ASİT veya BAZ MUAMELESİ ile AKTİVİTESİ ARTTIRILMIŞ TiO2 FOTOKATALİZÖRLER ile AROMATİK ALKOLLERİN YÜKSELTGENMESİ

YÜKSEK LİSANS TEZİ

Sıdıka ÇETİNKAYA

Danışman Doç. Dr. Sedat YURDAKAL KİMYA ANABİLİM DALI ARALIK 2017 Bu tez çalışması 17.KARİYER.15 numaralı proje ile Afyon Kocatepe Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir.

AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

ASİT veya BAZ MUAMELESİ ile AKTİVİTESİ ARTTIRILMIŞ TiO₂ FOTOKATALİZÖRLER ile AROMATİK ALKOLLERİN YÜKSELTGENMESİ

Sıdıka ÇETİNKAYA

Danışman

Doç. Dr. Sedat YURDAKAL

KİMYA ANABİLİM DALI

ARALIK 2017

TEZ ONAY SAYFASI

Sıdıka ÇETİNKAYA tarafından hazırlanan "Asit veya Baz Muamelesi ile Aktivitesi Arttırılmış TiO₂ Fotokatalizörler ile Aromatik Alkollerin Yükseltgenmesi" adlı tez çalışması lisansüstü eğitim ve öğretim yönetmeliğinin ilgili maddeleri uyarınca 20/12/2017 tarihinde aşağıdaki jüri tarafından **oy birliği** ile Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü **Kimya Anabilim Dalı'nda YÜKSEK LİSANS TEZİ** olarak kabul edilmiştir.

Danışman : Doç. Dr. Sedat YURDAKAL

- Başkan : Doç. Dr. Yasemin ÇİMEN Anadolu Üniversitesi, Fen Fakültesi
- **Üye** : Doç. Dr. Levent ÖZCAN Afyon Kocatepe Üniversitesi, Mühendislik Fakültesi
- **Üye** : Doç. Dr. Sedat YURDAKAL Afyon Kocatepe Üniversitesi, Fen-Edebiyat Fakültesi

de. Me

İmza

Afyon Kocatepe Üniversitesi

Fen Bilimleri Enstitüsü Yönetim Kurulu'nun

...... tarih ve

..... sayılı kararıyla onaylanmıştır.

Prof. Dr. İbrahim EROL Enstitü Müdürü

.....

BİLİMSEL ETİK BİLDİRİM SAYFASI Afyon Kocatepe Üniversitesi

Fen Bilimleri Enstitüsü, tez yazım kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- Tez içindeki bütün bilgi ve belgeleri akademik kurallar çerçevesinde elde ettiğimi,
- Görsel, işitsel ve yazılı tüm bilgi ve sonuçları bilimsel ahlak kurallarına uygun olarak sunduğumu,
- Başkalarının eserlerinden yararlanılması durumunda ilgili eserlere bilimsel normlara uygun olarak atıfta bulunduğumu,
- Atıfta bulunduğum eserlerin tümünü kaynak olarak gösterdiğimi,
- Kullanılan verilerde herhangi bir tahrifat yapmadığımı,
- Ve bu tezin herhangi bir bölümünü bu üniversite veya başka bir üniversitede başka bir tez çalışması olarak sunmadığımı

beyan ederim.

20/12/2017

I Cettiliaja

Sıdıka ÇETİNKAYA

ÖZET

Yüksek Lisans Tezi

ASİT veya BAZ MUAMELESİ ile AKTİVİTESİ ARTTIRILMIŞ TiO₂ FOTOKATALİZÖRLER ile AROMATİK ALKOLLERİN YÜKSELTGENMESİ

Sıdıka ÇETİNKAYA Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı Danışman: Doç. Dr. Sedat YURDAKAL

Bu çalışmada anataz TiO₂ fotokatalizörleri (Merck ve BDH) farklı sıcaklıklarda asit veya baz muamelesine tabi tutulmuştur. Bu fotokatalizörlerin aktivite testleri 3piridinmetanol, 4-metoksibenzil alkol ve 5-(hidroksimetil)-2-furaldehitin seçici fotokatalitik yükseltgenme tepkimeleri ile çevre dostu koşullarda gerçekleştirilmiştir. Katalizörler XRD, TGA, BET, TEM, Fotolüminesans, FT-IR, Raman, DRS ve Fotoakım teknikleriyle karakterize edilmiştir. Asit veya baz muameleli katalizörler muamelesiz olanlara kıyasla cok daha yüksek fotokatalitik aktivite göstermistir. Bu muameleler kısmi yükseltgenme ürünlerine karşı seçicilik değerlerinde bir iyileşme göstermemesine karşın, reaksiyon hızını arttırdığından ürün verimi de artmıştır. Katalizörlerin zararlı bileşiklerin bertarafında da etkin bir şekilde kullanılabileceğini göstermek için, geliştirilen katalizörlerle 4-nitrofenol etkin bir şekilde fotokatalitik bozundurulmuştur. Katalizörlerin aktivitesini daha da iyileştirmek için asit veya baz muameleli ve muamelesiz TiO₂ katalizörlere fotoindirgenme metoduyla Pt nanoparçacıkları katkılanmıştır. TiO₂ yüzeyindeki platin, elektronların TiO₂ iletkenlik bandından Pt nanoparçacıklarına geçişine neden olan elektron çekici olarak işlev görmüş ve böylece fotokatalitik işlem için gerekli olan Pt-TiO₂ üzerindeki elektronboşluk (e^{-}/h^{+}) çiftlerinin sayısını artırmıştır. Pt katkılamanın katalizörleri iyileştirme etkisi yaklaşık olarak basit ve ucuz bir yöntem olan asit veya baz muamelesi kadar olduğu belirlenmiştir. Muameleli katalizörler 700 °C'lik bir ısıl muamele sonrasında

bile kazandıkları fotokatalitik aktiviteyi önemli miktarda korumuştur. Katalizörlerin yapısal karakterizasyonları ile anataz kristal yüzeyinde düzensiz tabakanın asit veya baz muamelesiyle arttığı belirlenmiştir. Fotolüminesans ve fotoakım analizleri, asit veya baz muamelesiyle katalizörlerin e⁻/h⁺ tekrar birleşme hızlarının değişmediğini, bununla birlikte fotokatalizör yüzeyindeki fotoaktif bölgelerin önemli oranda arttığını göstermektedir.

2017, xi + 71 sayfa

Anahtar Kelimeler: Asit muameleli TiO_2 , alkali muameleli TiO_2 , Pt katkılı TiO_2 , heterojen fotokataliz, çevre dostu koşullar, fotokatalitik sentez, vitamin B₃, 3-piridinmetanol, 4-metoksibenzil alkol, 5-(hidroksimetil)-2-furaldehit.

ABSTRACT

M.Sc. Thesis

TiO₂ PHOTOCATALYSTS ACTIVATED by ACID or BASE TREATMENTS for AROMATIC ALCOHOLS OXIDATION

Sıdıka ÇETİNKAYA Afyon Kocatepe University Graduate School of Natural and Applied Sciences Department of Chemistry **Supervisor:** Assoc. Prof. Sedat YURDAKAL

Anatase TiO₂ samples (Merck and BDH) were treated in acid or basic solutions at different temperatures and tested for the photocatalytic partial oxidation of 3pyridinemethanol, 4-methoxybenzyl alcohol and 5-(hydroxymethyl)-2-furaldehyde in environment friendly conditions. Catalysts characterization has been carried out by XRD, TGA, BET, TEM, Photoluminescence, FT-IR, Raman, DRS and Photocurrent analyses. The acid and basic treated samples showed higher photocatalytic activity than the untreated ones; the products yields greatly increased even though the treatments did not improve the selectivity towards the partial oxidation products. Efficient photocatalytic degradation of 4-nitrophenol was also performed to show that these catalysts could be used for degradation of harmfull substrates. In order to further improve the acid or alkaline traated samples activity, Pt was used to decorate both untreated and treated TiO₂; Pt acts as electron scavenger leading to the electrons transfer from TiO₂ conduction band to Pt clusters, thereby boosting the number of photogenerated pairs available for the reaction process. Pt loading determined an improvement of samples reactivity as much as the acid and basic treatment did. Treated catalysts significantly maintained their reactivity performances even after a thermal treatment at 700 °C. The catalysts structural characterization showed that the disordered layer present on anatase crystals surface increased by acid and basic treatment. Photoluminescence and photocurrent analyses show that the recombination rates of e^{-}/h^{+} on the catalysts surface were not changed by acid or alkaline effect, while photoactive sites on the photocatalyst surface were increased significantly.

Keywords: Acid treatment TiO_{2} , alkaline treatment TiO_{2} , Pt loaded TiO_{2} , heterogeneous photocatalysis, friendly environmental conditions, photocatalytic synthesize, vitamin B₃, 3-pyridinemethanol, 4-methoxybenzyl alcohol, 5- (hydroxymethyl)-2-furaldehyde.

TEŞEKKÜR

Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsüne Yüksek Lisans Tezi olarak sunduğum bu araştırmanın konusu, deneysel çalışmaların yönlendirilmesi, sonuçların değerlendirilmesi ve yazımı aşamasında yapmış olduğu büyük katkılarından dolayı tez danışmanım Doç. Dr. Sedat YURDAKAL'a teşekkür ederim. Bu tez çalışmasında TGA, TEM, FT-IR, PL ve Raman analizleri için Corrado GARLISI ve Yrd. Doç. Dr. Giovanni PALMISANO'ya (Khalifa University of Science and Technology - Masdar Institute) ve Fotoakım ölçümleri için Doç. Dr. Levent ÖZCAN'a teşekkür ederim. Ayrıca bu çalışmadaki katkılarından dolayı Prof. Vincenzo AUGUGLIARO'ya (Palermo Üniversitesi) teşekkür ederim.

Bunlara ilaveten ekonomik katkılarından dolayı Afyon Kocatepe Üniversitesi Bilimsel Araştırma Projeleri birimine (BAP Proje no: 17.KARİYER.15) teşekkür ederim.

Ayrıca yüksek lisans tez savunma jürisine katılma nezaketini gösteren Doç. Dr. Yasemin ÇİMEN ve Doç. Dr. Levent ÖZCAN'a teşekkür ederim.

Bu araştırma boyunca maddi ve manevi desteklerinden dolayı aileme teşekkür ederim.

Sıdıka ÇETİNKAYA AFYONKARAHİSAR, 2017

İÇİNDEKİLER DİZİNİ

ÖZET	i
ABSTRACT	iii
TEŞEKKÜR	V
İÇİNDEKİLER DİZİNİ	vi
SİMGELER ve KISALTMALAR DİZİNİ	vii
ŞEKİLLER DİZİNİ	ix
ÇİZELGELER DİZİNİ	xi
1. GİRİŞ	1
2. LİTERATÜR BİLGİLERİ	3
2.1 Fotokatalizör	3
2.2 Fotokatalizör Olarak TiO ₂	3
2.3 TiO ₂ 'nin Diğer Kullanım Alanları	5
2.4 Fotokatalitik Sentezler	6
2.5 Literatürdeki Asit veya Baz Muameleli TiO ₂ Çalışmaları	11
2.6 Fotokatalitik Yükseltgenme Ürünlerinin Önemi	12
3. MATERYAL ve METOT	13
3.1 Fotokatalizörlerin Hazırlanması	13
3.2 Fotokatalizörlerin Karakterizasyonlarında Kullanılan Teknikler	15
3.3 Fotoaktivite Deney Sistemi Kurulumu ve İşlemler	17
3.4 Analitik Teknikler	18
4. BULGULAR VE TARTIŞMA	20
4.1 Karakterizasyon	20
4.2 Fotoaktivite	34
5. SONUÇ	50
6. KAYNAKLAR	52
ÖZGEÇMİŞ EKLER.	63

SİMGELER ve KISALTMALAR DİZİNİ

Katalizörler	
Merck	Merck markalı anataz fazlı ticari TiO ₂ katalizörü
BDH	BDH markalı anataz fazlı ticari TiO ₂ katalizörü
BDH-HC1-25	Oda sıcaklığında HCl (1 M) muameleli TiO ₂
BDH-HC1-50	50 °C'de HCl (1 M) muameleli TiO ₂
BDH-HC1-80	80 °C'de HCl (1 M) muameleli TiO ₂
BDH-HCl-100	100 °C'de HCl (1 M) muameleli TiO ₂
BDH-0,1M HCl-25	Oda sıcaklığında HCl (0,1 M) muameleli TiO ₂
BDH-NaOH-25	Oda sıcaklığında NaOH (1 M) muameleli TiO ₂
BDH-NaOH-50	50 °C' de NaOH (1 M) muameleli TiO ₂
BDH-NaOH-80	80 °C'de NaOH (1 M) muameleli TiO ₂
BDH-NaOH-100	100 °C'de NaOH (1 M) muameleli TiO ₂
BDH-0,01M NaOH-25	Oda sıcaklığında NaOH (0,01 M) muameleli TiO_2
BDH-0,33M NaOH-25	Oda sıcaklığında NaOH $(0,33 \text{ M})$ muameleli TiO ₂
BDH-0,1M NaOH-25	Oda sıcaklığında NaOH $(0,1 \text{ M})$ muameleli TiO ₂
BDH-12M HCI-25	Oda sıcaklığında HCl (12 M) muameleli TiO_2
BDH-12M NaOH-25	Oda sıcaklığında NaOH (12 M) muameleli TiO_2
Merck-HCl-25	Oda sıcaklığında HCl (1 M) muameleli TiO ₂
Merck-HCl-100	100 °C'de HCl (1 M) muameleli TiO ₂
Merck-NaOH-25	Oda sıcaklığında NaOH (1 M) muameleli TiO ₂
Merck-NaOH-100	100 °C'de NaOH (1 M) muameleli TiO ₂
Pt-BDH	TiO ₂ 'ye %0,5 oranında Pt katkılanmış katalizör
Pt-BDH-400	Pt-BDH'ın 3 saat 400 °C'de yakılmasıyla hazırlanan
	katalizör
Pt-BDH-HCl-100	BDH-HCl-100'e %0,5 oranında Pt katkılanmış katalizör
Pt-BDH-HC1-100-400	Pt-BDH-HCl-100'ün 3 saat 400 °C'de yakılmasıyla
	hazırlanan katalizör
Pt-BDH-NaOH-100	BDH-NaOH-100'e %0,5 oranında Pt katkılanmış katalizör
Pt-BDH-NaOH-100-400	Pt-BDH-NaOH-100'ün 3 saat 400 °C'de yakılmasıyla
	hazırlanan katalizör
Pt-Merck	TiO ₂ 'ye %0,5 oranında Pt katkılanmış katalizör
Pt-Merck-HCl-100	Merck-HCl-100'e %0,5 oranında Pt katkılanmış katalizör
Pt-Merck-NaOH-100	Merck-NaOH-100'e %0,5 oranında Pt katkılanmış
	katalizör
BDH-400	BDH'ın 3 saat 400 °C'de yakılmasıyla hazırlanan katalizör
BDH-700	BDH'ın 3 saat 700 °C'de yakılmasıyla hazırlanan katalizör
BDH-1000	BDH'ın 3 saat 1000 °C'de yakılmasıyla hazırlanan
	katalizör
BDH-HCl-100-400	BDH-HCl-100'ün 3 saat 400 °C'de yakılmasıyla
	hazırlanan katalizör
BDH-HCl-100-700	BDH-HCl-100'ün 3 saat 700 °C'de yakılmasıyla
	hazırlanan katalizör
BDH-HCl-100-1000	BDH-HCl-100'ün 3 saat 1000 °C'de yakılmasıyla
	hazırlanan katalizör
BDH-NaOH-100-400	BDH-NaOH-100'ün 3 saat 400 °C'de yakılmasıyla
	hazırlanan katalizör

BDH-NaOH-100-700	BDH-NaOH-100'ün 3 saat 700 °C'de yakılmasıyla
	hazırlanan katalizör
$BDH-H_2O-80$	80 °C'de saf suda hazırlanan Ti O_2
BDH-H ₂ SO ₄ -25	Oda sıcaklığında H ₂ SO ₄ (1 M) muameleli TiO ₂
BDH-HNO ₃ -25	Oda sıcaklığında HNO ₃ (1 M) muameleli TiO ₂
BDH-KOH-25	Oda sıcaklığında KOH (1 M) muameleli TiO ₂
BDH-NH ₄ OH-25	Oda sıcaklığında NH4OH (1 M) muameleli TiO2

Yöntemler

1 Untermer	
XRD	X-ışını Kırınım Spektrofotometresi
BET	Brunauer–Emmett–Teller
TEM	Geçirimli Elektron Mikroskobu
HPLC	Yüksek Performanslı Sıvı Kromotografisi
TGA	Termogravimetrik Analiz
DRS	Diffüze Reflektans Spektroskopisi
TOC	Toplam Organik Karbon
FT-IR	Fourier Dönüşümlü Kızıl Ötesi Spektroskopisi
PL	Fotolüminesans Spektroskopisi

Substratlar ve Ürünler

Substratial ve Orumer	
4-MBA	4-Metoksibenzil alkol
PAA	4-Metoksibenzaldehit (p-Anisaldehit)
HMF	5-Hidroksimetil-2-furaldehit
FDC	2,5-Furandikarbaldehit
4-NBA	4-Nitrobenzil alkol

Diğer

Diger	
FTO	Flor katkılı kalay oksit
GB	Görünür bölge
HP	Laboratuvar ortamı
MO	Moleküler orbital teorisi
SSA	Spesifik yüzey alanı
UV	Ultra viyole
UV-GB	Ultra viyole-Görünür bölge
UVA	Morötesi ışığın en düşük enerjili kısmı
Eg	Bant genişliği
e	Elektron
eV	Elektron volt
e^{-}/h^{+}	Elektron boşluk çifti
h^+	Pozitif yüklü boşluk
HO•	Hidroksil radikali
mM	Milimolar
mg	Miligram
nm	Nanometre
O_2^{\bullet}	Süperoksit radikali
$SO_4^{\bullet-}$	Sülfat radikali
μg, μL	Mikrogram, Mikrolitre

