JEODEZİK GRAVİTE YAKLAŞIMININ İNCELENMESİ

YÜKSEK LİSANS TEZİ

Bürhan KOZLU

Danışman Doç. Dr. Mustafa YILMAZ

HARİTA MÜHENDİSLİĞİ ANABİLİMDALI Haziran 2018 T.C. AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

JEODEZİK GRAVİTE YAKLAŞIMININ İNCELENMESİ

Bürhan KOZLU

Danışman Doç. Dr. Mustafa YILMAZ

HARİTA MÜHENDİSLİĞİ ANABİLİMDALI

Haziran 2018

TEZ ONAY SAYFASI

Bürhan KOZLU tarafından hazırlanan "JEODEZİK GRAVİTE YAKLAŞIMININ İNCELENMESİ" adlı tez çalışması lisansüstü eğitim ve öğretim yönetmeliğinin ilgili maddeleri uyarınca 21/06/2018 tarihinde aşağıdaki jüri tarafından oy birliği ile Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü Harita Mühendisliği Anabilim Dalı'nda YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

Danışman : Doç. Dr. Mustafa YILMAZ

Başkan

Afyon Kocatepe Üniversitesi Mühendislik Fakültesi Üye : Doç. Dr. Serkan DOĞANALP

: Prof. Dr. Bayram TURGUT

- Selçuk Üniversitesi Mühendislik Fakültesi
- Üye : Doç. Dr. Mustafa YILMAZ Afyon Kocatepe Üniversitesi Mühendislik Fakültesi

İmza

Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu'nun tarih ve sayılı kararıyla onaylanmıştır.

Prof. Dr. İbrahim EROL

Enstitü Müdürü

BİLİMSEL ETİK BİLDİRİM SAYFASI Afyon Kocatepe Üniversitesi

Fen Bilimleri Enstitüsü, tez yazım kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- Tez içindeki bütün bilgi ve belgeleri akademik kurallar çerçevesinde elde ettiğimi,
- Görsel, işitsel ve yazılı tüm bilgi ve sonuçları bilimsel ahlak kurallarına uygun olarak sunduğumu,
- Başkalarının eserlerinden yararlanılması durumunda ilgili eserlere bilimsel normlara uygun olarak atıfta bulunduğumu,
- Atıfta bulunduğum eserlerin tümünü kaynak olarak gösterdiğimi,
- Kullanılan verilerde herhangi bir tahrifat yapmadığımı,
- Ve bu tezin herhangi bir bölümünü bu üniversite veya başka bir üniversitede başka bir tez çalışması olarak sunmadığımı

beyan ederim.

HAZİRAN 2018

Bürhan KOZLU

ÖZET Yüksek Lisans Tezi

JEODEZİK GRAVİTE YAKLAŞIMININ İNCELENMESİ

Bürhan KOZLU

Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü Harita Mühendisliği Anabilim Dalı Danışman: Doç. Dr. Mustafa YILMAZ

Bu tez çalışmasında $36.5^{\circ} < \varphi < 40.5^{\circ}$ ve $26.5^{\circ} < \lambda < 33^{\circ}$ enlem ve boylam değerlerini kuşatan bir bölgede enlem, boylam, ortometrik ve elipsoidal yüksekliği bilinen noktalarda EGM08, GECO, EIGN-6C4 jeopotansiyel modelleri REQTOPO2015 topografya modeli ve WGM2012 gravite modeli kullanılarak gravite değerleri ve gravite anomalileri belirlenecektir. Bunlar belirledikten sonra BGI (Bureau Gravimetrique International) kurumu tarafından yersel olarak elde edilen veriler ile çalışma alanımızı kapsayan ve modellerden hesap edilen gravite anomali değerleri ile karşılaştırması yapılıp oluşacak farklar hesap edilip karesel ortalama hataları sunulacaktır. Bu çalışmadaki amacımız yer yuvarı için modellenecek en uygun jeoidin tespitinde kullanılabilecek modelin gravite yönünden belirlenmesi amaçlanmaktadır.

