 159–163.
- Azuma, D., ilto, N., Ohta, M., 2020. Recent progress in Febased amorphous and nano-crystalline soft magnetic materials. Journal of Magnetism and Magnetic Materials, **501**, 230-242.
- Dianchun,Z., Jiaxiang,Y., Zhenghua,W.,2000 .Thermal field and hottest spot of the ventilated dry-type transformer. Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials, **1**, 141–143.
- El Wakil, N., Chereches., N., Padet, j., 2006. Numerical study of heat transfer and fluid flow in a power transformer. International journal of thermal science, 45, 615–626.
- IEEE Guide for Loading Mineral-Oil-Immersed Transformers, IEEE Standard C57.91-1995
- Li,j., Estévez, D ., Jiang,K .,2014 .Electronic-structure origin of the glass-forming ability and magnetic

properties in Fe–RE–B–Nb bulk metallic glasses. Journal of Alloys and Compounds, **617**, 332-336.

- Lin, N., Liu, P., Dinavahi, V., 2020. Component-Level Thermo-Electromagnetic Nonlinear Transient Finite Element Modeling of Solid-State Transformer for DC Grid Studies. IEEE Transactions on Industrial Electronics ,**68**,938-948.
- Makarov,S,N., Emanuel,A,E., 2000.Corrected harmonic loss factor for transformer supplying nonsinusoida current.,9. international conference on Harmonics and Quality of power, 87-89.
- Moonhee,L., Abdullah,A., Jofriet.,C., 2010. Temperature distribution in foil winding for ventilated dry-type power transformers, Electric Power System Research, **80**, 1065-1073.
- Najafi,A., Iskender, I., 2014 . Evaluating and derating of three-phase distribution transformer under unbalanced voltage and unbalance load using finite element method. IEEE 8th international power engineering and optimization conference. 160–165.
- Najafi,A., Iskender,I.,2016. Electromagnetic Force Investigation on Distribution Transformer Under Unbalanced Faults Based on Time Stepping Finite Element Methods. International Journal of Electrical Power and Energy Systems, **76**, 147–155.
- Paramane,S., Joshi,K., Van,W., Sharma,A.,2014 .CFD study on thermal performance of radiators in a power transformer: effect of blowing direction and offset of fans, IEEE Transaction on Power Delivery, **29** (6), 2596–2604.
- Tsili,M ., Amoiralis,E., Kladas,A., Souflaris,A.,2012. Power transformer thermal analysis by using an advanced coupled 3D heat transfer and fluid flow FEM model. International Journal of Thermal Sciences, **53**, 188-201.
- Wang,A., Zhao,C., Men,H., He,A., Chang,C., Wang,X., Li,R.,2015 .Development of high Bs Fe-based amorphous alloys with wide ribbon formation needed amorphous-forming ability. Journal of Alloys and Compounds, **630**, 209-213.
- Zhang, J., Li, X., 2006. Oil cooling for disk-type transformer windings-part 1: theory and model development. IEEE Transactions on Power Delivery, **21(3)**, 1318– 1325.
- Zhang ,p., Li,I., 2020 .Vibration and noise characteristics of high-frequency amorphous transformer under sinusoidal and non-sinusoidal voltage excitation. International Journal of Electrical Power & Energy Systems , 123,1-9.