ŞEKİLLER DİZİNİ

Şekil 2.1	TiO ₂ 'nin anataz, rutil ve brukit faz yapıları	4
Şekil 3.1 Sekil 3.2	Katalizör hazırlanmasında kullanılan reflux (a) ve diyaliz (b) düzeneklerinin görüntüleri Fotoindirgenme islemi ile TiQo'lere Pt katkılanması	13 14
Şekil 3.3	Kullanılan fotokatalitik UV sistemi (a) ve kullanılan lambaların	14
Şekil 4.1	emisyon spektrumu (b) Pt katkılı Merck ve BDH fotokatalizörlerinin XRD kırınımları	17 21
Şekil 4.2	HCl (1 M) veya NaOH (1 M) muameleli ve muamelesiz BDH ve Merck örneklerinin TEM görüntüleri	23
Şekil 4.3	Platinlenmiş TiO ₂ fotokatalizörlerin TEM görüntüleri	25
Şekil 4.4 Salvil 4.5	HCl (1 M) veya NaOH (1 M) muameleli BDH (a) ve Merck (b) TiO_2 fotokatalizörlerinin TGA analizi sonuçları	26
Şekii 4.3	platinlenmiş BDH (a) ve Merck (b) örneklerinin UV-Görünür absorbans spektrumları	27
Şekil 4.6	BDH ve Pt-BDH örneklerinin Raman spektrumları. Şeklin sağında Eg pikinin büyütülmüs hali gösterilmektedir	28
Şekil 4.7	HCl (1 M) veya NaOH (1 M) muameleli BDH (a) ve Merck (b) örneklerinin FT-IR spektrumları	30
Şekil 4.8	Muamelesiz ve platinlenmiş BDH (a) ve Merck (b) TiO ₂ katalizörlerinin Fotolüminesans emisyon spektrumları	31
Şekil 4.9	FTO yüzeyine kaplanmış TiO ₂ fotokatalizörlerinin karanlık ve UV 1şını altında -0,20 V ile 1,10 V arasındaki doğrusal taramalı	
	gerilimde elde edilen fotoakım ölçümleri (b)	32
Şekil 4.10	FTO yüzeyine kaplanmış Pt katkılı TiO ₂ (BDH) fotokatalizörlerinin doğrusal taramalı voltametrik ölçümleri (tarama hızı: 10 mV/s) (a) ve FTO yüzeyine kaplanmış Pt katkılı TiO ₂ katalizörlerinin (BDH) 0,75 V sabit gerilimde elde edilen fotoakım ölçümleri (b)	33
Şekil 4.11	3-Piridinmetanolün yükseltgenme reaksiyonu	34
Şekil 4.12	3-Piridinmetanolün (a) BDH (\blacklozenge), BDH-HCl-25 (\blacksquare) ve BDH-NaOH-25 (\blacktriangle) katalizörleri ile fotokatalitik olarak 3-piridinmetanal (b'deki dolu semboller) ve vitamin B ₃ 'e (c'deki boş semboller) yükseltgenme	
Şekil 4.13	deneyine ait grafikler. Farklı sıcaklıklarda HCl (1 M) (♦) ve NaOH (1 M) (■) ile muamele edilmiş BDH katalizörlerinin muamele sıcaklığına karşı başlangıç reaksiyon hızı	35
Şekil 4.14	Isıl muamele sıcaklığının BDH (♦), BDH-HCl-100 (■) ve BDH- NaOH-100 (▲) katalizörleri üzerindeki etkisi. Dönüşüm değerleri 3	38
	saat reaksiyon süresi içindir	40

Şekil 4.15 Şekil 4.16	HCl (noktalı) veya NaOH (düz) muamelesi derişiminin, 3 saatlik fotokatalitik reaksiyon süresi için 3-piridinmetanol dönüşümüne karşı grafiği. İçteki şekil, HCl (noktalı) veya NaOH (düz)'in 1 M derişim değerine kadar dönüşüm değerlerini göstermektedir HCl (1 M) veya NaOH (1 M) ile muamele edilmiş ve Pt katkılı BDH (a) ve Merck TiO ₂ (b) örneklerinin başlangıç reaksiyon hızı (-r ₀)	42
Şekil 4.17	değerleri. Muamelesiz ve platinlenmemiş örnekler karşılaştırma için verilmiştir	45 46
Şekil 4.18	HMF'nin yükseltgenme reaksiyonu	47

ÇİZELGELER DİZİNİ

Çizelge 4.1	HCl (1 M) veya NaOH (1 M) muameleli ve muamelesiz BDH ve Merck katalizörlerinin birincil parçacık çapı, kristalinite, BET spesifik yüzey alanı, gözenek hacmi ve gözenek çapı	
Cizelge 4.2	sonuçları	21
ş	TiO ₂ katalizörleri ile pH 7'de ve UV ışını altında fotokatalitik	
Çizelge 4.3	yükseltgenme deneyleri sonuçları. 3-Piridinmetanolün (0,5 mM) pH 7'de ve UV ışını altındaki fotokatalitik yükseltgenme deneyi sonuçları: HCl (1 M) veya	37
	NaOH (1 M) muameleli ve muamelesiz BDH $11O_2$ örneklerine isil islemin etkisi	39
Çizelge 4.4	3-Piridinmetanolün (0,5 mM) farklı asit ve bazlarla (1 M) muameleli ve muamelesiz BDH TiO ₂ katalizörleri ile pH 7'de ve UV ısını altında fotokatalitik yükseltgenme deneyleri	0,2
	sonuçları	41
Çizelge 4.5	3-Piridinmetanolün (0,5 mM) farklı derişimlerde asit veya baz	
	fotokatalitik vükseltgenme denevleri sonucları	42
Çizelge 4.6	HCl (1 M) veya NaOH (1 M) muameleli Merck TiO ₂	
	fotokatalizörleri ile pH 7'de ve UV ışını altında 3-	
	sonuçları	43
Çizelge 4.7	Pt katkılı HC1 veya NaOH ile muamele edilmiş BDH ve Merck TiO ₂ fotokatalizörleri ile 3-piridinmetanolün (0,5 mM) fotokatalitik yükseltgenme deney sonucları. Karşılaştırma için Pt	
	katkılı Merck ve BDH katalizörleri de kullanılmıştır	44
Çizelge 4.8	4-Metoksibenzil alkolün (0,5 mM) pH 7'de ve UV ışını altında	47
Cizelge 4.9	HMF'nin (0.5 mM) FDC've pH 7'de ve UV isini altinda	4/
7120180 117	fotokatalitik yükseltgenme deney sonuçları	48
Çizelge 4.10	4-Nitrofenolün (0,5 mM) pH 4'te UV ışını altında fotokatalitik	40
	dozunma deneyi sonuçları	49

1. GİRİŞ

Alkollerin veya farklı fonksiyonel gruba sahip bileşiklerin seçici yükseltgenmeleri organik ve endüstriyel kimya açısından önemlidir (Palmisano et al. 2011). Seçici yükseltgeme ile elde edilen karbonil bileşikleri kimya sanayinde (ilaç, polimer vb.) hammadde veya ara madde olarak yaygın bir şekilde kullanılmaktadır (Lorber et al. 1996, Coleman et al. 2000, Kurusu 2000). Endüstriyel ölçekte karbonil bileşiklerinin sentezi, sıvı fazda Mn, Co ve Ce gibi geçiş metal tuzları katalizörlüğünde, asidik ortamda uygun alkollerden yola çıkılarak ve coğunlukla düşük verimde gerçekleştirilmektedir. Ayrıca geçiş metali katalizörlüğünde gerçekleştirilen tepkimelerde istenmeyen yan ürünlerin ve tehlikeli atıkların oluşması nedeniyle ciddi çevre sorunlarıyla karşılaşılmaktadır (ten Brink et al. 2000, Sheldon et al. 2002, Enache et al. 2006, Li and Chen 2006, Ohkubo et al. 2006).

Günümüz endüstrisinin çevreyi olumsuz etkilediği göz önüne alındığında daha temiz katalitik yükseltgenme yöntemlerinin ve sistemlerinin geliştirilmesi gerektiği aşikardır (Anastas and Eghbali 2010). Süreçlerde yükseltgen seçimi, bir yükseltgeme işleminin çevre üzerindeki etkisini belirleyen önemli bir etkendir. Genelde havadaki oksijen ideal bir yükseltgendir ve oksijen gazının yükseltgen olarak kullanıldığı ve katalizör olarak geçiş metali komplekslerinin kullanıldığı nispeten ılımlı tepkime şartlarında gerçekleşen pek çok katalitik işlem geliştirilmiştir (Warner *et al.* 2004, Kidwai and Mohan 2005, Kirchhoff 2005).

Yükseltgenme tepkimelerinde, yüksek dönüşüm ve seçiciliğin yanı sıra, çevre ve sağlığa yönelik kaygılardan dolayı son zamanlardaki önemli hedeflerden biri su ve/veya süper kritik CO₂ gibi çevreyi kirletmeyen çözücülerin kullanıldığı çevre dostu süreçlerin geliştirilmesi olmuştur. Sulu ortamda ticari öneme sahip bileşiklerin fotokatalitik sentezleri bu süreçlere örnek gösterilebilir (Augugliaro *et al.* 2015).

Fotokataliz, 1s1 ile gerçekleşen katalizin aksine, katalizör olarak kullanılan bir yarı iletken varlığında bir kimyasal tepkimenin uygun enerjili 1ş1n ile gerçekleştirilmesidir (Serpone and Pelizzetti 1989). Fujishima ve Honda'nın 1972 yılında TiO₂'yi elektrot olarak kullandıkları bir sistemde görünür bölge 1ş1ğı ile suyun fotolizini

gerçekleştirmesiyle fotokataliz çalışmaları hız kazanmıştır (Fujishima and Honda 1972). Fotokatalizör olarak birçok yarı iletken kullanılsa da oldukça aktif oluşu, ucuzluğu, zehirli olmayışı ve fotokorozyona karşı dirençli olması nedeniyle en çok fotokatalizör olarak TiO₂ kullanılmaktadır (Fujishima *et al.* 2000, Palmisano *et al.* 2007).

TiO₂, fotokatalizden başka fotovoltaik ve fotoelektrokataliz gibi pek çok alanda da yaygın olarak kullanılmaktadır (Augugliaro *et al.* 2015). TiO₂'nin fotoaktivitesi yüksek olmasına karşın, aktivitesini daha da arttırma amaçlı çalışmalar yaygın bir şekilde devam etmektedir. Bu tez çalışması ile oldukça yaygın kullanım alanı olan TiO₂'nin aktivitesini önemli ölçüde arttırmak amaçlanmıştır.

Bu tez çalışması asit veya baz çözeltilerinin TiO2'nin yapısal ve fotoaktivite özelliklerini geliştirme sonuçlarını ilk kez sistematik olarak sunmaktadır. Bununla birlikte asit veya baz muameleli katalizörlere platin katkılamanın sinerjik etkisi de ilk kez çalışılmıştır. İki ticari TiO₂ fotokatalizörleri farklı derişimlerdeki asit veya baz çözeltileri ile farklı sıcaklıklarda muamele edilmiştir. Ayrıca Pt, muameleli ve muamelesiz TiO₂ katalizörlerin yüzeyine kloroplatinik asitin fotoindirgenmesiyle katkılanmıştır. Katalizörler detaylı bir şekilde, X-ışını Kırınım Spektrofotometresi (XRD), Termogravimetrik Analiz (TGA), Brunauer-Emmett-Teller (BET), Geçirimli Elektron Mikroskobu (TEM), Fotolüminesans, Fourier Dönüşümlü Kızıl Ötesi Spektroskopisi (FT-IR), Raman Spektroskopisi, Diffüze Reflektans Spektroskopisi (DRS) ve Fotoakım teknikleriyle karakterize edilmiştir. Bu katalizörlerin seçici yükseltgenme tepkimeleri suyun çözücü olarak ve havadaki oksijenin yükseltgen olarak kullanıldığı çevre-dostu koşullarda 3-piridinmetanol, 4-metoksibenzil alkol ve 5-(hidroksimetil)-2-furaldehit substratları ile test edilmiştir. Bu substratların yükseltgenme ürünleri olan karbonil bileşikleri ticari öneme sahiptir. Son aşamada ise sulardaki zararlı bileşiklerin bertarafında da kullanılabilirliğini göstermek amacıyla, geliştirilen katalizörler 4-nitrofenolün bozunması tepkimesi için de kullanılmıştır (Soria et al. 2017).

2. LİTERATÜR BİLGİLERİ

2.1 Fotokatalizör

Fotokataliz, 1s1 ile gerçekleşen katalizin aksine, katalizör (fotokatalizör) olarak kullanılan bir yarı iletken varlığında bir kimyasal tepkimenin uygun enerjili ışın ile gerçekleştirilmesidir (Serpone and Pelizzetti 1989).

Fotokatalizör bir yarı iletken olup uygun enerjili ışın ile etkinleştiğinde, katalizör yüzeyinde kuvvetli indirgen ve yükseltgen özellikte aktif bölgeler oluşturur (Augugliaro *et al.* 2010). Katalizörler gibi, fotokatalizörler de tepkimenin daha düşük aktifleşme enerjili yollardan yürümesini sağlayarak tepkimeyi hızlandırır. Fotokatalizörler, bir tepkimenin denge sabitinin sayısal değerini ve denge konumunu değiştirmezler, ancak tepkimenin dengeye gelme süresini kısaltır.

Yarı iletken metal oksitlerin heterojen fotokatalizör olarak kullanımı yaygındır. Bant aralığı enerjisi (Eg) iletkenlik bantının en düşük enerji seviyesi ile temel hal bantının en yüksek enerji aralığı arasındaki farktır. Bir malzemenin bant aralığı 3 eV civarında ise "yarı iletken" olarak tanımlanır (Augugliaro *et al.* 2010).

2.2 Fotokatalizör Olarak TiO₂

Fotokatalizör olarak ZnO, WO₃, CdS, Fe₂O₃ ve ZnS gibi farklı yarı iletkenler de kullanılsa da oldukça aktif oluşu, ucuzluğu, zehirli olmayışı, UV ve güneş ışığı altında aktivite göstermesi ve fotokorozyona karşı dirençli olması nedeniyle fotokatalizör olarak en çok TiO₂ (titania) kullanılmaktadır (Fujishima *et al.* 2000, Palmisano *et al.* 2007).

TiO₂ kristalleri anataz, rutil ve brukit olmak üzere yaygın olarak doğada üç farklı fazda bulunmaktadır (Şekil 2.1). Her faz 6 koordineli Ti atomundan oluşmaktadır. Anataz ve rutil tetragonal kristal yapısında iken, brukit ortorombik yapıdadır. Termodinamik olarak en kararlı fazı rutildir. En çok TiO₂'nin anataz ve rutil fazları veya bu iki fazın karışımları heterojen fotokataliz alanında kullanılmaktadır. Fakat bu iki fazdan anataz TiO₂ diğer fazlara göre daha fazla fotokatalitik etki gösterir (Augustynski 1993, Schiavello 1997). TiO₂'nin brukit fazı doğada çok az bulunur ve saf olarak sentezi zordur (Addamo *et al.* 2008). Amorf TiO₂ fotokatalitik aktivite göstermez (Schiavello 1997, Yurdakal 2010). TiO₂'nin anataz (3,2 eV), brukit (3,2 eV) ve rutil (3,0 eV) fazları benzer band-gap değerlerine sahiptirler (Schiavello 1997).

Şekil 2.1 TiO₂'nin anataz, rutil ve brukit faz yapıları.

Fotokataliz çalışmaları, Fujishima ve Honda'nın (1972) "suyun fotolizi" çalışmasıyla birlikte büyük bir ivme ile ilerlemektedir. Fotokataliz özellikle sularda ve atmosferdeki zararlı bileşiklerin gideriminde kullanılan etkili bir yöntemdir. Bu yöntem son yıllarda geliştirilen ileri oksidasyon işlemleri içinde yer almaktadır. Fotokataliz, homojen fotokataliz ve heterojen fotokataliz olmak üzere ikiye ayrılır. Fotokataliz reaksiyonu homojen sistemlerde tek fazda moleküler düzeyde gerçekleşirken (katalizör çözünürken), heterojen sistemlerde fotokatalizör yüzeyinde gerçekleşir (Mylonas and Papaconstantinou 1994).

Bir fotokatalitik tepkimenin başlaması için enerji olarak uygun enerjili bir ışık kaynağı kullanılır. Elektron-boşluk çiftinin (e⁻/h⁺) bir yarı iletken üzerinde oluşması için yarı iletkenin uygun enerjide bir ışıkla (UV, UV-Görünür veya Görünür) etkileşmesi gerekir. Yükseltgenme-indirgenme reaksiyonlarının başlaması için ortamda uygun türler olmalıdır. Fotokatalitik tepkimeler sırasında, oksijenin indirgenmesi veya suyun

yükseltgenmesi ile oluşan hidroksil radikali kuvvetli bir yükseltgendir. Hidroksil radikalinin oluşmasıyla birlikte hızlı bir fotokatalitik tepkimeler zinciri başlar. Hidroksil radikallerinin hızla substrat molekülü ile tepkimelere girmesi nedeniyle, tepkime kontrolsüzdür ve işlem seçici değildir (Schiavello 1997).

Heterojen fotokataliz çalışma alanında zararlı kirleticilerin bertarafi üzerine çok sayıda araştırma ve derleme makaleleri ile birçok kitap yayınlanmıştır (Augugliaro *et al.* 1988, Serpone and Pelizzetti 1989, Hoffmann *et al.* 1993, Legrini *et al.* 1993, Ollis and Al-Ekabi 1993, Schiavello 1997, Augugliaro *et al.* 1999, Fujishima *et al.* 2000, Kamat and Meisel 2002). Bu çalışmaların çoğunda atık sulardaki pestisitler, boyalar, ilaçlar ve bunların ara ürünleri gibi zararlı kirleticilerin zararsız ürünlere dönüştürülmesi incelenmektedir. Heterojen fotokataliz su veya hava temizliği için kullanılan çok etkin bir ileri oksidasyon teknolojisi olarak dikkate alınır. Çünkü çok az sayıda bileşik, biyolojik muamelelere karşı dirençli olanlar bile, fotokatalitik yükseltgenmeye karşı dirençlidir.

2.3 TiO₂'nin Diğer Kullanım Alanları

Yukarıda söz edildiği gibi TiO₂'nin fotokatalizör olarak sudaki ve havadaki organik kirliliklerin giderimindeki yaygın kullanımından başka pigment olarak boya, kaplama, plastik, kağıt, fiber, ilaç, gıda ve kozmetik ürünlerinde beyazlık, parlaklık ve donukluk sağlamak amacıyla kullanılmaktadır. Bunun yanında, antibakteriyel uygulamalar, ışık saçılmasını önleme ve kanser tümörünün giderimi çalışmalarında da kullanılır (Fujishima *et al.* 2000).

UV veya UV-GB ışığı ile aydınlatılmış TiO₂ kaplı yüzeylerin süper hidrofilik özellik göstermesi nedeniyle, yağmurlu veya buharlı (mutfak veya banyo) ortamlarda buğu önleyici olarak da kullanılmaktadır (Fujishima *et al.* 2008).