2018, xi + 70 sayfa

Anahtar Kelimeler: Jeoid, Gravite, Gravite indirgemeleri, Gravite ölçme yöntemleri, Bouguer indirgemesi, Boşlukta gravite indirgemesi

ABSTRACT M.Sc. Thesis

THE INVESTIGATION OF THE GEODETIC GRAVITY APPROACH

Bürhan KOZLU

Afyon Kocatepe University Graduate School of Natural and Applied Sciences Department of Geomatics Engineering **Supervisor:** Assoc. Prof. Mustafa YILMAZ

In this thesis study, gravity values and gravity anomalies of the points with identified latitudes, longitudes, orthometric and ellipsoidal heights in the area between $36.5^{\circ} < \varphi < 40.5^{\circ}$ and $26.5^{\circ} < \lambda < 33^{\circ}$ latitudes and longitudes will be determined by using EGM08, GECO, EIGN-6C4 geopotential models, REQTOPO2015 topography model and WGM2012 gravity model. After determining these values, the terrestrial data acquired by BGI (Bureau Gravimetrique International) and gravity anomaly values acquired by using the models within the scope of our study will be compared, the differences will be calculated and the mean squared errors (MSE) will be presented. We aim to determine the gravitational model which can be used to identify the most appropriate geoid that models the globe.

2018, xi + 70 pages

Keywords: Geoid, Gravity, Gravity reduction, Gravity measurement methods, Bouguer reduction, Free air reduction.

TEŞEKKÜR

Bu araştırmanın konusu, deneysel çalışmaların yönlendirilmesi, sonuçların değerlendirilmesi ve yazımı aşamasında yapmış olduğu büyük katkılarından dolayı tez danışmanım Sayın Doç. Dr. Mustafa YILMAZ, araştırma ve yazım süresince yardımlarını esirgemeyen Sayın Prof. Dr. Bayram TURGUT' a, her konuda öneri ve eleştirileriyle yardımlarını gördüğüm hocalarıma ve sınıf arkadaşım Birol KURU' a teşekkür ederim. Ayrıca bu tez çalışmamda uygulama da kullandığımız yersel gravite verilerini gönderen BGI (Bureau Gravimetrique International) kurumuna bizlere olan katkılarından dolayı da teşekkür ederim.

Bu araştırma boyunca maddi ve manevi desteklerinden dolayı aileme ve eşim Esra KOZLU' a çok teşekkür ederim.

Bürhan KOZLU AFYONKARAHİSAR, 2018

İÇİNDEKİLER DİZİNİ

ÖZET	i
ABSTRACT	ii
TEŞEKKÜR	ii
İÇİNDEKİLER DİZİNİ	iv
SİMGELER ve KISALTMALAR DİZİNİ	vi
ŞEKİLLER DİZİNİ	viii
ÇİZELGELER DİZİNİ	X
RESİMLER DİZİNİ	xi
1. GİRİŞ	1
2. ÇEKİM KUVVETİ, ÇEKİM İVMESİ ve POTANSİYEL KAVRAMLARI	4
2.1 Çekim Kuvveti ve Çekim İvmesi	4
2.2 Çekim İvmesi	4
2.3 Çekim Potansiyeli	6
2.4 Yer yuvarı ve Yüzeyler	7
2.5 Jeoid ve Elipsoid	7
3. GRAVİTE	10
3.1 Gravite Kuvveti ve Potansiyeli	10
3.2 Seviye Yüzeyleri	12
3.3 Yükseklik	13
3.4 Ortometrik Yükseklik	14
3.5 Elipsoidal Yükseklik	15
3.6 Jeoid Ondülasyonu	16
4. GRAVİTE ÖLÇMELERİ, FİZİKSEL YERYÜZÜNDE GRAVİTE NASIL	
ÖLÇÜLÜR?	17
4.1 Yersel Yöntemler	17
4.1.1 Mutlak Gravimetrik Yöntem	17
4.1.1.1 Serbest Düşüş Gerçekleştiren Cisim ile Mutlak Gravite Hesabı	18
4.1.1.2 Sarkaç Yöntemi	20
4.1.2 Bağıl Gravimetrik Yöntem	21
4.1.2.1 Dinamik Yöntem	21
4.1.2.2 Statik Yöntem	22