TiO₂ solleri dip-coating veya sprey coating gibi bir yöntemle cam, metal veya ahşap yüzeylerin kaplanmasında kullanılabilir. Böylece, aydınlık ortamlarda havanın neminden ve havadaki oksijen ile kendi kendini temizleme özelliği kazanırlar. Ayrıca TiO₂ filmler, kendi kendini temizleme özelliği yanında, metallerin korozyonuna karşı önemli koruma sağlayabilir (Augugliaro *et al.* 2010).

2.4 Fotokatalitik Sentezler

Zararlı bileşiklerin fotokatalitik bozundurulması çalışmaları oldukça başarılı ve yaygın olmasına karşın, fotokataliz çeşitli substratlardan ticari öneme sahip kimyasallar üretmek için seçici indirgenme ve yükseltgenme reaksiyonları gerçekleştirebilme özelliğine de sahiptir (Fox and Dulay 1993, Mahdavi *et al.* 1993, Palmisano *et al.* 2010, Palmisano *et al.* 2011, Lang *et al.* 2014, Augugliaro *et al.* 2015). Seçici fotokatalitik sentez tepkimeleri zararlı reaktifler/katalizörler kullanarak çevreye zarar veren koşullar altında gerçekleştirilen organik sentezlere alternatif olabilir.

Fotokatalitik organik sentezler üzerine birçok derleme makalesi yayınlanmıştır (Ohtani *et al.* 2003, Palmisano *et al.* 2010, Liu *et al.* 2013, Augugliaro *et al.* 2015, Hoffmann 2015, Kou *et al.* 2016). Aşağıda bazı fotokatalitik sentez üzerine yapılan çalışmalar özetlenecektir.

CdS nano malzemesiyle, çeşitli organik çözücüler içinde ve görünür bölge ışığı altında benzilaminden N-benzilidin benzil amin yüksek seçicilikte ve çözücüye bağlı olarak farklı hızlarda sentezlenmiştir (Zhao *et al.* 2013). En yüksek verimde DMF içinde gerçekleştiği için (%99 dönüşümde %99 seçicilik), çeşitli amin bileşiklerinden imin bileşikleri DMF içinde sentezlenmiştir.

Çeşitli metal katyonlarını TiO₂'ye emdirerek hazırlanan katalizörlerin fotoaktivite testleri benzil alkolün benzaldehite, asetonitril çözücüsünde ve görünür bölge ışığı altında gerçekleştirilmiştir (Higashimato *et al.* 2014). En yüksek verim (%37) ve seçicilik (%99) Fe³⁺ ile modifiye edilen TiO₂ ile gerçekleştirilmiştir.

Epoksitlerin alkenlere fotokatalitik olarak indirgenmesi UV ışını altında ve isopropanol çözücüsünde TiO_2 katalizörü ile gerçekleştirilmiştir (Li *et al.* 2013). Burada isopropanol çözücü olmanın yanında epoksitler için indirgen olarak da işlev görür. Tepkimeler ikielektron-transferi mekanizması ile yürümüştür. Gaz fazında, stirenin fotokatalitik olarak WO₃-TiO₂ kompozit katalizörleri ile UV veya güneş ışığı simülatörü ile benzaldehit, stiren oksit ve 1-fenil etanole yükseltgenmiştir (Munoz-Batista *et al.* 2014). Ticari TiO₂ katalizörü (Degussa P25) kıyaslama amaçlı kullanılmış, hazırlanan WO₃-TiO₂ katalizörleri çok daha yüksek seçicilik göstermiştir.

Toluen türevlerinin aldehitlerine fotokatalitik yükseltgenmesi güneş ışığı altında ve benzotriflorid çözücüsünde grafen-CdS-TiO₂ kompoziti ile gerçekleştirilmiştir (Yang *et al.* 2013). Tüm deneyler yüksek seçicilikte yürürken (%98-100), grafen-CdS-TiO₂ kompoziti grafen-CdS'den ve grafen-CdS'de CdS'den daha yüksek aktivite göstermiştir.

Mezoporoz organosilikaya amorf karakterde TiO_2 'lerin kaplanması ile kompozit katalizörler hazırlanmışlardır (Abedi *et al.* 2013). Bu katalizörler ile asetonitril çözücüsünde ve güneş ışığı altında oksim türevlerinden karbonil bileşikleri sentezleri etkin bir şekilde gerçekleştirilebilmiştir.

Alifatik ve aromatik alkollerin TiO_2 katalizörleri ile seçici yükseltgenmesi degaz fazında (Pillai and Sahle-Demessie 2002) yada çözücü olarak asetonitrilin (Mohamed *et al.* 2002) kullanılması ile gerçekleştirilmiştir.

Özellikle son on yılda su fazında fotokatalitik sentez çalışmaları önem kazanmıştır (Palmisano *et al.* 2007, Yurdakal *et al.* 2008, Palmisano *et al.* 2010, Yurdakal and Augugliaro 2012, Augugliaro *et al.* 2015). TiO₂ katalizörü varlığındaki fotokatalitik sentez çalışmalarının neredeyse tamamı, suda kabul edilebilir bir seçicilik göstermediğinden organik çözücüler içinde yürütülmüştür. Organik sentezlerin çevre dostu koşullarda; çözücü olarak suyun, yükseltgen olarak oksijenin ve enerji kaynağı olarak güneş ışığının kullanımı ile gerçekleştirilmesi hem ekonomiktir hem de çevreye zarar vermez. Bu yüzden bilimsel araştırmaların bu yönde ilerlemesi oldukça önem arz eder.

Aromatik alkollerin aromatik aldehitlere yükseltgenmesi seçici reaksiyonlar arasında büyük bir öneme sahiptir. Literatürde su ortamında gerçekleştirilen ilk fotokatalitik 4metoksibenzaldehit (*p*-anisaldehit, PAA) sentezi, laboratuvar sentezi TiO₂'lerle 4metoksibenzil alkolün (4-MBA) seçici yükseltgenmesi ile gerçekleştirilmiştir (Palmisano et al. 2007). PAA'nın endüstriyel sentezi 4-metoksi toluenin sülfürik asit ve mangan dioksit ile yükseltgenmesi ile gerçekleştirilmektedir (Palmisano et al. 2007). Nanoyapılı HP TiO₂ örnekleri TiCl₄'ün sulu süspansiyonunda, ılımlı koşullar altında, farklı süreler için kaynatılarak sentezlenmiştir. HP TiO2 örneklerin kristallenme oranları, kaynama sürelerinin artışı ile paralel olarak artmıştır. Fakat PAA sentezi için en yüksek seçicilik (%42) değeri ve 4-MBA yükseltgenme hızı sentezlenen HP katalizörleri içinde en az kristallenme oranına sahip HP TiO₂ (anataz) katalizörü (kaynama süresi: 0.5 saat) ile gerçeklesmiştir. İki ticari TiO₂ katalizörü de (Merck TiO₂ (%100 anataz) ve Degussa P25 TiO₂ (P25, %80 anataz, %20 rutil)) kıyaslandığında, tüm HP fotokatalizörler ticari olanlara göre daha yüksek verim ve seçicilik göstermiştir. Literatürde ilk kez oda sıcaklığında herhangi bir kimyasal eklemeden hazırlanan laboratuvar sentezi rutil fazlı TiO₂ fotokatalizörlerle daha yüksek seçicilikte (%74) aromatik alkoller karbonil bileşiklerine yükseltgenebilmiştir (Yurdakal et al. 2009). Ayrıca 4-MBA'nın endüstriyel uygulamasına yönelik olarak da sabit yatağı TiO₂ kaplı Pyrex boncuklardan oluşan sürekli bir fotokatalitik reaktör de geliştirilmiş ve modellenmiştir (Yurdakal et al. 2010).

4-MBA ve 4-nitrobenzil alkolün (4-NBA) fotokatalitik olarak aldehit veya asitlerine seçici yükseltgenmeleri çözücü olarak suyun, enerji olarak güneş ışığının ve yükseltgen olarak havanın kullanıldığı çevre dostu koşullarda soy metal katkılı TiO₂'lerle gerçekleştirilmiştir (Yurdakal *et al.* 2017a). Pt, Au, Pd ve Ag katkılı TiO₂'ler (Degussa P25) fotoindirgenme yöntemi ile hazırlanmış ve XRD, TEM, SEM ve DRS yöntemleri ile karakterize edilmiştir. Katkısız TiO₂ (Degussa P25) da kıyaslama amaçlı kullanılmıştır. TiO₂'ye katkılanan metal çeşidi ve miktarı ile reaksiyon pH'ının fotokatalitik reaksiyona etkisi de incelenmiştir. TiO₂'ye soy metal katkılanması hem aktiviteyi, hem de aldehit oluşumuna seçiciliği oldukça arttırmıştır. En iyi aktivite ve seçicilik sonuçları Pt katkılı TiO₂'lerle elde edilmiştir. Düşük pH'larda sırasıyla 4-MBA ve 4-NBA yükseltgenmesinden oldukça yüksek seçicilik). Ayrıca düşük pH'larda 4-MBA yükseltgenme hızı oldukça yüksek iken, 4-NBA yükseltgenme hızı yüksek pH'larda yüksektir. Bu durum muhtemelen aromatik alkollerdeki substitüye grubun

elektron sağlayıcı (metoksi) veya elektron çekici (nitro) özelliklerine bağımlıdır. Fotokatalitik 4-MBA yükseltgenmesinden tüm koşullarda eser miktarda aromatik asit elde edilebilirken, 4-NBA yükseltgenmesinden önemli miktarda 4-nitrobenzoik asit elde edilebilmiştir (yaklaşık %50 seçicilikte).

CdS-grafen kompoziti ile benzil alkol türevleri aldehit ve asitlerine suda ve görünür bölge ışığı altında yükseltgenmişlerdir (Zhang *et al.* 2013). Kompozitteki grafen, CdS'ün fotokorozyonunu inhibe etmiştir. Aromatik halkanın para pozisyonunda elektron sağlayıcı gruplu olanları ile yürütülen deneylerinde aldehit seçiciliği asit seçiciliğine göre daha yüksekken, bu grupların elektron çekici özellikte olması durumunda tersi bir durum gözlenir.

5-(hidroksimetil)-2-furaldehit'ten (HMF) 2,5-furandikarbaldehit'in (FDC) literatürdeki ilk fotokatalitik sentezi Yurdakal vd. (2013) tarafından laboratuvar ortamında hazırlanan anataz, rutil ve brukit fazlı TiO₂ nanoparçacıkları kullanılarak sulu ortamında gerçekleştirilmiştir. Laboratuvar ortamında hazırlanan katalizörler ticari örneklere göre FDC'ye karşı iki katından fazla seçicilik göstermiştir. Fakat ticari katalizörlerin aktiviteleri HP olanlara göre daha yüksektir.

Piperonal laboratuvar ortamında hazırlanan TiO₂'nin sulu süspansiyonunda sentezlenen diğer bir aldehittir (Bellardita *et al.* 2014). Kristallenme oranı düşük katalizör (anataz ve rutil yapılı TiO₂) %30 dönüşüm değeri için %10 ile %19 arasında değişen seçicilik değerleri vermiştir. Buna rağmen ticari TiO₂ sadece %6 seçicilik göstermiştir. Fotokatalitik işlemin diğer ürünleri 1,3-bis(3,4-(metilendioksi)benzil)eter (eser miktarda) ve fotomineralizasyondan kaynaklanan CO₂'dir.

Başarılı kısmi yükseltgenmeye bir başka örnek de hem ticari hem de HP TiO₂ örnekleri kullanılarak trans-ferulik asit, eugenol, isoeugenol ve vanil alkol substratlarından suda vanilinin fotokatalitik sentezidir (Augugliaro *et al.* 2012). Farklı substratlar ile yapılan deneylerden vaniline en yüksek seçicilik değerlerine vanil alkolün ticari TiO₂ fotokatalizörleri ile ulaşılmıştır. Reaksiyon seçiciliği ise dönüşüm arttıkça azalmıştır. Bunun nedeni, oluşan aldehitin, tekrar yükseltgenmesi ile azalmasıdır. Bu nedenle, bozunmayı önlemek için aldehitin oluştuğu sırada geri kazanılması önerilir. Bu amaca yönelik olarak, bir membran işlemi, yani pervaporasyon, fotokatalitik reaksiyona bağlanmıştır (Camera Roda *et al.* 2010, 2011, 2013). Kullanılan gözeneksiz membran PEBA (poli-eter-blok-amid) reaksiyon çözeltisinde bulunan diğer organik bileşiklerin çoğuna göre vaniline karşı çok daha seçicidir. Böylece tepkime sırasında oluşan vanilin, süspansiyonun sürekli mebrandan geçirilerek tekrar reaktöre verilmesi sırasında memran yüzeyinde birikerek, tekrar yükseltgenmesi engellenir (Camera Roda *et al.* 2013). Reaksiyona giren süspansiyondan pervaporasyonla neredeyse saf vanilin kristalleri (yaklaşık %99,9 saflık) elde edilebilmiştir. Nitekim pervaporasyonun, fotokataliz prosesi için çok uygun bir ayırma işlemi olduğu görülmüştür. İki süreçle de aynı koşullarda çalışılabildiği için birbirlerine kolayca entegre olabilirler (Camera Roda *et al.* 2013).

Önceki çalışmalarımızın birinde Pt katkılı TiO₂ fotokatalizörler hazırlanmış UV, UVgörünür ve görünür bölge ışık kaynakları altında çevre dostu koşullarda fotokatalitik olarak 3-piridinmetanolden 3-piridinmetanal ve vitamin B₃ sentezinde kullanılmıştır (Yurdakal et al. 2017b). Katkısız TiO₂'ler de kıyaslama amaçlı kullanılmıştır. Fotokatalizörler XRD, SEM-EDAX, BET, DRS, XPS ve TGA teknikleri ile karakterize edilmiştir. Fotokatalitik aktiviteye ve 3-piridinmetanal ile vitamin B₃ seçiciliğine pH etkisi araştırılmıştır. Oldukça asidik koşullarda (pH = 2) fotokatalizöre bağlı olarak hiç veya düşük aktivite gözlenirken pH'ın (4 ile 12 aralığında) artışı ile seçicilik değerleri artmış, oldukça yüksek değerler elde edilmiştir. Pt katkılama ile fotokatalizörlerin seçicilik değerlerinde ciddi bir artış sağlanmıştır. Pt katkılama ile sadece kristallenme oranı yüksek laboratuvar sentezi katalizörün (Pt-HPRT-400) aktivitesi önemli miktarda artmıştır. Bu katalizör sadece görünür bölge ışığı altında iyi aktivite göstermiş; diğer katalizörlerden 3 saat reaksiyon süresi için yaklaşık 4 kat daha yüksek dönüşüme sahip olmuştur. Piridin halkasının benzilik grup pozisyonunun (2-piridinmetanol ve 4piridinmetanol) etkisi de incelenmiştir. Sonuçta çevre dostu koşullarda vitamin B₃ sentezi için fotokatalizörün az kristallenmiş veya Pt katkılı olması gerektiği sonucuna ulaşılmıştır.

2.5 Literatürdeki Asit veya Baz Muameleli TiO₂ Çalışmaları

Asit muamelesi TiO₂'nin fotokatalitik (Yu et al. 2002, Cheng et al. 2003, Fang et al. 2014, Park and Shin 2014) veya fotovoltaik (Guai et al. 2013, Iyatana et al. 2013, Kim et al. 2013, Song et al. 2013, Liu et al. 2015, Wen et al. 2016) özelliklerini arttırmak için basit bir metottur. Bu muameleler farklı asitlerin farklı derişimleri ve muamele süreleri için çalışılmıştır; yaygın olarak çalışılan asitler HCl (Guai et al. 2013, Song et al. 2013, Park and Shin 2014, Liu et al. 2015, Wen et al. 2016), H₂SO₄ (Yu et al. 2002, Guai et al. 2013, Park and Shin 2014), HNO₃ (Cheng et al. 2003, Kim et al. 2013) ve HF (Iyatani et al. 2013)'dir. Muameleler katalizörlerin XRD kırınımlarına önemli değişiklik yapmamış (Iyatani et al. 2013, Fang et al. 2014, Park and Shin 2014), buna karşın katalizör yüzeylerinde florür (Iyatani et al. 2013) veya sülfatın (Park and Shin 2014) fiziksel adsorpsiyonuna rastlanmıştır. Asit katkılama ile TiO₂ yüzeyindeki hidroksil grup derişiminin artması XPS analizlerinden belirlenmiş ve TiO₂ yüzeylerindeki hidroksil grup artışının fotoaktiviteyi arttırdığı belirlenmiştir (Yu et al. 2002, Cheng et al. 2003, Guai et al. 2013, Park and Shin 2014, Liu et al. 2015). Ayrıca HF (Iyatani et al. 2013) ve HCl (Liu et al. 2015) muameleleri katalizörlerin BET yüzey alanlarını arttırmıştır. Bu konudaki çalışmaların çoğunda özellikle de görünür bölgede bir absorbans artışı gözlenmiştir (Yu et al. 2002, Cheng et al. 2003, Iyatani et al. 2013, Fang et al. 2014). Ayrıca H₂SO₄ muameleli TiO₂, HCl muameleli TiO₂'den daha düşük fotoaktivite göstermiş; muamele edilen TiO₂ yüzeyindeki SO₄²⁻ iyonları •OH radikali tutucu olarak davranmış (SO₄²⁻ + •OH \rightarrow SO₄^{•-} + OH⁻) ve substrat fotobozunmasını önlemiştir (Park and Shin 2014).

Literatürde baz muamelesi nadiren ve sadece nanotüp yapılı TiO₂ katalizörleri hazırlanmasında ön işlem olarak kullanılmıştır. Yapılan çalışmalarda toz TiO₂'ler derişik NaOH çözeltisinde (yaklaşık 11 M) 130 °C'de 20 saat süre ile otoklavlanmış ve farklı sıcaklıklar için yakılmıştır (Kochkar *et al.* 2009, Turki *et al.* 2013).

2.6 Fotokatalitik Yükseltgenme Ürünlerinin Önemi

Bu çalışmada 3-piridinmetanolün fotokatalitik yükseltgenmesi sonucu elde edilen Vitamin B₃'ün dünyadaki yıllık üretimi 35000 ton'dur. Vitamin B₃ genellikle vitamin eksikliği hastalığının önlenmesi ve tedavisinde kullanılmaktadır (Spasiano *et al.* 2015, Yurdakal *et al.* 2017b). Endüstriyel olarak vitamin B₃ ve diğer piridinkarboksilik asitler, yüksek basınçta nitrik asit, permanganat veya kromik asit ve vanadyum-titanyumzirkonyum oksit destekli katalizörler ile pikolinik izomerlerin yükseltgenmesi ile çevre dostu olmayan koşullarda üretilmektedir.

4-Metoksibenzil alkolün fotokatalitik yükseltgenme ürünü *p*-anisaldehit pasta, şekerleme ve içeceklerde yaygın olarak kullanılan endüstriyel öneme sahip bir bileşiktir (Palmisano *et al.* 2007).

HMF'nin fotokatalitik yükseltgenme ürünü FDC; kompleks makrosiklikler, oksoporfirinler, okso-annulenlerin yanısıra mono- ve bis alkenil ve alkinil furanlar gibi birçok organik maddenin sentezinin çıkış maddesi olduğu için en önemli furan türevlerinden biridir (Yurdakal *et al.* 2013).

3. MATERYAL ve METOT

3.1 Fotokatalizörlerin Hazırlanması

BDH veya Merck TiO₂ katalizörlerinin 2,0 gramı 500 mL farklı derişimlerdeki HCl veya NaOH çözeltileri içeren 1,0 L'lik balona eklenmiş ve manyetik karıştırıcı ve geri soğutucu altında 8 saat süre için oda sıcaklığında, 50, 80 veya 100 °C sıcaklıkları için reflux edilmiştir (Şekil 3.1a). Ardından süspansiyon, katalizörün çökerek dekantasyon yoluyla sıvı kısmından ayrılabilmesi için 16 saat oda sıcaklığında bekletilmiştir. Katalizörler polimerik bir membrana alınarak nötral bir pH değerine erişinceye dek deiyonize su ile diyaliz edilmiştir (Şekil 3.1b). Daha sonra katalizörler 60 °C'de ve 100 rpm'de çalışan bir dönerli buharlaştırıcı ile kurutulmuştur (Heidolph model M).

Şekil 3.1. Katalizör hazırlanmasında kullanılan reflux (a) ve diyaliz (b) düzeneklerinin görüntüleri.

Pt katkılamak için hem muameleli, hem de muamelesiz katalizörlerin 0,75 gramı içinde yeteri kadar Pt kaynağı (H₂PtCl₆) 37,5 mL etanol ve 112,5 mL su içeren çözeltiye eklenmiştir (Yurdakal *et al.* 2017a). Pt miktarı, TiO₂ kütlesine göre %0,5 olacak şekilde seçilmiştir. Bu oran daha önceki bir çalışmamızda optimize edilmiştir (Yurdakal *et al.* 2017a). Hazırlanan süspansiyon 15 dakika boyunca ultrasonik banyoya tabi tutulmuştur. Pt katkılama gaz giriş çıkışına izin veren iki boyuna sahip 150 mL'lik bir silindirik pyrex kesikli fotoreaktörde gerçekleştirilmiştir. Süspansiyonun homojenliği bir manyetik karıştırıcı yardımıyla sağlanmıştır. Fotoindirgenme için ışık kaynağı olarak 250 W'lık orta basınçlı Hg lambası (Honle UVA hand model) reaktör dışından sisteme

ışın yollamıştır (Şekil 3.2). Lamba ile fotoreaktör arasındaki uzaklık 4,4 cm ve süspansiyona ulaşan ışının enerjisi 315-400 nm arasında 39,2 mW⋅cm⁻² ve 400-1000 nm arasında 150 mW⋅cm⁻²'dir. Bu ölçümler bir radyometre ile ölçülmüştür (Delta Ohm, DO 9721). Fotoreaktör su soğutmalı bir cekete sahiptir; fotoindirgenme sırasında ceketten su geçirilerek reaktör soğutulmuş ve sıcaklık yaklaşık 300 K'de tutulmuştur. Sulu süspansiyona ışık verilmeden 15 dakika önce azot gazı verilmeye başlanmış ve fotokatkılama sırasında da bu işleme devam edilmiştir. Fotoindirgenme yöntemiyle Pt katkılama işlemi 2 saat sürmüştür. Ardından katalizörün çökmesi ve sıvı kısmından dekantasyon yoluyla ayrılabilmesi için süspansiyon bir süre bekletilmiş, ardından katalizörler polimerik bir membran yardımıyla nötral bir pH değerine erişinceye kadar deiyonize su ile diyaliz edilmiş ve kurutulmuştur.

Şekil 3.2 Fotoindirgenme işlemi ile TiO₂'lere Pt katkılanması.

Hazırlanan katalizörlerin ısıl muameleye karşı kararlıklarını kontrol etmek amacıyla bazı TiO₂'ler (asit veya baz muameleli veya Pt katkılı) bir firinda (Protherm) 3 °C/dk sıcaklık artış hızında 3 saat için 400, 700 veya 1000 °C'de atmosfer ortamında yakılmışlardır.

Hazırlanan katalizörler, TiO₂ cinsi, kullanılan asit veya baz ismi, reflux edilme sıcaklığı ve yakılma sıcaklığına göre kodlanmıştır. Örnek olarak, BDH-HCl-100-400 kodlu katalizör BDH TiO₂'nin 1 M HCl çözeltisinde 100 °C'de reflux edilmiş ve 400 °C'de yakılmış katalizörü ifade etmektedir. 1 M dışındaki derişimlerde asit veya baz muameleli katalizörlerin isimlendirilmesinde, derişim değeri de ayrıca verilmiştir (Örnek olarak BDH-12 M HCl-25).

3.2 Fotokatalizörlerin Karakterizasyonlarında Kullanılan Teknikler

Fotokatalizörlerin kristal faz ve kristal boyutu analizi X-ışını kırınımı (XRD) tekniği ile yapılmıştır. Bu amaçla 20 tarama hızı 1,281°/dakika olan Cu K α radyasyonunun kullanıldığı Bruker D8 Advance difraktometresi kullanılmıştır. Katalizörlerin kristalinite yüzdeleri Jensen ve arkadaşlarının önerdiği bir yönteme göre yapılmış ve hesaplanmıştır (Jensen *et al.* 2004). Bu işlem için eşit kütleli TiO₂ ve CaF₂ bir havanda karıştırılarak homojenize edilmiş ve XRD'leri alınmış, anataz (110) ve CaF₂ (220) pik alanları belirlenmiştir. 110 ve 220 pik alanlarının oranının 1,25 olması, katalizörün yüzde yüz anataz kristali içerdiği anlamına gelir.

BET spesifik yüzey alanları, çoklu noktalı BET metoduyla bir Micromeritics (Gemini 2360 model) marka cihaz ile belirlenmiştir. Ölçümden önce örnekler 3 saat süresince 300 °C'de degaz edilmiştir.

Termal Gravimetrik Analizler (TGA) Netzsch STA 449 F3 marka cihazla gerçekleştirilmiştir. Analizler için her bir numuneden yaklaşık 30 mg kullanılmıştır. N₂ atmosferinde sıcaklık 10 °C'den 120 °C'ye kadar 5 °C/dk hızında arttırılmış ve 120 °C'de 15 dk bekletilmiştir. Ardından sıcaklık 120 °C'den 750 °C'ye kadar 10 °C/dk hızında arttırılmıştır. Son olarak sıcaklık 750 °C'den 30 °C'ye kadar 50 °C/dk hızında soğutulmuştur.

Geçirimli Elektron Mikroskobu (TEM) analizleri fotokatalizörlerin morfolojisini ve amorf kısımlarını belirlemek amacıyla kullanılmıştır. Katalizörler bu amaçla 2-propanol içinde süspanse edilmiş, 5 dk ultrasonik banyoya tabi tutulmuş ve 2 µL'si Forvar/Carbon 300-mesh Cu grid (Tedpella) üzerine damlatılmış ve son olarak çözücüsü oda sıcaklığında uçurulmuştur. Analizler 200 kV'da işleyen Tecnai G2 marka TEM ile gerçekleştirilmiştir.

Fotokatalizörlerin yüzey gruplarının karakteristik moleküler titreşimlerini sıvı azot soğutmalı ve MCT dedektörlü bir Bruker VERTEX 80/80v marka FT-IR cihazıyla gerçekleştirilmiştir. Spektrumlar absorbans modu ile alınmıştır. Her bir spektrum 4 cm⁻¹ çözünürlükte 512 ardışık tarama ile 4000-1000 cm⁻¹ dalga boyu aralığında gerçekleştirilmiştir.

Katalizörlerin Raman spektrumları Witec Alpha 300R marka cihazla katalizörlerin kristal fazlarını ve oksijen boşlukları sebebiyle oluşabilecek kaymaları belirlemek amacıyla gerçekleştirilmiştir. Uyarılma dalga boyu 532 nm ve lazer gücü 75 mW'tır. Taramalar 100-800 cm⁻¹ aralığında alınmıştır.

Katalizörlerin Fotolüminesans emisyon spektrumları (PL) katalizörlerin yer aldığı ön yüzey örnek taşıyıcılı bir Perkin Elmer LS 55 Fluoresans Spectrometer cihazıyla alınmıştır. Kuru katalizörlerin PL spektrum alım koşulları: uyarılma dalga boyu 300 nm; tarama hızı: 200 nm/dk; uyarılma yarık genişliği (excitation slit width) 5 nm; emisyon yarığı (emission slit) 10 nm'dir.

Hazırlanan örneklerin UV-Görünür bölge (UV-GB) spektrumları (DRS analizi) Shimadzu UV-2600 marka diffüze reflektans spektroskopisi ile 200-800 nm aralığında alınmıştır. Bu analizlerde BaSO₄ referans olarak kullanılmıştır.

Fotoakım ölçümleri karşıt (Pt) ve referans (Ag/AgCl, 3,0 M KCl) elektrotlara bağlanmış potansiyostat-galvanostat (CompactStat model, Ivium) cihazı kullanılarak gerçekleştirilmiştir. Öncelikle 3,5 mg TiO₂ katalizörü 3,5 mL 2-propanol (1 g/L) 'a ilave edilmiş ve 15 dakika boyunca ultrasonik banyoya tabi tutulmuştur. Her bir TiO₂ süspansiyonunun 10 μ L'si temizlenmiş Flor Katkılı Kalay Oksit (FTO) tabakası (1 cm x 5 cm'lik kısmın yarısı: 1 cm x 2,5 cm) üzerine bir mikropipet ile kaplanmış ve 2-propanolün oda sıcaklığında buharlaşması beklenmiştir. Bu işlem, cam yüzeyi üzerindeki TiO₂ miktarını arttırmak için toplam 15 kez tekrarlanmıştır. Her bir FTO yüzeyine kaplanan toplam TiO₂ miktarı 150 μ g'dır.

Fotoakım ölçümleri elektrolit olarak Na₂SO₄ (1,0 M) içeren 50 mL'lik bir Pyrex beherde gerçekleştirilmiştir. TiO₂ kaplı FTO'nun her bir tarafına, 365 nm'de ışın yayan 3'er adet floresan lamba (Philips, 8W) ile ışık verilmiştir. Lambalar ile fotoanot arasındaki mesafe 7,0 cm olarak ölçülmüştür. Fotoanodun dış yüzeyine çarpan radyasyon enerjisi, bir radyometre ile ölçülmüş, bu değer 315-400 nm arası için ortalama 20 W·m⁻² değerine sahiptir.

3.3 Fotoaktivite Deney Sistemi Kurulumu ve İşlemler

UV ışını altında gerçekleştirilen deneyler için bir 250 mL'lik Pyrex beher fotoreaktör olarak kullanılmıştır (çapı: 6,7 cm) (Şekil 3.3). Süspansiyona ulaşan UVA ışınları 365 nm'de ışın yayan 4 adet floresan lamba (Philips, 8W) ile sağlanmıştır. Işık kaynağı ile reaktördeki süspansiyonun üst kısmı arasındaki mesafe 6,8 cm ve süspansiyona ulaşan ortalama ışık şiddeti 315-400 nm arasında 2,1 mW/cm² dir.

Fotoreaktördeki süspansiyonun homojenliğini sağlayabilmek için reaksiyon süresince süspansiyon sürekli olarak manyetik olarak karıştırılmıştır.

Tüm fotokatalitik deneyler için substrat başlangıç derişimi ve katalizör miktarı sırasıyla 0,50 mM ve 0,20 g·L⁻¹'dir. Lamba açılmadan önce, süspansiyon oda sıcaklığında 30 dakika karıştırılarak termodinamik dengeye gelmesi sağlanmıştır. Deney süresince reaktördeki süspansiyondan belirli zamanlarda örnekler alınmış, 0,45 μ m gözenek çaplı hidrofilik membrandan (Millipore) süzülerek analizleri gerçekleştirilmiştir.

Şekil 3.3 Kullanılan fotokatalitik UV sistemi (a) ve kullanılan lambaların emisyon spektrumu (b).

3.4 Analitik Teknikler

Fotokatalitik deneyden alınan örneklerin kalitatif ve kantitatif analizleri Phenomenex Synergi 4 µm Hydro-RP 80A kolonlu bir Yüksek Performanslı Sıvı Kromatografisi (HPLC) ile 313 K kolon sıcaklığında yapılmıştır. Analiz edilecek substrat ve ara ürünlerinin alıkonma zamanları ve bileşiklerin UV spektrumları bilinen standartlarla (Sigma-Aldrich, saflık \geq 98%) kıyaslanarak yapılmıştır. 3-Piridinmetanol ve HMF için hareketli faz %40 metanol ve %60 deiyonize su içerir ve akış hızı ise 0,2 cm³·dk.⁻¹'dir. 4-MBA için hareketli faz %50 metanol ve %50 1 mM trikloroasetik asit sulu çözeltisi içerir ve akış hızı ise 0,3 cm³·dk.⁻¹'dir.

3-Piridinmetanol ve yükseltgenme ürünlerinin HPLC kromatogramlarında alıkonma zamanları 3-piridinmetanol, 3-piridinmetanal ve vitamin B₃ için sırasıyla yaklaşık 21, 27 ve 9. dakikalardır. 3-Piridinmetanol, 3-piridinmetanal ve vitamin B₃ moleküllerinin analizlerinin yapıldığı dalga boyları sırasıyla 260, 265 ve 263 nm'dir. 4-MBA ve yükseltgenme ürünlerinin HPLC kromatogramlarındaki alıkonma zamanları 4-MBA, PAA ve 4-metoksibenzoik asit için sırasıyla yaklaşık 22, 38 ve 33. dakikalardır. 4-MBA, PAA ve 4-metoksibenzoik asit moleküllerinin analizlerinin yapıldığı dalga boyları sırasıyla yaklaşık 22, 38 ve 33. dakikalardır. 4-MBA, PAA ve 4-metoksibenzoik asit moleküllerinin analizlerinin yapıldığı dalga boyları sırasıyla 260, 265 nm'dir. HMF ve yükseltgenme ürünü FDC'nin HPLC kromatogramlarındaki alıkonma zamanları sırasıyla yaklaşık 18. ve 20. dadikalardır. HMF ve FDC moleküllerinin analizlerinin yapıldığı dalga boyları sırasıyla yaklaşık 283 nm'dir.

3-Piridinmetanolün BDH-HCl-100 katalizörü varlığında pH 7'de ve UV ışını altındaki 3 saat fotokatalitik yükseltgenme deneyi sonrası reaksiyon ortamından alınan numunin HPLC analizine ait kromatogram EK 5'te verilmiştir.

Topam Organik Karbon (TOC) analizleri bir Shimadzu marka TOC (TOC-LCPN model) cihazı ile mineralize olan karbondioksit miktarını belirlemek için yapılmıştır.

Ürünlerin oluşum seçiciliği (%) ve substrat dönüşümü (%) aşağıda formülize edilmiştir;

% Seçicilik = (Oluşan ürün miktarı, mmol)/Reaksiyona giren substrat miktarı, mmol)x100

% Dönüşüm = (Reaksiyona giren substrat miktarı, mmol/Başlangıçtaki substrat miktarı, mmol)x100

4-Nitrofenolün fotokatalitik bozunma deneylerinde 4-nitrofenol derişimlerinin belirlenmesi bir Shimadzu marka UV-Görünür spektrofotometresi ile 318 nm'de yapılmıştır. Nötral koşulda 4-nitrofenol çözeltisi renkli olduğu için, fotolitik tepkimenin de gerçekleşmesini engellemek amacıyla deneyler pH 4'te yürütülmüştür.

4. BULGULAR ve TARTIŞMA

4.1 Karakterizasyon

Şekil 4.1 Pt katkılı Merck ve BDH fotokatalizörlerinin XRD kırınımlarını göstermektedir. Tüm katalizörlerin XRD kırınım değerleri, TiO₂ katalizörlerin anataz fazında olduklarını göstermektedir (JCPDS n. 78-2486). Asit veya baz muameleli katalizörlerin XRD kırınımlarında bir değişiklik gözlenmemiştir. Ayrıca Pt yüzdesi düşük olduğu için, Pt'e ait kırınım değeri de belirlenememiştir. Muamelelerle veya Pt katkısı ile bir fark gözlenmediğinden Şekil 4.1'de sadece Merck ve BDH katalizörlerine ait birer XRD kırınımı verilmiştir.

Çizelge 4.1 muamelesiz, asit veya baz muameleli BDH veya Merck TiO₂ katalizörlerin birincil parçacık çapları, kristaliniteleri (%), BET yüzey alanları, gözenek hacim ve gözenek çapı değerlerini göstermektedir. Tüm katalizörlerin Scherrer eşitliğinden hesaplanan birincil parçacık çapı değerleri, BDH-NaOH-100 katalizörü hariç, birbirlerine yakındır. Jensen metoduyla hesaplanan kristalinite değerleri genellikle asit veya baz muamelesiyle düşmüştür. Bu sonuç daha sonra tartışılacak olan TEM, TGA ve FT-IR analizleriyle uyumludur. Gözenek hacim ve gözenek çapı değerleri de BDH-12M NaOH-25 ile BDH-12M HCl-25 katalizörleri hariç birbirine yakındır; kuvvetli asit ve baz muameleleri ile gözenek hacim ve gözenek çapı değerleri oldukça artmıştır. Özellikle BDH-12M NaOH-25'nin gözenek hacim ve gözenek çapı değerleri oldukça artmıştır. Özellikle BDH-12M NaOH-25'nin gözenek hacim ve gözenek çapı değerleri en yüksektir. Bu durumun sonucu olarak da bu katalizörün BET spesifik yüzey alanı değerleri oldukça yüksektir. Diğer katalizörlerin BET spesifik yüzey alanı değerleri birbirine yakındır. Scherrer eşitliği:

$$t = 0.9\lambda/\beta.\cos(\theta)$$

Denklemde yer alan t; birincil parçacık çapı, λ ; XRD kırınımı analizinde kullaılan X ışınının dalga boyu, β ; radyan cinsinden pik yarı yüksekliğinin genişliği (FWHM), θ ise 2 θ değerinin yarısıdır (Bragg açısı).