4.1.2.3 Bağıl Gravite Ölçerler	. 24
4.2 Uydu Bazlı Sistemler	. 25
4.2.1 CHAMP(Challenging Minisatellite Payload)	. 26
4.2.2 GRACE(Gravity Recovery and Climate Experiment)	. 26
4.2.3 GOCE	. 27
5. FİZİKSEL YERYUVARU BOYUNCA GRAVİTE DEĞİŞİMLERİ ve GRAVİ İNDİRGEMESİ	ГЕ . 29
5.1 Gravite Ölçülerine yapılan Düzeltmeler	. 29
5.1.1 Sürüklenme Düzeltmesi	. 29
5.1.2 Enlem Etkisi ve Düzeltmesi	. 30
5.1.3 Yükseklik Etkisi ve Düzeltmesi	. 30
5.1.3.1 Serbest Hava İndirgemesi	. 31
5.1.3.2 Bouguer indirgemesi	. 32
5.1.4 Arazi Düzeltmesi	. 32
5.1.5 İzostatik Etki ve Düzeltmesi	. 33
6. MATERYAL ve METOT	. 34
6.1 Jeopotansiyel modeller	. 35
6.1.1 EGM2008 Modeli	. 35
6.1.2 EIGEN-6C4 Modeli	. 36
6.1.3 GECO Modeli	. 36
6.2 Topografya Modeli	. 37
6.2.1 REQTOPO_2015 Modeli	. 37
6.3 Gravite Modeli	. 37
6.3.1 WGM2012 Gravite Modeli	. 37
7. BULGULAR	. 39
7.1 Serbest Hava Gravite Anomali Haritaları	. 46
7.2 Bouguer Gravite Anomali Haritaları	. 49
7.3 Yersel Gravite Verileri ile Modeller Arası Farklar ve Haritaları	. 51
7.3.1 Serbest Hava Gravite Anomali Fark Haritaları	. 58
7.3.2 Bouguer Gravite Anomali Fark Haritaları	. 61
8. SONUÇ ve ÖNERİ	. 64
9. KAYNAKLAR	. 67
ÖZGEÇMİŞ	70

SİMGELER ve KISALTMALAR DİZİNİ

Simgeler	
p	Bouguer tabakası
$d_{_{gb}}$	Bouguer indirgemesi
λ	Boylam
F	Çekim kuvveti
V	Çekim potansiyeli
∂	Diferansiyel
γ _e	Ekvatordaki normal gravite
h	Elipsoidal yükseklik
W	Eşpotansiyelli yüzey
G	Evrensel çekim sabiti
8	Gravite kuvveti
∇	Gradyent
N	Jeoit ondülasyonu (Jeoit yüksekliği)
С	Jeopotansiyel sayı
С	Jeopotansiyel yükseklik
${\mathcal Y}_k$	Kutuplardaki normal gravite
F_{C}	Merkezkaç kuvveti
µgal	Miligal
H	Ortometrik yükseklik
e^2	Referans elipsoidin birinci dışmerkezlik elemanı
l	Sarkaç boyu
Т	Sarkaç salınımının periyodu
d_{gs}	Serbest hava indirgemesi
f	Yay sabiti
$\Delta \ell$	Yay uzunluğundaki değişim
ω	Yeryuvarının sabit açısal hızı
ho	Yoğunluk

Kısaltmalar	
BGI	Bureau Gravimetrique International
CHAMP	Challenging Minisatellite Payload
GFZ	Geoforschungzentrum-Potsdam
GNNS	Global Navigation Satellite System
GRACE	Gravity Recovery and Climate Experiment
ICGEM	International Centre for Global Earth Models
KOH	Karesel Ortalama Hata
LCR	LaCoste&Romberg
WGS84	World Geodetic System-1984
GOCE	The Gravity Field and Steady-State Ocean CirculationExplorer