Şekil 4.1 Pt katkılı Merck ve BDH fotokatalizörlerinin XRD kırınımları.

Çizelge 4.1	HCl (1	M) v(eya NaO	H (1 M) mua	meleli ve	e muame	lesiz BD	H ve	Merck
	katalizöi	rlerinin	birincil	parçacık	çapı,	kristalini	ite, BET	spesifik	yüzey	alanı,
	gözenek	hacmi	ve gözene	ek çapı so	onuçlar	1.				

	Birincil parçacık	Kristalinite	BET yüzey	Gözenek	Gözenek
	çapı, [nm]	[%]	alanı, [m²/g]	hacmi	çapı
Katalizör				[cm ³ /g]	[nm]
BDH	37,3	81	13,1	0,042	12,4
BDH-HCl-25	40,6	83	11,2	0,028	9,0
BDH-HCl-100	39,9	52	11,5	0,034	12,2
BDH-NaOH-25	38,6	86	11,1	0,031	9,9
BDH-NaOH-100	45,2	61	13,3	0,038	11,6
BDH-12M HCl-25	35,4	63	13,3	0,180	54,3
BDH-12M NaOH-25	42,8	72	18,2	0,400	88,1
Merck	39,1	85	11,3	0,030	20,0
Merck-HCl-25	38,9	74	11,8	0,026	7,9
Merck-HCl-100	40,3	80	11,6	0,036	10,3
Merck-NaOH-25	38,5	74	11,8	0,037	11,2
Merck-NaOH-100	38,6	79	12,2	0,031	9,1
TEM görüntüleri BDH ve Merck örneklerinin morfolojik yapılarını göstermektedir (Şekil 4.2). Muamelesiz BDH ve Merck TiO_2 nanoparçacıkları çok ince (yaklaşık 1 nm) bir amorf TiO_2 tabakasıyla kaplıdır. TEM görüntüleri ile sadece kristal yapıların kafes saçakları gözlenebildiği için bu amorf tabakaları kolayca ayırt edilebilir. Hem asit hem de baz muamelesinden sonra amorf TiO_2 tabakası daha da kalınlaşmıştır.

Baz veya asit muameleli katalizörlerde bu amorf tabaka daha belirgindir. Amorf tabakasının iki anataz parçacığı arasında değil de yüzeyde meydana gelmesi, asit veya baz muamelesinin yeni parçacık aglomerasyonlarına neden olmadığına işarettir. Bu durum BDH-NaOH-25 ve BDH-HCl-100 katalizörlerinin TEM görüntüsündeki büyütülmüş kısmında gösterilmiştir (Şekil 4.2).

Pt katkılı katalizörlerin yüzeyindeki Pt metal nanoparçacıkları, TEM görüntülerindeki siyah beneklerdir (Şekil 4.3). Kristalin TiO₂ nanoparçacıkları yüzeyindeki benekler farklı şekillerde ve 10 nm'ye kadar çaplarda olup homojen bir şekilde dağılmamışlardır. Şekil 4.3'te görüldüğü gibi Pt nanoparçacıklarının kristal kafesleri arasındaki uzaklık yaklaşık 0,224 nm olup bu değer metalik platinin (111) düzlemine işarettir (Shang *et al.* 2010, Zhu *et al.* 2016). Diğer katalizörlerin TEM görüntüleri EK 1'de verilmiştir.

Şekil 4.2 HCl (1 M) veya NaOH (1 M) muameleli ve muamelesiz BDH ve Merck örneklerinin TEM görüntüleri.

Şekil 4.2 (Devam) HCl (1 M) veya NaOH (1 M) muameleli ve muamelesiz BDH ve Merck örneklerinin TEM görüntüleri.

Şekil 4.3 Platinlenmiş TiO₂ fotokatalizörlerin TEM görüntüleri.

Şekil 4.4, asit veya baz muameleli BDH ve Merck TiO₂ katalizörlerinin TGA analizi sonuçlarını vermektedir. Muamelesiz BDH ve Merck katalizörleri neredeyse hiç kütle kaybına uğramamışken (%0,2) asit veya baz muameleli katalizörlerin kütle kaybı %1 kadardır. Bu sonuç asit veya baz muameleli katalizörlerin yüzeyinde daha fazla hidroksil gruplarının olduğunu göstermektedir. Bununla birlikte bu etki baz muameleli katalizörde daha fazladır. Bu durum daha sonra tartışılacak olan FT-IR analizleri ile de uyumludur. Ayrıca asit muameleli Merck TiO₂ katalizörü asit muameleli BDH TiO₂ katalizöründen daha fazla kütle kaybına uğramıştır.

(b)

Şekil 4.4 HCl (1 M) veya NaOH (1 M) muameleli BDH (a) ve Merck (b) TiO₂ fotokatalizörlerinin TGA analizi sonuçları.

Pt katkılı ve katkısız BDH ve Merck TiO₂ örneklerinin UV-Görünür bölge absorbans spektrumları sırasıyla Şekil 4.5a ve 4.5b'de verilmektedir. Tüm katalizörler için anataz

fazın indirekt band-band geçişlerine (~3,2 eV) karşılık gelen 400 nm'nin altında önemli bir absorbansa sahiptir. Pt katkılı katalizörler görünür bölgede de yüksek bir absorbans verir. HCl veya NaOH muamelesinden sonra platinlenen katalizörlerin görünür bölgedeki absorbans değerleri, sadece platinlenmiş olanlara kıyasla biraz düşmüştür. Bu düşüş baz muameleli olanda daha fazladır. Görünür bölgede kazanılan bu absorbans değeri lokalize yüzey plazmon rezonansı nedeniyledir (Yu *et al.* 2010). Buna karşın asit veya baz muamelesiyle TiO₂'nin absorbans değerlerinde belirgin bir değişim olmamıştır (bu spektrumlar tezde verilmemiştir).

Şekil 4.5 Muamelesiz, HCl (1 M) veya NaOH (1 M) muameleli ve platinlenmiş BDH (a) ve Merck (b) örneklerinin UV-Görünür absorbans spektrumları.

Tüm BDH TiO₂ temelli katalizörlerin Raman spektrumları anataz TiO₂ fazının temel bandlarını göstermektedir (Şekil 4.6). E_g piki O-Ti-O simetrik gerilme titreşimine, B₁g piki O-Ti-O simetrik eğilme titreşimine ve A_{1g} piki O-Ti-O asimetrik eğilme titreşimine işaret eder (Garlisi *et al.* 2016). Muhtemelen TiO₂ yüzeyindeki platinin düşük miktarından dolayı, metalik platine ait herhangi bir Raman pikine rastlanmamıştır. E_g pik kaymaları TiO₂ kafesindeki oksijen boşlukları ile ilişkili olduğundan özel bir önem taşır. Asit ve baz muamelesiyle TiO₂'nin Raman piklerinde herhangi bir kaymaya rastlanmamıştır. Ancak, BDH TiO₂ katalizörleri için Pt katkılama ile Şekil 4.6'da gösterildiği gibi anataz piklerinin genişlemesine ve şiddetinin azalmasının yanında E_g pikinin de daha yüksek dalga boyuna kaymaya sebep olmuştur. Bu muhtemelen kafes büzülmesine sebep olan oksijen boşluklarının oluşmasıyla Ti-O-Ti simetrisinin bozulması sebebiyle Raman piklerinin genişlemesi ve kaymasına neden olmuştur. Diğer katalizörlerin Raman spektrumları EK 2'de gösterilmiştir.

Şekil 4.6 BDH ve Pt-BDH örneklerinin Raman spektrumları. Şeklin sağında Eg pikinin büyütülmüş hali gösterilmektedir.

Katalizörlerin FT-IR spektrumları Şekil 4.7'de verilmiştir. Spektrumlar 3800-2800 cm⁻¹ bölgelerindeki iki geniş bantlarla karakterize edilebilir. Birinci absorpsiyon değeri, 3710 cm⁻¹'deki dar pik de dahil, H bağlı OH grupları ve yüzeydeki Ti⁴⁺'ya koordine su moleküllerinin gerilme titresim bantlarının üst üste çakışması sebebiyledir. Buna karşın ikinci absorpsiyon bandı (1800-800 cm⁻¹) bunların eğilme titreşim modları (1625 cm⁻¹) ve 1200 cm⁻¹'den daha düşük değerdeki kristaldeki Ti-O-Ti köprü gerilme modlarına karşılıktır (Augugliaro et al. 1999, Soria et al. 2017). Spektrumlar HCl ve NaOH muamelelerinin fotokalizörlerin yüzeylerinde büyük miktarda OH gruplarını oluşturduklarını destekler. Bu durumda OH grupları NaOH çözeltişinden direkt olarak katalizör yüzeyine yerleşir. Diğer yandan asit muameleli katalizörlerdeki su kompleksleri bantlarının büyümesi su kompleksleri ile yeni absorpsiyon bölgeleri olarak davranan ve kısmen bağlı oksijenle yer değiştiren amorf titanya kısımlarına Cl iyonlarının katılması sebebiyle açıklanabilir (Soria et al. 2017). Platinin TiO₂ parçacıklarına katkılanması ile katkısız katalizörlere kıyasla su ve OH bant şiddetleri daha düşüktür. TiO₂ nanoparçacıkları üzerindeki metalik Pt'nin fotodepozisyonu, Pt yüzeyinin çıplak olması sebebiyle katkısız ticari katalizörlere kıyasla su ve hidroksil bantlarında küçük bir azalmaya neden olur. 2990-2900 cm⁻¹ ve 2935-2840 cm⁻¹ aralıklarında iki küçük pik simetrik ve asimetrik CH₂ gerilmelerine aittir. Bu pikler muhtemelen platinin fotoindirgenme yöntemiyle katkılanması sırasında yükseltgenme ajanı olarak kullanılan etanolden (veya onun yükseltgenme ürünlerinden) kaynaklanmıştır. Diğer katalizörlerin FT-IR spektrumları EK 3'de gösterilmiştir.

Şekil 4.7 HCl (1 M) veya NaOH (1 M) muameleli BDH (a) ve Merck (b) örneklerinin FT-IR spektrumları.

Şekil 4.8, katalizörlerin Fotolüminesans spektrumlarını vermektedir. Muamelesiz ve asit veya alkali muameleli katalizörler arasında herhangi bir farklılığa rastlanmamıştır. Ana emisyon maksimum piki tüm katalizörler için yaklaşık 420-425 nm arasındadır ve bu TiO₂'nin iletkenlik bandındaki elektronların değerlik bandına geçiş enerjisini belirler. 450-550 nm arasındaki düşük enerjideki küçük sinyal, kristal kafeslerindeki düzensizliklerden kaynaklanan tekrar birleşmeye (recombination) ait Fotolüminesans

pikleridir. Platinli katalizörlerdeki düşük PL şiddeti platinin tekrar birleşme hızını düşürmesi sebebiyledir. Nitekim TiO₂ yüzeyindeki platin, elektronların TiO₂ iletkenlik bandından Pt nanoparçacıklarına geçişine neden olan elektron süpürücü olarak işlev görür ve böylece fotokatalitik işlem için gerekli olan Pt-TiO₂ üzerindeki elektron-boşluk çiftlerinin sayısını artırır. Böylece Pt katkılı katalizörlerin katkısız olanlara kıyasla daha yüksek fotoaktivite göstermeleri bu yüzdendir. Diğer katalizörlerin fotolüminesans spektrumları EK 4'de gösterilmiştir.

Şekil 4.8 Muamelesiz ve platinlenmiş BDH (a) ve Merck (b) TiO₂ katalizörlerinin Fotolüminesans emisyon spektrumları.

Şekil 4.9a, FTO yüzeyine kaplanmış TiO₂ fotokatalizörlerinin -0,20 V ile 1,10 V arasında, hem UV ışını altında hem de karanlıkta 10 mV/s'lik tarama hızıyla alınmış doğrusal taramalı voltametrik ölçümlerini göstermektedir. Tüm numuneler, özellikle -0,20 V'tan sonra, UV ışını ile yüksek akım değerleri gösterir. Şekil 4.9b, FTO yüzeyine kaplanmış TiO₂ katalizörlerinin 0,75 V sabit gerilimde elde edilen fotoakım ölçümlerini göstermektedir. HCl ve NaOH ile muamele edilmiş numunelerin mevcut değerleri, muamele edilmemiş BDH katalizöründen daha yüksektir (Şekil 4.9). Bu sonuçlar, fotoaktivite sonuçları ile birlikte değerlendirildiğinde, muamele edilmiş katalizörlerin muamele edilmemiş olanlardan çok daha aktif olduğunu göstermektedir. Fotokatalitik aktivite sırasında, fotoakım ölçümleriyle gösterildiği gibi, muamele edilmiş numunelerin yükseltgenme reaksiyonu için gerekli olan çok daha fazla radikal üreteceğine işarettir. Bir başka deyişle, asit veya alkali muamelesi ile TiO₂ yüzeyinde daha fazla etkin bölge oluşur.

Şekil 4.9 FTO yüzeyine kaplanmış TiO₂ fotokatalizörlerinin karanlık ve UV ışını altında -0,20 V ile 1,10 V arasındaki doğrusal taramalı voltametrik ölçümleri (tarama hızı: 10 mV/s) (a) ve 0,75 V sabit gerilimde elde edilen fotoakım ölçümleri (b).

Şekil 4.10a, FTO yüzeyine kaplanmış Pt katkılı TiO₂ fotokatalizörlerinin (BDH) -0,20 V ile 1,10 V arasındaki karanlıkta ve UV ışını altında, 10 mV/s'lik tarama hızıyla alınan doğrusal taramalı voltametrik ölçümlerini göstermektedir ve Şekil 4.10b, FTO yüzeyine kaplanmış TiO₂ katalizörlerin 0,75 V sabit gerilimde elde edilen fotoakım ölçümlerini göstermektedir. Pt katkılı olanlar katkısız BDH fotokatalizörlerine göre daha yüksek akım değerlerine sahiptir. Çok ilginçtir ki, karanlıkta Pt-BDH-HCl-100 katalizörünün akım değerleri, UV ışını altındaki Pt-BDH katalizörüyle hemen hemen aynı yüksekliktedir. UV ışını altındaki akım değerleri en yüksektir. Fotoaktivite sonuçları (Kısım 4.2) bu sonuçlarla örtüşmektedir.

(b)

Şekil 4.10 FTO yüzeyine kaplanmış Pt katkılı TiO₂ (BDH) fotokatalizörlerinin doğrusal taramalı voltametrik ölçümleri (tarama hızı: 10 mV/s) (a) ve FTO yüzeyine kaplanmış Pt katkılı TiO₂ katalizörlerinin (BDH) 0,75 V sabit gerilimde elde edilen fotoakım ölçümleri (b).

4.2 Fotoaktivite

Şekil 4.12, 3-piridinmetanolün 3-piridinmetanal ve vitamin B₃'e BDH, BDH-HCl-25 ve BDH-NaOH-25 fotokatalizörleri ile fotokatalitik yükseltgenme deneyleri sonuçlarını göstermektedir. Bu verilerden açıkça görüldüğü gibi asit veya baz muamelesi ile katalizörlerin fotoaktiviteleri oldukça artmıştır. BDH-NaOH-25'in aktivitesi BDH-HCl-25'inkinden daha yüksektir. Tüm tepkimeler için ilk yükseltgenme ürününün (3-pridinmetanal) miktarı ikinci yükseltgenme ürününün (vitamin B₃) miktarından daha fazladır. Asit veya baz muameleleri ile seçicilik değerlerinde bir iyileşme görülmemesine karşın, seçici yükseltgenme ürün miktarı, bir başka deyişle ürün verimi artmıştır.

Şekil 4.11 3-Piridinmetanolün yükseltgenme reaksiyonu.

Şekil 4.12 3-Piridinmetanolün (a) BDH (♦), BDH-HCl-25 (■) ve BDH-NaOH-25 (▲) katalizörleri ile fotokatalitik olarak 3-piridinmetanal (b'deki dolu semboller) ve vitamin B₃'e (c'deki boş semboller) yükseltgenme deneyine ait grafikler.

Şekil 4.12 (Devam) 3-Piridinmetanolün (a) BDH (♦), BDH-HCl-25 (■) ve BDH-NaOH-25 (▲) katalizörleri ile fotokatalitik olarak 3-piridinmetanal (b'deki dolu semboller) ve vitamin B₃'e (c'deki boş semboller) yükseltgenme deneyine ait grafikler.

Çizelge 4.2, 3-piridinmetanolün karbonil bileşiklerine muamelesiz ve farklı sıcaklıklarda HCl veya NaOH ile muamele edilmiş BDH TiO₂ katalizörleri ile gerçekleştirilmiş olan fotokatalitik yükseltgenme sonuçlarını göstermektedir. Bu çizelgede, başlangıç reaksiyon hızı (-r₀), %15 ve %50 dönüşümler için 3-piridinmetanal ve vitamin B₃'e olan seçicilik değerleri, 1 saat ve 3 saat reaksiyon süresi için dönüşüm değerleri, yarı ömür zamanları (t_{1/2}) ve 3 saatlik reaksiyon süresi için TOC değişimi yüzdesi ve pH değişimi değerleri verilmiştir. TOC ve pH değerleri reaksiyon sonunda düştüğünden, sonucun pozitif olarak gösterilebilmesi için "- Δ TOC" ve "- Δ pH" olarak verilmiştir.

$$\Delta TOC (\%) = -[(TOC_{son} - TOC_{ilk})/TOC_{ilk}] \times 100$$

$$-\Delta pH = -(pH_{son} - pH_{ilk})$$

Başlangıç reaksiyon hızı (-r₀) değerleri aşağıdaki eşitlikle hesaplanmıştır:

$$(-r_0) = \left(-\frac{1}{S}\frac{dn}{dt}\right) = \left(-\frac{V}{S}\frac{dC}{dt}\right)$$

Burada n substrat molünü, t fotokatalitik reaksiyon zamanını, S katalizörün spesifik yüzey alanını, V süspansiyon hacmini ve C substrat derişimini ifade etmektedir.

Genellikle NaOH muameleli TiO_2 'ler, HCl muamelilerden daha fazla fotoaktivtgrtgrite artışı göstermişlerdir. Örnek olarak BDH-NaOH-25 ve BDH-HCl-25 katalizörleri muamelesiz olanlara kıyasla sırasıyla 4 ve 6 kat daha fazla başlangıç reaksiyon hızı değerine sahiptir.

3-Piridinmetanolün ikinci yükseltgenme ürünü vitamin B_3 olduğu için substrat dönüşümü arttıkça, vitamin B_3 seçiciliği de artmıştır. Ayrıca ΔpH ve ΔTOC değerleri de dönüşümle ilişkilidir; reaksiyon süresi arttıkça toplam yükseltgenen substrat miktarı da artmıştır.

	-r ₀ .10 ⁶ (mM· m·sa ⁻ ¹)	X ₁ [%]	X ₃ [%]	3- Piridinmetanal Seçiciliği [%]		Vitamin B ₃ Seçiciliği [%]		t _{1/2} [dak]	-∆ТОС [%]	-∆рН
Katalizör				X=15 [%]	X=50 [%]	X=15 [%]	X=50 [%]			
BDH	29,4	15	34	54		8			Düşük	1,15
BDH-HCl-25	96,0	38	77	43	44	8	14	88	11	2,05
BDH-HCl-50	110	41	82	43	40	10	14	81	14	2,10
BDH-HCl-80	110	47	85	49	41	9	14	65		1,62
BDH-HCl-100	129	50	90	38	36	8	14	64	30	2,08
BDH-NaOH-25	163	53	84		40		15	55	26	1,43
BDH-NaOH-50	133	53	90	48	42	11	17	56	27	1,90
BDH-NaOH-80	125	59	94	43	39	12	17	50		1,69
BDH-NaOH-100	89,8	38	81	41	39	10	15	90	18	1,75

Çizelge 4.2 3-Piridinmetanolün (0,5 mM) muameleli ve muamelesiz BDH TiO₂ katalizörleri ile pH 7'de ve UV ışını altında fotokatalitik yükseltgenme deneyleri sonuçları.

 $-r_0 = [mM \cdot m \cdot sa^{-1}]; X = dönüşüm; X_1 ve X_3 = 1 veya 3 saat reaksiyon süresi için dönüşüm; <math>-\Delta TOC$ ve $-\Delta pH$ değerleri 3 saat reaksiyon süresi için verilmiştir.

NaOH ve HCl muameleleri oda sıcaklığının dışında ayrıca 50, 80 ve 100 °C sıcaklıklar için de gerçekleştirilmiştir. HCl muamele sıcaklığının oda sıcaklığından 100 °C'ye artışı ile 3 saat reaksiyon için substrat dönüşümü değerleri %77'den %90'a yükselmiştir. Başlangıç reaksiyon hızı değerleri Şekil 4.13'de görüldüğü gibi genellikle dönüşüm değerleriyle uyum içindedir. NaOH muamelesiyle, HCl muamelesinden farklı olarak muamele sıcaklığı oda sıcaklığından 100 °C yükselirken, $-r_0$ değerleri azalmıştır (1,63x10⁻⁴'ten 8,98x10⁻⁵ mM·m·sa⁻¹'e düşmüştür).

Şekil 4.13 Farklı sıcaklıklarda HCl (1 M) (♦) ve NaOH (1 M) (■) ile muamele edilmiş BDH katalizörlerinin muamele sıcaklığına karşı başlangıç reaksiyon hızı değerleri. Muamelesiz BDH'ın sonucu (▲) ile gösterilmiştir.

HCl ve NaOH muameleli katalizörlerin ısıl muameleye karşı kararlılıklarını sınamak amacıyla 3 saat süre için hava ortamında 1000 °C sıcaklığa kadar farklı sıcaklık değerlerinde katalizörler ısıl muamelelere tabi tutulmuşlardır. Muamelesiz BDH da kıyaslama amaçlı olarak ısıl muameleye uğratılmıştır. Bu katalizörler 3-piridinmetanol yükseltgenmesi tepkimesi ile test edilmiş ve deney sonuçları Çizelge 4.3'te verilmiştir. Şekil 4.14, 3 saat reaksiyon süresi için substrat dönüşüm değerlerine karşı katalizörlere tabi tutulan ısıl muamele sıcaklığı grafiğidir. BDH ve BDH-HCl-100 katalizörleri 700 °C'ye kadar önemli bir aktivite kaybı yaşamamıştır. Buna karşın aynı yakma sıcaklığına tabi tutulan BDH-NaOH-100 ile substrat dönüşüm değeri 3 saat reaksiyon süresi için

muamelelerde bile kararlı olduklarını göstermektedir. Bu aktivite kayıpları muhtemelen ısıl muamelesi ile katalizörlerin yüzey hidroksil gruplarının azalması ve katalizör nanoparçacıklarının kümeleşerek yüzey alanlarının azalması nedeniyledir. Dolayısıyla asit veya baz muamelesiyle kazanılan katalizör yüzeyindeki yüksek aktif bölge sayısı, ısıl muamelesi ile bir miktar azalmaktadır.

Aşırı yüksek yakma sıcaklığında ise beklenildiği gibi BDH-1000 ve BDH-HCl-100-1000 ile neredeyse aynı derecede BDH'ınkinden çok daha düşük aktivite göstermiştir (sırasıyla %18 ve %15 dönüşüm). Bu sıcaklıkta katalizör, yüzeyindeki hidroksil gruplarını kaybeder ve sinterleşme ile yüzey alanı çok düşer.

Çizelge 4.3 3-Piridinmetanolün (0,5 mM) pH 7'de ve UV ışını altındaki fotokatalitik yükseltgenme deneyi sonuçları: HCl (1 M) veya NaOH (1 M) muameleli ve muamelesiz BDH TiO₂ örneklerine ısıl işlemin etkisi.

	X1 [%]	X3 [%]	3-Piridinmetanal Seçiciliği [%]		Vitamin B ₃ Seçiciliği [%]		t _{1/2} [dak]	-∆ТОС [%]	-∆рН
Katalizör			X=15 [%]	X=50 [%]	X=15 [%]	X=50 [%]			
BDH	15	34	54		8			Düşük	1,15
BDH-400	13	31	52		8			Düşük	0,67
BDH-700	17	37	51		8			Düşük	0,44
BDH-1000	8	18						Düşük	0,47
BDH-HCl-100	50	90	38	36	8	14	64	30	2,08
BDH-HC1-100-400	47	86	46	38	11	15	65	12	2,03
BDH-HCl-100-700	43	78	43	38	9	14	78	8	1,63
BDH-HCl-100-1000	6	15						Düşük	0,81
BDH-NaOH-100	38	81	41	39	10	15	90	18	1,75
BDH-NaOH-100-400	44	79	44	38	9	17	76	10	2,32
BDH-NaOH-100-700	27	58	54	46	10	15	135	3	1,84

X= dönüşüm; X_1 ve $X_3=1$ veya 3 saat reaksiyon süresi için dönüşüm; - Δ TOC ve - Δ pH değerleri 3 saat reaksiyon süresi için verilmiştir.

Şekil 4.14 Isıl muamele sıcaklığının BDH (♦), BDH-HCl-100 (■) ve BDH-NaOH-100 (▲) katalizörleri üzerindeki etkisi. Dönüşüm değerleri 3 saat reaksiyon süresi içindir.

Çizelge 4.4, farklı asit ve bazlarla muameleli ve muamelesiz BDH TiO₂ katalizörleri ile fotokatalitik aktivite sonuçlarını göstermektedir. Tüm asit veya baz türleri, BDH'ın aktivitesini iyileştirmiş ancak bu etki asit veya baz türüne göre farklı olmuştur. Asit türünün aktiviteye etkisi, $H_2SO_4 > HCl > HNO_3$ şeklinde ve baz türünün etkisi ise NaOH > KOH > NH₄OH şeklindedir. Bu sonuçlara göre en iyi aktiviteyi BDH-NaOH-25 ve BDH-H₂SO₄-25 katalizörleri göstermişken, en düşük aktivite artışı BDH-HNO₃ ve BDH-NH₄OH katalizörlerinde görülmüştür.

	X1 [%]	X3 [%]	3-Piridinmetanal Seçiciliği, [%]		Vitamin B ₃ Seçiciliği, [%]		t _{1/2} [dak]	-ΔTOC [%]	-∆рН
Katalizör			X=15 [%]	X=50 [%]	X=15 [%]	X=50 [%]			
BDH	15	34	54		8			Düşük	1,15
BDH-HC1-25	38	77	43	44	8	14	88	11	2,05
BDH-H ₂ SO ₄ -25	47	87	47	40	11	14	66	14	1,94
BDH-HNO ₃ -25	27	62	48	44	13	15	135	1	1,91
BDH-NaOH-25	53	84		40		15	55	26	1,43
BDH-NH ₄ OH-25	25	59	47	43	11	14	143	4,3	1,92
BDH-KOH-25	40	74	44	48	15	17	100	12	2,14

Çizelge 4.4 3-Piridinmetanolün (0,5 mM) farklı asit ve bazlarla (1 M) muameleli ve muamelesiz BDH TiO₂ katalizörleri ile pH 7'de ve UV ışını altında fotokatalitik yükseltgenme deneyleri sonuçları.

X = dönüşüm; X_1 ve $X_3 = 1$ veya 3 saat reaksiyon süresi için dönüşüm; - Δ TOC ve - Δ pH değerleri 3 saat reaksiyon süresi için verilmiştir.

Farklı derişimlerde HCl veya NaOH muameleli BDH TiO₂ katalizörleri ile yapılan fotokatalitik 3-piridinmetanol yükseltgenmesi deney sonuçları Çizelge 4.5'te verilmiştir. Ayrıca HCl veya NaOH muamelesi derişiminin, 3 saatlik fotokatalitik reaksiyon süresi için 3-piridinmetanol dönüşümüne karşı grafiği de Şekil 4.15'de gösterilmiştir. Bu sonuçlara göre, baz muamelesinin etkisi çok daha baskındır. Öyleki, 0,01 M NaOH muamelesi ile bile katalizörün substrat dönüşüm değeri %34'ten % 58'e ulaştırmıştır. 0,1 M NaOH muamelesi ile de katalizörde maksimum aktivite iyileştirmesi yapmıştır. HCl'in bu derişim değeri ile (0,1 M) muamelesinde ise katalizörde neredeyse hiç iyileşme görülmemiştir. Yüksek derişimli (12 M) HCl veya NaOH muamelesi ile ise, asit muamelesi ile katalizör 1 M HCl muamelesine kıyasla az bir iyileşme görülürken, 12 M baz muamelesi ile 1 M NaOH muameleli olana kıyasla önemli bir düşüş gözlenmiştir (%59).

Çizelge 4.5 3-Piridinmetanolün (0,5 mM) farklı derişimlerde asit veya baz muameleli BDH TiO₂ katalizörleri ile pH 7'de ve UV ışını altında fotokatalitik yükseltgenme deneyleri sonuçları.

	X1 [%]	X3 [%]	3- Piridinmetanal Seçiciliği [%]		Vitamin B ₃ Seçiciliği [%]		t _{1/2} [dak]	-∆ТОС [%]	-∆рН
Katalizör			X=15 [%]	X=50 [%]	X=15 [%]	X=50 [%]			
BDH	15	34	54		8			Düşük	1,15
BDH-0,1M HCl-25	16	40	52		9			1,8	1,68
BDH-1M HCl-25	38	77	43	44	8	14	88	11	2,05
BDH-12M HCl-25	51	90	37	47	5	12	60	33	1,90
BDH-0,01M NaOH-25	25	58	46	44	10	15	147	5,7	2,16
BDH-0,1M NaOH-25	43	84	48	42	10	14	75	20	2,38
BDH-0,33M NaOH-25	48	84	41	38	13	15	64	22	1,99
BDH-1M NaOH-25	53	84		40		15	55	26	1,43
BDH-12M NaOH-25	24	59	44	44	13	16	148	2,6	1,68

X= dönüşüm; X₁ ve X₃= 1 veya 3 saat reaksiyon süresi için dönüşüm; $-\Delta TOC$ ve $-\Delta pH$ değerleri 3 saat reaksiyon süresi için verilmiştir.

Şekil 4.15 HCl (noktalı) veya NaOH (düz) muamelesi derişiminin, 3 saatlik fotokatalitik reaksiyon süresi için 3-piridinmetanol dönüşümüne karşı grafiği. İçteki şekil, HCl (noktalı) veya NaOH (düz)'in 1 M derişim değerine kadar dönüşüm değerlerini göstermektedir.

Çizelge 4.6, oda sıcaklığında ve 100 °C'de HCl veya NaOH muameleli Merck TiO₂ katalizörlerinin fotokatalitik aktivite sonuçlarını göstermektedir. Hem asit hem de baz muamelesi için artan muamele sıcaklığı ile aktivite artmıştır; oda sıcaklığında yapılan muamele ile dönüşüm değeri %37'den yaklaşık %75'e ve 100 °C yapılan muamele ile dönüşüm değeri %37'den yaklaşık %88'e yükselmiştir. Aktivite artışı ile orantılı olarak - Δ TOC ve - Δ pH değerleri artmıştır. NaOH muameleli BDH'tan farklı olarak (bkz. Çizelge 4.2) NaOH muameleli Merck muamele sıcaklığının artışı ile artan bir aktivite göstermiştir.

	-r ₀ ·10 ⁶ (mM·m ·sa ⁻¹)	X ₁ [%]	X3 [%]	3- Piridinmetanal Seçiciliği [%]		Vitamin B ₃ Seçiciliği [%]		t _{1/2} [dak]	-∆ТОС [%]	-∆рН
Katalizör				X=15 [%]	X=50 [%]	X=15 [%]	X=50 [%]			
Merck	35,4	17	37	52		8			Düşük	1,18
Merck-HCl-25	93,6	39	74	48	46	1	10	84	6	1,88
Merck-HCl-100	117	44	87	38	36	9	14	70	17	2,02
Merck-NaOH-	120	46	77		41		14	67	14	1,72
25										
Merck-NaOH-	115	46	88		40		14	66	23	2,06
100										

Çizelge 4.6 HCl (1 M) veya NaOH (1 M) muameleli Merck TiO₂ fotokatalizörleri ile pH 7'de ve UV ışını altında 3-piridinmetanolün (0,5 mM) fotokatalitik yükseltgenme deneyi sonuçları.

 $-r_0 = [mM \cdot m \cdot sa^{-1}]; X = dönüşüm; X_1 ve X_3 = 1 veya 3 saat reaksiyon süresi için dönüşüm; -<math>\Delta TOC$ ve - ΔpH değerleri 3 saat reaksiyon süresi için verilmiştir.

Çizelge 4.7 muamelesiz, HCl veya NaOH muameleli ve Pt katkılı BDH ve Merck katalizörlerinin fotoaktivite sonuçlarını göstermektedir. Muamelesiz TiO₂'nin platinlenmesi katalizörün fotoaktivitesini önemli bir ölçüde arttırmıştır; 1 saat reaksiyon süresi için TiO₂ katalizörlerinin aktivitelerini %15'ten %55'e (BDH) ve %17'den %41'e (Merck) yükseltmiştir. Asit veya baz muameleli TiO₂ katalizörlerinin platinlenmesi aktiviteyi daha da arttırmıştır; örnek olarak 1 saat reaksiyon süresi için Pt-BDH-HCl-100 ve Pt-Merck-HCl-100 katalizörlerinin dönüşüm değerleri platinsiz olanlara kıyasla sırasıyla %55'den %66'ya ve %41'den %61'e yükselmiştir. Pt-BDH-NaOH-100 ve Pt-Merck-NaOH-100 katalizörleri, HCl muameleli ve Pt katkılı olanlara kıyasla daha az aktivite göstermişlerdir. Platinlenmiş BDH katalizörlerinin bir kısmı 3

saat için 400 °C'de (Pt-BDH-HCl-100-400 ve Pt-BDH-NaOH-100-400) yakılmıştır. Bu ısıl muamele fotoaktiviteyi önemli bir miktarda etkilememiştir. Önceki çalışmamızdaki muamelesiz Degussa P25 ve laboratuvar sentezi TiO₂ katalizörlerin XPS sonuçlarıyla örtüştüğü gibi (Yurdakal *et al.* 2017b) yakılmamış Pt katkılı TiO₂ yüzeyinde sadece metalik platin (Pt⁰) yer alırken, yakılmış TiO₂ yüzeyinde platin hem metalik (Pt⁰) hem katyonik (Pt⁺²) formda yer alır.

	-r ₀ ·10 ⁶ (mM· m·sa ⁻¹)	X ₁ [%]	X ₃ [%]	3-Piridinmetanal Seçiciliği [%]		Vitamin B ₃ Seçiciliği [%]		t _{1/2} [dak]	-∆ТОС [%]	-∆рН
Katalizör	,			X=15 [%]	X=50 [%]	X=15 [%]	X=50 [%]			
BDH	29,4	15	34	54		8			Düşük	1,15
Pt-BDH	136	55	91		58		15	52	3	2,53
Pt-BDH-400	166	60	88		54		17	40	8	2,66
BDH-HC1-100	129	50	90	38	36	8	14	64	30	2,08
Pt-BDH-HCl-100	203	66	93		41		15	33	21	2,28
Pt-BDH-HC1- 100-400	203	64	92		51		16	34	7	2,65
BDH-NaOH-100	89,8	38	81	41	39	10	15	90	18	1,75
Pt-BDH-NaOH- 100	145	54	82		41		16	53	8	1,80
Pt-BDH-NaOH- 100-400	144	55	81		47		20	52	15	2,16
Merck	43,4	17	37	52		8			Düşük	1,18
Pt-Merck	117	41	74	49	49	7	15	88	4	2,07
Merck- HCl-100	117	44	87	38	36	9	14	70	17	2,02
Pt-Merck-HCl- 100	192	61	89		39		14	37	19	2,07
Merck-NaOH-100	115	46	88		40		14	66	23	2,06
Pt-Merck-NaOH- 100	141	50	83		42		17	60	8	1,99

Çizelge 4.7 Pt katkılı HC1 veya NaOH ile muamele edilmiş BDH ve Merck TiO₂ fotokatalizörleri ile 3-piridinmetanolün (0,5 mM) fotokatalitik yükseltgenme deney sonuçları. Karşılaştırma için Pt katkılı Merck ve BDH katalizörleri de kullanılmıştır.

 $-r_0 = [mM \cdot m \cdot sa^{-1}]; X = dönüşüm; X_1 ve X_3 = 1 veya 3 saat reaksiyon süresi için dönüşüm; -\Delta TOC ve -\Delta pH değerleri 3 saat reaksiyon süresi için verilmiştir.$

Şekil 4.16 HCl (1 M) veya NaOH (1 M) muameleli ve Pt katkılı BDH ve Merck TiO₂ katalizörlerinin başlangıç reaksiyon hızı değerlerini vermektedir. Asit veya baz muamelesiz ve asit ve baz muameleli ancak platinsiz katalizörler de kıyaslama amaçlı gösterilmiştir. İlginçtir ki BDH veya Merck TiO₂ katalizörlerinin platinlenmesi yaklaşık olarak asit veya baz muamelesi kadar aktivite artışına neden olmuştur. Her iki yöntemin birlikte kullanılması (platinleme ile asit veya baz muamelesi birlikte) aktiviteyi sinerjik olarak arttırmıştır.

Şekil 4.16 HCl (1 M) veya NaOH (1 M) ile muamele edilmiş ve Pt katkılı BDH (a) ve Merck TiO₂ (b) örneklerinin başlangıç reaksiyon hızı (-r₀) değerleri. Muamelesiz ve platinlenmemiş örnekler karşılaştırma için verilmiştir.

Çizelge 4.8, 4-MBA'nın PAA'ya ve 4-metoksibenzoik asite, Çizelge 4.9 ise 5-(hidroksimetil)-2-furaldehit (HMF)'ten 2,5-furandikarbaldehit (FDC)'e pH 7'de ve UV ışını altında fotokatalitik yükseltgenme deney sonuçlarını göstermektedir. Her iki substratın karbonil bileşiklerine yükseltgenme seçicilikleri oldukça düşüktür. 4-MBA'nın yükseltgenmesinde %10 civarı PAA seçiciliği gözlenirken eser miktarda 4metoksibenzoik asit elde edilmiştir. Bu durum muhtemelen oluşan asitin çalışılan şartlar altında oldukça kararsız oluşunda kaynaklanmaktadır. FDC seçiliği ise PAA'ya kıyasla daha da düşüktür (yaklaşık % 4). Ürünün fotokatalitik deney koşullarındaki kararlılığı, ürün seçiciliğinde etkin rol oynar (Yurdakal vd. 2017b). 3-Pridinmetanol yükseltgenme deneyleri sonuçlarına benzer şekilde, HCl veya NaOH muameleli TiO₂'ler, muamelesiz olanlara kıyasla önemli bir fotoaktivite artışı göstermişler, buna karşın seçicilik değerlerinde bir iyileşmeye rastlanmamıştır. Yine benzer bir şekilde BDH-12MNaOH-25 katalizöründe ise dikkate değer bir iyileşme görülmemiştir.

Çizelge 4.8'de "BDH-H₂O-80" ile simgelenen katalizör, BDH'ın saf su içinde 80 °C'de muamele görmesi ile hazırlanmıştır. Bu işlem sonunda bir iyileşme görülmemesi, iyileşmenin ısıl muameleden değil, asit veya bazdan kaynaklandığını kanıtlamaktadır. Farklı asit çeşitleri ile yapılan ısıl muamelelerde, benzer etki görülmekle birlikte en iyi sonuç sülfürik asit muamelesi ile sağlanmıştır. Ardından, HCl ve en az iyileşme etkisi HNO₃ muamelesi ile elde edilmiştir. Bu asit sıralaması 3-piridinmetanol yükseltgenme deneylerindeki ile aynıdır.

4-Metoksibenzil alkol (4-MBA)

p-anisaldehit (PAA)

Şekil 4.17 4-MBA'nın yükseltgenme reaksiyonu.

	X1 [%]	X3 [%]	Aldehit (p- anisaldehit) Seçiciliği [%]		Asi metoksibo Seçi [ˈ	it (4- enzoik asit) iciliği %]	t _{1/2} [dak]	-∆ТОС [%]	-∆рН
Katalizör			X=15 [%]	X=50 [%]	X=15 [%]	X=50 [%]			
BDH	21	58	13	11	4	2	150	9,6	2,71
BDH-H ₂ O-80	19	58	12	10	1	1			2,97
BDH-HC1-25	44	87	11	8	0,6	0,4	70	25	3,13
BDH-12M HCl-25	56	96		7		0,7	51	26	2,98
BDH-HC1-50	51	91		7		0,7	58	14	2,99
BDH-HC1-80	50	88	10	8	0,1	0,4	60		3,08
BDH-HCl-100	55	94		7		0,4	53	16	3,07
BDH-NaOH-25	47	85		9		0,4	65	22	2,94
BDH-12M NaOH-25	29	58	9	9	2	1	148	13	2,6
BDH-NaOH-50	56	91		9		1	51	21	2,89
BDH-NaOH-80	68	100		10		0,6	39		3,02
BDH-NaOH-100	49	89	10	8	2	0,8	62	20	2,86
BDH-H ₂ SO ₄ -25	48	92	8	8	2	0,8	63	17	2,98
BDH-HNO ₃ -25	38	84	9	8	1	0,6	84	10	2,9
Merck	18	45	16		0,4			Düşük	2,74
Merck-HCl-25	32	67	15	11	0,9	1	118	6,6	2,75
Merck-HCl-100	46	83		8		0,4	68	13	2,89
Merck-NaOH-25	38	70	16	12	0,5	0,8	92	13	2,66
Merck-NaOH-100	49	86		10		0,9	61	23	2,66

Çizelge 4.8 4-Metoksibenzil alkolün (0,5 mM) pH 7'de ve UV ışını altında fotokatalitik yükseltgenme deney sonuçları.

X= dönüşüm; X_1 ve $X_3=1$ veya 3 saat reaksiyon süresi için dönüşüm; - Δ TOC ve - Δ pH değerleri 3 saat reaksiyon süresi için verilmiştir.

Şekil 4.18 HMF'nin yükseltgenme reaksiyonu.

	X ₁ [%]	X3 [%]	FDC Seçiciliği [%]	t _{1/2} [dak]	-∆ТОС [%]	-∆рН
Katalizör			X=50%			
BDH	31	67	3	121		3,06
BDH-HC1-25	42	79	4	74	13	2,96
BDH-12M HCl-25	60	95	3	42	28	2,99
BDH-HC1-80	54	93	4	54		3,23
BDH-NaOH-25	64	81	3	77	23	2,64
BDH-12M NaOH-25	26	62	3	144	4,9	2,6
BDH-NaOH-80	51	90	5	58		2,73
BDH-H ₂ SO ₄ -25	59	91	3	48	21	2,92
BDH-HNO ₃ -25	48	88	2	63	9,4	2,87

Çizelge 4.9 HMF'nin (0,5 mM) FDC'ye pH 7'de ve UV ışını altında fotokatalitik yükseltgenme deney sonuçları.

X= dönüşüm; X₁ ve X₃= 1 veya 3 saat reaksiyon süresi için dönüşüm; Δ TOC ve Δ pH değerleri 3 saat reaksiyon süresi için verilmiştir.

Çizelge 4.10, 4-nitrofenolün bozunma deneyine ait sonuçları göstermektedir. Diğer yükseltgenme deneylerinden farklı olarak asit muameleli katalizörler baz muameleli olanlardan daha yüksek aktivite göstermişlerdir. Ayrıca farklı asit muameleli katalizörler arasında önemli bir aktivite farklılığı olmamıştır. BDH-12M NaOH-25 katalizörü ise BDH'dan daha az aktivite göstermiştir. Bu sonuçlar muameleli katalizörlerin genelde tüm moleküller için ciddi bir aktivite artışı gösterdikleri, ancak bu artışın molekül çeşidine önemli ölçüde bağlı olduğunu göstermektedir.

	X ₁	X ₁ X ₃		-ΔΤΟϹ	-∆pH
Katalizör	[%]	[%]	[dak]	[%]	
BDH	42	82	74	9,70	0,34
BDH-HC1-25	64	95	38	40,6	1,25
BDH-H ₂ SO ₄ -25	65	98	37	50,5	0,3
BDH-HNO ₃ -25	66	96	35	39,2	0,34
BDH-12M HC1-25	64	94	38	61,1	0,32
BDH-HC1-50	64	94	36	44,5	0,35
BDH-HC1-80	65	93	37		0,45
BDH-HCl-100	67	96	34	57,4	0,22
BDH-NaOH-25	45	78	73	39,4	0,32
BDH-12M NaOH-25	32	59	135	11,0	0,2
BDH-NaOH-50	51	86	58	46,0	0,35
BDH-NaOH-80	52	85	57		0,37
BDH-NaOH-100	56	96	45	67,4	0,39
Merck	46	85	66	21,8	0,22
Merck-HCl-25	51	86	59	41,9	0,27
Merck-HCl-100	59	94	46	57,7	0,22
Merck-NaOH-25	36	76	90	45,0	0,22
Merck-NaOH-100	52	95	57	71,0	0,28

Çizelge 4.10 4-Nitrofenolün (0,5 mM) pH 4'te UV ışını altında fotokatalitik bozunma deneyi sonuçları.

 X_1 ve X_3 = 1 veya 3 saat reaksiyon süresi için dönüşüm; - Δ TOC ve - Δ pH değerleri 3 saat reaksiyon süresi için verilmiştir.

5. SONUÇ

Bu çalışmada, iki ticari TiO₂ fotokatalizöre asit veya baz muamelesi etkisi, öncelikle 3piridinmetanolün çevre dostu koşullarda yükseltgenme tepkimesi için araştırılmıştır. Reaktivite bu işlemlerle önemli ölçüde artmıştır (reaksiyon başlangıç hızı muamelesiz numunelerinkinden 5,5 kat daha yüksek). Asit veya baz muameleli katalizörler kazandıkları fotoaktivitelerini, 700 °C'ye kadar ısıl işlemden sonra bile korumuştur. Ardından hazırlanan katalizörler ile 4-MBA'dan fotokatalitik PAA sentezi ve HMF'den fotokatalitik FDC sentezi reaksiyonları gerçekleştirilmiştir. Bu tepkimelerde de geliştirilen katalizörler benzer yüksek aktivite artışı sonuçları vermiştir. Ürün seçiciliği bu muamelelerden sonra ivilesmese bile, artan aktivite nedeniyle ürün verimleri önemli ölçüde artmıştır. Tüm TiO₂ katalizörler detaylı bir şekilde karakterize edilmiştir. Muamele edilmiş TiO₂ katalizörlerinin karakterizasyonu, anataz kristalleri yüzeyinde bulunan düzensiz tabakanın asit ve bazik muamele sonucu arttığını göstermiştir. Numunelerin aktivitelerini iyileştirmek için Pt, hem muamele edilmemiş hem de muamele edilmiş TiO₂ üzerine katkılanmıştır; Pt, elektronların TiO₂ iletim bandından Pt kümelerine geçişine neden olan elektron süpürücü gibi davranır ve böylece reaksiyon işlemi için mevcut elektron-boşluk çiftlerinin sayısını artırır.

Sulardaki zararlı bileşiklerin bertarafında da kullanılabilirliğini göstermek amacıyla, geliştirilen katalizörler 4-nitrofenolün bozunması tepkimesi için de denenmiş, muameleli katalizörler ile etkin sonuçlar elde edilmiştir (Soria *et al.* 2017).

Fotoakım ölçüm sonuçları fotoaktivite sonuçları ile birlikte değerlendirildiğinde, muamele edilmiş katalizörler fotokatalitik tepkimeler sırasında, muamele edilmemiş olanlara kıyasla, çok daha fazla radikal üretmektedir. Bir başka deyişle, fotoakım ölçümleri asit veya baz muamelesinin TiO₂ yüzeyinde daha fazla etkin bölgeler oluşturduğunu kanıtlamıştır.

Basit ve ucuz bir yöntem olan asit veya baz muameleli fotokatalizörler, bir soy metal olan platinle katkılı olan katalizörler kadar bir aktivite artışı gösterdiği belirlenmiştir. Her iki yöntemin birlikte kullanılması (asit veya baz muamelesinin ardından Pt katkılama) aktiviteyi sinerjik bir şekilde arttırmıştır.

50

Bu tez çalışmasında, fotokataliz, fotoelektrokataliz, fotovoltaik, ince filmler, kendi kendini temizleyen malzemler gibi çeşitli alanlarda oldukça yaygın kullanım alanı bulunan TiO₂'nin basit ve ucuz bir yöntem olan asit veya alkali muamelesi ile aktivitesinin önemli miktarda arttırılabileceği gösterildiğinden, bundan sonraki TiO₂ ile yapılan çalışmalar için bir dönüm noktası olması beklenmektedir. Özellikle aside kıyasla 10 kat daha düşük derişimde NaOH muamelesi ile etkin bir aktivite artışı sağlanmış olması, baz muamelesinin çok daha avantajlı olduğunu göstermiştir.

6. KAYNAKLAR

- Abedi, S., Karimi, B., Kazemi, F., Bostina, M. and Vali, H. (2013). Amorphous TiO₂ coated into periodic mesoporous organosilicate channels as a new binary photocatalyst for regeneration of carbonyl compounds from oximes under sunlight irradiation. *Organic and Biomolecular Chemistry*, **11**: 416-419.
- Addamo, M., Augugliaro, V., Bellardita, M., Di Paola, A., Loddo, V., Palmisano, G., Palmisano, L. and Yurdakal, S. (2008). Environmentally friendly photocatalytic oxidation of aromatic alcohol to aldehyde in aqueous suspension of brookite TiO₂. *Catalysis Letters*, **126**: 58-62.
- Almquist, C.B. and Biswas, P. (2001). The photo-oxidation of cyclohexane on titanium dioxide: an investigation of competitive adsorption and its effects on product formation and selectivity. *Applied Catalysis A: General*, **214**: 259–271.
- Anastas, P. and Eghbali, N. (2010). Green chemistry: principles and practice. *Chemical Society Reviews*, **39:** 301–312.
- Augugliaro, V., Palmisano, L., Sclafani, A., Minero, C. and Pelizzetti, E. (1988). Photocatalytic degradation of phenol in aqueous titanium dioxide dispersion. *Toxicological and Environmental Chemistry*, 16: 89–109.
- Augugliaro, V., Coluccia, S., Loddo, V., Marchese, L., Martra, G., Palmisano, L. and Schiavello, M. (1999). Photocatalytic oxidation of gaseous toluene on anatase TiO₂ catalyst: mechanistic aspects and FT-IR investigation. *Applied Catalysis B: Environmental*, **20:** 15-27.
- Augugliaro, V., Loddo, V., Pagliaro, M., Palmisano G. and Palmisano, L. (Eds.), (2010). Clean by light irradiation: practical applications of supported TiO₂, RSC, Cambridge, UK.
- Augugliaro, V., Camera Roda, G., Loddo, V., Palmisano, G., Palmisano, L., Parrino, F. and Puma, M. A. (2012). Synthesis of vanillin in water by TiO₂ photocatalysis.

Applied Catalysis B: Environmental, 111–112: 555–561.

- Augugliaro, V., Camera-Roda, G., Loddo, V., Palmisano, G., Palmisano, L., Soria, J. and Yurdakal, S. (2015). Heterogeneous photocatalysis and photoelectrocatalysis: from unselective abatement of noxious species to selective production of highvalue chemicals. *Journal of Physical Chemistry Letters*, 6: 1968-1981.
- Augustynski, J. (1993). The role of the surface intermediates in the photoelectrochemical behaviour of anatase and rutile TiO₂. *Electrochimica Acta*, **38**: 43.
- Bellardita, M., Loddo, V., Palmisano, G., Pibiri, I., Palmisano, L. and Augugliaro, V. (2014). Photocatalytic green synthesis of piperonal in aqueous TiO₂ suspension. *Applied Catalysis B: Environmental*, 144: 607–613.
- Camera Roda, G., Augugliaro, V., Loddo, V., Palmisano, G. and Palmisano, L. (2010). Production of aldehydes by oxidation in aqueous medium with selective recovery of the product by means of pervaporation. WIPO Patent WO2011154925A1, U.S. Patent US20130123546, European Patent EP2580182A1.
- Camera Roda, G., Santarelli, F., Augugliaro, V., Loddo, V., Palmisano, G., Palmisano, L. and Yurdakal, S. (2011). Photocatalytic process intensification by coupling with pervaporation. *Catalysis Today*, **161**: 209–213.
- Camera Roda, G., Augugliaro, V., Cardillo, A., Loddo, V., Palmisano, G. and Palmisano, L. (2013). A pervaporation photocatalytic reactor for the green synthesis of vanillin. *Chemical Engineering Journal*, **224**: 136–143.
- Caronna, T., Gambarotti, C., Palmisano, L., Punta, C. and Recupero, F. (2005). Sunlight-induced reactions of some heterocyclic bases with ethers in the presence of TiO₂. A green route for the synthesis of heterocyclic aldehydes. *Journal of Photochemistry and Photobiology A: Chemistry*, **171:** 237–242.

- Cermenati, L., Dondi, D., Fagnoni, M. and Albini, A. (2003). Titanium dioxide photocatalysis of adamantane. *Tetrahedron*, **59**: 6409–6414.
- Coleman, K.S., Bedel, L.J.L. and Osborn, J.A. (2000). Comptes rendus de l'Academie des sciences series IIC: Chemistry, **3:** 765-769.
- Cheng, B., Yu, J.-G., Zang, X.-Q. and Zhao, X.-J. (2003). Enhancing photocatalytic activity of the sol-gel derived TiO₂ thin films by nitric acid treatment. *Journal of Materials Science Letters*, **22**: 967–970.
- Enache D. I., Edwards J. K., Landon P., Solsona-Espriu, B., Carley, A. F., Herzing, A. A., Watanabe, M., Kiely, C. J., Knight D. W. and Hutchings G. J. (2006). Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/ TiO₂ catalysts. *Science*, **311**: 362-365.
- Fang, W., Xing, M. and Zhang, J. (2014). A new approach to prepare Ti³⁺ self-doped TiO₂ via NaBH₄ reduction and hydrochloric acid treatment. *Applied Catalysis B: Environmental*, **160–161**: 240–246.
- Fujishima, A. and Honda K. (1972). Electrochemical photolysis of water at a semiconductor electrode. *Nature*, 238: 37-38.
- Fujishima, A., Rao, T. N. and Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1: 1-21.
- Fujishima, A., Zhang, X. and Tryk, D.A. (2008). TiO₂ photocatalysis and related surface phenomena. *Surface Science Reports*, 63: 515-582.
- Fox, M. A. and Dulay, M. T. (1993). Heterogeneous photocatalysis. *Chemical Reviews*, 93: 341–357.
- Garlisi, C., Scandura, G., Szlachetko, J., Ahmadi, S. and Sá, J. (2016). E-beam

evaporated TiO_2 and $Cu-TiO_2$ on glass: performance in the discoloration of methylene blue and 2-propanol oxidation. *Applied Catalysis A: General*, **526**: 191-199.

- Guai, G.H., Song, Q.L., Lu, Z.S., Ng, C.M. and Li, C.M. (2013). Tailor and functionalize TiO₂ compact layer by acid treatment for high performance dyesensitized solar cell and its enhancement mechanism. *Renewable Energy*, **51**: 29-35.
- Higashimoto, S., Shirai, R., Osano, Y., Azuma, M., Ohue, H., Sakata, Y. and Kobayashi, H. (2014). Influence of metal ions the photocatalytic activity: selective oxidation of benzyl alcohol on iron (III) ion-modified TiO₂ using visible light. *Journal of Catalysis*, **311**: 137-143.
- Hoffmann, N. (2015). Photocatalysis with TiO₂ applied to organic synthesis. Australian Journal of Chemistry, 68: 1621-1639.
- Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann, D. W. (1993). Environmental applications of semiconductor photocatalysis. *Chemical Reviews*, 95: 69–96.
- Iyatani, K., Horiuchi, Y., Fukumoto, S., Takeuchi, M., Anpo, M. and Matsuoka, M. (2013). Separate-type Pt-free photofuel cell based on a visible light-responsive TiO₂ photoanode: effect of hydrofluoric acid treatment of the photoanode. *Applied Catalysis A: General*, **458**: 162–168.
- Jensen, H., Joensen, K.D., Jørgensen, J.-E., Pedersen, J.S. and Søgaard, G. (2004). Characterization of nanosized partly crystalline photocatalysts. *Journal of Nanoparticle Research*, 6: 519–526.
- Kamat, P. V. and Meisel, D. (2002). Nanoparticles in advanced oxidation processes. *Current Opinion in Colloid and Interface Science*, 7: 282–287.

- Kidwai, M. and Mohan, R. (2005). Green Chemistry: an innovative technology. *Foundations of Chemistry*, **7:** 269-287.
- Kim, H.-J., Jeon, J.-D. and Kwak, S.-Y. (2013). Highly dispersed mesoporous TiO₂ spheres via acid treatment and its application for dye-sensitized solar cells. *Powder Technology*, 243: 130–138.
- Kirchhoff, M.M. (2005). Promoting sustainability through green chemistry. *Resources Conservation and Recycling*, **44:** 237-243.
- Kochkar, H., Lakhdhar, N., Berhault, G., Bausach, M. and Abdelhamid, G. (2009). Optimization of the alkaline hydrothermal route to titanate nanotubes by a doehlert matrix experience design. *Journal of Physical Chemistry C*, **113**: 1672-1679.
- Kou, J., Lu, C., Wang, J., Chen, Y., Xu, Z. and Varma, R.S. (2016). Selectivity enhancement in heterogeneous photocatalytic transformations. *Chemical Reviews*, 117: 1445-1514.
- Kurusu, Y. (2000). An oxidation system for green chemistry: the oxidation of alcohols and hydrocarbons in the presence of metal-polymer complexes. *Journal of Inorganic and Organometallic Polymers and Materials*, **10**: 127-144.
- Lang, X., Chen, X. and Zhao, J. (2014). Heterogeneous visible light photocatalysis for selective organic transformations. *Chemical Society Reviews*, **43**: 473–486.
- Legrini, O. R., Oliveros, E. and Brown, A. (1993). Photocatalytic processes for water treatment. *Chemical Reviews*, **93:** 671–698.
- Li, C. and Chen, L. (2006). Organic chemistry in water. *Chemical Society Reviews*, **35**: 68-82.

- Li, Y., Ji, H., Chen, C., Ma, W. and Zhao, J. (2013). Concerted two-electron transfer and high selectivity of TiO₂ in photocatalyzed deoxygenation of epoxides. *Angewandte Chemie International Edition*, **52**: 12636-12640.
- Liu, S., Zhang, N. and Xu, Y.J. (2013). Core-shell structured nanocomposites for photocatalytic selective organic transformations. *Particle and Particle Systems Characterization*, **31**: 540-556.
- Liu, T., Wang, B., Xie, J., Li, Q., Zhang, J., Asghar, M. I., Lund, P.D. and Wang, H. (2015). Photovoltaic properties of dye sensitised solar cells using TiO₂ nanotube arrays for photoanodes: Role of hydrochloric acid treatment. *Applied Surface Science*, **355**: 256–261.
- Lorber, C.Y., Pauls, I. and Osborn, J.A. (1996). Catalyzed oxidation of alcohols by cisdioxomolybdenum (VI) complexes via oxygen atom transfer from sulfoxides. *Bulletin De La Societe Chimique De France*, **133**: 755-758.
- Mahdavi, F., Bruton, T.C. and Li, Y. (1993). Photoinduced reduction of nitro compounds on semiconductor particles. *Journal of Organic Chemistry*, 58: 744–746.
- Mohamed, O.S., El-Aal, A., Gaber, M. and Abdel-Wahab, A.A. (2002). Photocatalytic oxidation of selected aryl alcohols in acetonitrile. *Journal of Photochemistry and Photobiology A: Chemistry*, **148**: 205–210.
- Munoz-Batista, M.J., Kubacka, A., Rachwalik, R. and Bachiller-Baeza, B. (2014). Green photo-oxidation of styrene over W-Ti composite catalysts. *Journal of Catalysis*, **309**: 428-438.
- Mylonas, A. and Papaconstantinou, E. (1994). Photocatalytic degradation of chlorophenols to CO₂ and HCl with polyoxotungstates in aqueous solution, *Journal of Molecular Catalysis*, **92**: 261-267.
- Ohkubo, K., Suga, K. and Fukuzumi, S. (2006). Solvent-free selective photocatalytic oxidation of benzyl alcohol to benzaldehide by molecular oxygen using 9-phenyl-10-methylacridinium. *Chemical Communications*, **19**: 2018-2020.
- Ohtani, B., Pal, B. and Ikeda, S. (2003). Photocatalytic organic syntheses: selective cyclization of amino acids in aqueous suspsensions. *Catalysis Surveys From Asia*, 7: 165–176.
- Ollis, D.F. and Al-Ekabi, H. (1993). Photocatalytic purification and treatment of water and air. Elsevier, New York.
- Palmisano, G., Yurdakal, S., Augugliaro, V. and Palmisano, L. (2007). Photocatalytic oxidation of nitrobenzene and phenylamine: pathways and kinetics. *AIChE Journal*, 53: 961-968.
- Palmisano, G., García López, E., Marcì, G., Loddo, V., Yurdakal, S., Augugliaro, V. and Palmisano, L. (2010). Advances in selective conversions by heterogeneous photocatalysis. *Chemical Communications*, 46: 7074–7089.
- Palmisano, L., Augugliaro, V., Bellardita, M., Di Paola, A., Garcia Lopez, E., Loddo, V., Marci, G., Palmisano, G. and Yurdakal, S. (2011). Titania photocatalysts for selective oxidations in water. *ChemSusChem*, 4: 1431-1438.
- Park, S.K. and Shin, H. (2014). Effect of HCl and H₂SO₄ treatment of TiO₂ powder on the photosensitized degradation of aqueous rhodamine B under visible light. *Journal of Nanoscience and Nanotechnology*, 14: 8122-8128.
- Pillai, U.R. and Sahle–Demessie, E. (2002). Selective oxidation of alcohols in gas phase using light-activated titanium dioxide. *Journal of Catalysis*, **211**: 434–444.
- Sahle-Demessie, E., Gonzalez, M., Wang, Z. and Biswas, P. (1999). Synthesizing alcohols and ketones by photoinduced catalytic partial oxidation of hydrocarbons

in TiO_2 film reactors prepared by three different methods. *Industrial and Engineering Chemistry Research*, **38**: 3276–3284.

- Serpone, N. and Pelizzetti, E. (Eds.) (1989). Photocatalysis: fundamentals and applications. Wiley, Canada.
- Sheldon, R.A., Arends, I.W.C.E., ten Brink, G.J and Dijksman, A. (2002). Green, catalytic oxidations of alcohols. *Accounts of Chemical Research*, **35**: 774-781.
- Shang, N., Papakonstantinou, P., Wang, P. and Silva, S.R.P. (2010). Platinum integrated graphene for methanol fuel cells. *Journal of Physical Chemistry C*, **114:** 15837-15841.
- Song, L., Du, P. Shao, X., Cao, H., Hui, Q. and Xiong, J. (2013). Effects of hydrochloric acid treatment of TiO₂ nanoparticles/nanofibers bilayer film on the photovoltaic properties of dye-sensitized solar cells. *Materials Research Bulletin*, 48: 978–982.
- Soria, J., Sanz, J., Torralvo, M.J., Sobrados, I., Garlisi, C., Palmisano, G., Çetinkaya, S., Yurdakal, S. and Augugliaro, V. (2017). The effect of the surface disordered layer on the photoreactivity oftitania nanoparticles. *Applied Catalysis B: Environmental*, **210**: 306–319.
- Spasiano, D., Marotta, R., Di Somma, I. and Mancini, G. (2015). Production of pyridinecarboxy aldehydes, nicotinic and isonicotinic and picolinic acids by TiO₂sacrificial photocatalysis at ambient conditions and in aqueous solution through artificial solar radiation. *Applied Catalysis B: Environmental*, **163**: 248-257.
- ten Brink, G.J., Arends, I.W.C.E. and Sheldon, R.A. (2000). Metal-catalyzed oxidations of organic compounds. *Science*, **28**: 1636-1639.
- Turki, A., Kochkar, H., Guillard, C., Berhault, G. and Ghorbel, A. (2013). Effect of Na

content and thermal treatment of titanate nanotubes on the photocatalytic degradation of formic acid. *Applied Catalysis B: Environmental*, **138–139:** 401-415.

- Warner, J.C., Cannon, A.S. and Dye, K.M. (2004). Green chemistry. *Environmental Impact Assessment Review*, 24: 775-799.
- Wen, Q., Yu, J., Sun, X., Zhuang, J., He, Q., You, X., Guo, J. and Tao, L. (2016). Hydrothermal treatment of a TiO₂ film by hydrochloric acid for efficient dyesensitized solar cells. *New Journal of Chemistry*, **40**: 3233-3237.
- Yang, M.Q., Zhang, Y., Zhang, N., Tang, Z.R. and Xu, Y.J. (2013). Visible-light-driven oxidation of primary C-H bonds over CdS with dual Co-catalysts graphene and TiO₂. *Scientific Reports*, **3**: art. no 3314.
- Yu, J.C., Yu, J. and Zhao, J. (2002). Enhanced photocatalytic activity of mesoporous and ordinary TiO₂ thin films by sulfuric acid treatment. *Applied Catalysis B: Environmental*, **36:** 31–43.
- Yu, J., Qi, L. and Jaroniec, M. (2010). Hydrogen production by photocatalytic water splitting over Pt/TiO₂ nanosheets with exposed (001) facets. *Journal of Physical Chemistry C*, **114**: 13118-13125.
- Yurdakal, S., Palmisano, G., Loddo, V., Augugliaro, V. and Palmisano, L. (2008). Nanostructured rutile TiO₂ for selective photocatalytic oxidation of aromatic alcohols to aldehydes in water. *Journal of The American Chemical Society*, **130**: 1568–1569.
- Yurdakal, S., Palmisano, G., Loddo, V., Alagöz, O., Augugliaro, V. and Palmisano, L. (2009). Selective photocatalytic oxidation of 4-substituted aromatic alcohols in water with rutile TiO₂ prepared at room temperature. *Green Chemistry*, **11**: 510–516.

- Yurdakal, S. (2010). Selective photocatalytic oxidation of aromatic alcohols with titanium dioxide. Anadolu Üniversitesi Yayınları, ISBN 978-975-06-0707-3, 238 pages.
- Yurdakal, S., Loddo, V., Palmisano, G., Augugliaro, V., Berber, H. and Palmisano, L. (2010). Kinetics of 4-methoxybenzyl alcohol oxidation in aqueous solution in a fixed bed photocatalytic reactor. *Industrial and Engineering Chemistry Research*, 49: 6699–6708.
- Yurdakal, S. and Augugliaro, V. (2012). Partial oxidation of aromatic alcohols via TiO₂ photocatalysis: the influence of substituent groups on the activity and selectivity. *RSC Advances*, 2: 8375–8380.
- Yurdakal, S., Tek, B.S., Değirmenci, Ç. and Palmisano, G. (2017a). Selective photocatalytic oxidation of aromatic alcohols in solar-irradiated aqueous suspensions of Pt, Au, Pd and Ag loaded TiO₂ catalysts. *Catalysis Today*, 281: 53-59.
- Yurdakal, S., Yanar, Ş.Ö., Çetinkaya, S., Alagöz, O., Yalçın, P. ve Özcan, L. (2017b).
 Green photocatalytic synthesis of vitamin B₃ by Pt loaded TiO₂ photocatalysts. *Applied Catalysis B: Environmental*, **202**: 500-508.
- Zhang, N., Yang, M.Q., Tang, Z.R. and Xu, Y.J. (2013). CdS-graphene nanocomposites as visible light photocatalyst for redox reactions in water: a green route for selective transformation and environmental remediation. *Journal of Catalysis*, 303: 60-69.
- Zhao, W., Liu, C., Cao, L., Yin, X., Xu, H. and Zhang, B. (2013). Porous singlecrystalline CdS nanosheets as efficient visible light catalysts for aerobic oxidative coupling of amines to imines. *RSC Advances*, 3: 22944-22948.

Zhu, X., Cheng, B., Yu, J. and Ho, W. (2016). Halogen poisoning effect of Pt-TiO₂ for formaldehyde catalytic oxidation performance at room temperature. *Applied Surface Science*, 364: 808-814.

ÖZGEÇMİŞ

Adı Soyadı	: Sıdıka ÇETİNKAYA
Doğum Yeri ve Tarihi	: Selendi / 15.03.1990
Yabancı Dili	: İngilizce
İletişim (e-posta)	: sidikacetinkayaa@gmail.com
Telefon	: 0541 687 23 95

Eğitim l	Durumu
----------	--------

Lise	: Demirci Lisesi / Manisa, (2004-2007)
Lisans	: Afyon Kocatepe Üniversitesi, Fen-Edebiyat Fakültesi,
	Kimya Bölümü / Afyonkarahisar, (2009-2014)

Uluslararası Dergilerde Yayınlanan Makaleler:

- Yurdakal, S., Yanar, Ş.Ö., Çetinkaya, S., Alagöz, O., Yalçın, P. ve Özcan, L. (2017). Green photocatalytic synthesis of vitamin B₃ by Pt loaded TiO₂ photocatalysts. *Applied Catalysis B: Environmental*, **202**: 500–508.
- Soria, J., Sanz, J., Torralvo, M.J., Sobrados, I., Garlisi, C., Palmisano, G., Cetinkaya, S., Yurdakal, S. and Augugliaro, V. (2017). The effect of the surface disordered layer on the photoreactivity of titania nanoparticles. *Applied Catalysis B: Environmental*, 210: 306-319.
- Torralvo, M.J., Sanz, J., Sobrados, I., Soria, J., Garlisi, C., Palmisano, G., Çetinkaya, S., Yurdakal, S. and Augugliaro, V. (2018). Anatase photocatalyst with supported low crystalline TiO₂: the influence of amorphous phase on the activity. *Applied Catalysis B: Environmental*, 221: 140-151.
- 4. Yurdakal, S., Çetinkaya, S., Yanar, Ş.Ö., Augugliaro, V., Palmisano, G., Soria, J., Sanz, J., Torralvo, M.J. and Garlisi, C. Basic treated TiO₂ photocatalysts for 3pyridinemethanol partial oxidation, hazırlanıyor.

Ulusal Kongrelere Katılım:

- Çetinkaya, S., Yanar, Ş.Ö. and Yurdakal, S." Çevre dostu koşullarda soy metal katkılı TiO₂'lerle aromatik alkollerin seçici yükseltgenmesi". 7. Ulusal Kimya Öğrenci Kongresi, 19-21 Mayıs 2016, Hacettepe Üniversitesi, Ankara, Türkiye.
- Yurdakal, S., Yanar, Ş.Ö., Çetinkaya, S., Alagöz, O., Yalçın, P. and Özcan, L. "Çevre dostu koşullarda Pt katkılı TiO₂'lerle fotokatalitik vitamin B₃ sentezi." 6. Fiziksel Kimya Kongresi, sayfa 89, 15-18 Mayıs 2017, Bülent Ecevit Üniversitesi, Zonguldak, Türkiye.
- 3. Yurdakal, S., Çetinkaya, S., Yanar, Ş.Ö., Augugliaro, V., Garlisi, C., Palmisano, G. and Soria, J. "Asit, baz muamelesi ve Pt katkısı ile etkinliği arttırılmış TiO₂ fotokatalizörleri ile çevre dostu koşullarda vitamin B₃ sentezi." 29th National Chemistry Congress, 10-14 September 2017, Middle East Technical University, Ankara, Turkey.

Projeler ve Projelerde Yaptığı Görevler:

 Araştırmacı, Afyon Kocatepe Üniversitesi Bilimsel Araştırma Projesi (BAP) 17.KARİYER.15 "HCl veya NaOH muamelesi ile aktivitesi artırılmış TiO₂ fotokatalizörler ile aromatik alkollerin çevre dostu koşullarda yükseltgenmesi." 07/04/2017-25/12/2017.

Kullandığı ve Deneyim Sahibi Olduğu Analitik Cihazlar:

HPLC Cihazi: Yüksek Performanslı Sıvı Kromatografisi, Shimadzu HPLC (Prominence LC-20A model and SPD-M20A Photodiode Array Detector)
TOC Cihazi: Toplam Organik Karbon analiz cihazı, Shimadzu, TOC-LCPN model
UV-Vis Spektrofotometre Cihazi: Shimadzu UV-2101PC
FT-IR Spektrofotometre Cihazi: Perkin Elmer spectrum BX FT- R cihazi
TGA Cihazi: Shimadzu equipment (model TG60H)

EKLER

BDH-NaOH-25

BDH-NaOH-100

Merck-HCl-100

Merck-NaOH-25

Merck-NaOH-100

Pt-BDH-NaOH-100

BDH-HCl-100

BDH-NaOH-25

BDH-NaOH-100

Merck-HCl-100

Merck-NaOH-25

Merck-NaOH-100

Pt-Merck-NaOH-25

Pt-Merck-NaOH-100

EK 1. 1 M HCl veya NaOH ile modifiye edilmiş ve Pt katkılanmış BDH ve Merck TiO₂ örneklerinin TEM görüntüleri.

EK 2. 1 M HCl veya NaOH ile modifiye edilmiş ve Pt katkılanmış BDH ve Merck TiO₂ örneklerinin Raman spektrumları.

EK 3. Pt katkılanmış BDH ve Merck TiO₂ örneklerinin FT-IR spektrumları.

EK 4. 1 M HCl veya NaOH ile muamele edilmiş ve Pt katkılanmış TiO₂ fotokatalizörlerin Fotolüminesans emisyon spektrumları.

EK 5. 3-Piridinmetanolün BDH-HCl-100 katalizörü varlığında pH 7'de ve UV ışını altındaki 3 saat fotokatalitik yükseltgenme deneyi sonrasında reaksiyon ortamından alınan numunenin HPLC analizine ait kromatogram.