ŞEKİLLER DİZİNİ

Şekil 1.1 Enlem, boylam, ortometrik yükseklik ve elipsoidal yükseklikleri bilinen noktalar
Şekil 2.1 Çekim kuvveti ve cisimler
Şekil 2.2 Gravite kuvveti
Şekil 2.3 Goce uydu bazlı üretilmiş jeoid
Şekil 2.4 Referans elipsoidi ve yer yuvarı9
Şekil 3.1 Çekim kuvveti,merkezkaç kuvveti ve gravite kuvveti 10
Şekil 3.2 Çekül eğrileri ve eşpotansiyelli yüzeyler 12
Şekil 3.3 Çekül eğrisi ve jeoit
Şekil 3.4 Ortalama gravite ve ortometrik yükseklik 14
Şekil 3.5 h Elipsoidal yükseklik
Şekil 4.1 Mutlak gravimetrik yöntemin çalışma prensibi 18
Şekil 4.2 Sarkaç yöntemi ile gravite değeri hesaplama
Şekil 4.3 Dinamik yöntemlerden sarkaç ile gravite hesabı
Şekil 4.4 Statik yöntemlerden yay yardımı ile gravite hesabı
Şekil 4.5 CHAMP uydusu
Şekil 4.6 GRACE uyduları
Şekil 4.7 GOCE uydusu
Şekil 5.1 Gravite indirgemesi
Şekil 5.2 Gravite anomalisi 31
Şekil 5.3 Arazi düzeltmesi
Şekil 6.1 Çalışma alanının topografyası
Şekil 6.2 Yersel gravite noktaları
Şekil 7.1 EGM2008 jeopotansiyel modeli serbest hava anomali haritası
Şekil 7.2 EIGEN-6C4 jeopotansiyel modeli serbest hava anomali haritası
Şekil 7.3 GECO jeopotansiyel modeli serbest hava anomali haritası
Şekil 7.4 REQTOPO2015 topografya modeli serbest hava gravite anomali haritası 48
Şekil 7.5 WGM2012 gravite modeli serbest hava gravite anomali haritası
Şekil 7.6 EGM2008 jeopotansiyel modeli Bouguer gravite anomali haritası
Şekil 7.7 EIGEN-6C4 jeopotansiyel modeli Bouguer gravite anomali haritası
Şekil 7.8 GECO jeopotansiyel modeli Bouguer gravite anomali haritası

Şekil 7.9 REQTOPO2015 topografya modeli Bouguer gravite anomali haritası 50
Şekil 7.10 WGM2012 gravite modeli Bouguer gravite anomali haritası
Şekil 7.11 EGM2008 jeopotansiyel modeli serbest hava gravite anomali fark haritası 58
Şekil 7.12 EIGEN-6C4 jeopotansiyel modeli serbest hava gravite anomali fark haritası 59
Şekil 7.13 GECO jeopotansiyel modeli serbest hava gravite anomali fark haritası 59
Şekil 7.14 REQTOPO2015 topografya modeli serbest hava gravite anomali fark haritası 60
Şekil 7.15 WGM2012 gravite modeli serbest hava gravite anomali fark haritası 60
Şekil 7.16 EGM2008 jeopotansiyel modeli Bouguer gravite anomali fark haritası 61
Şekil 7.17 EIGEN-6C4 jeopotansiyel modeli Bouguer gravite anomali fark haritası 61
Şekil 7.18 GECO jeopotansiyel modeli Bouguer gravite anomali fark haritası
Şekil 7.19 REQTOPO2015 topografya modeli Bouguer gravite anomali fark haritası. 62
Şekil 7.20 WGM2012 gravite modeli Bouguer gravite anomali fark haritası
Şekil 8.1 EIGEN-6C4 elipsoidal gravite haritası

ÇİZELGELER DİZİNİ

Çizelge 7.1 Modellerdeki serbest hava gravite anomali değerleri	39
Çizelge 7.2 Modeller arası serbest hava gravite anomeli değerleri istatistikleri	42
Çizelge 7.3 Modellerdeki Bouguer gravite anomali değerleri	43
Çizelge 7.4 Modeller arası Bouguer anomali değerleri istatistikleri	45
Çizelge 7.5 Serbest hava gravite anomali farkları	51
Çizelge 7.6 Bouguer gravite anomali farkları	55
Çizelge 8.1 Serbest hava anomali fark değerlerinin istatistikleri	64
Çizelge 8.2 Bouguer anomali fark değerlerinin istatistikleri	64

RESİMLER DİZİNİ

Resim 4.1 Micro-g LaCoste A-10 mutlak gravite ölçer	
Resim 4.2 Micro-g LaCoste FG5-X mutlak gravite ölçer	20
Resim 4.3 A- ve Scintrex CG5 ve B- LCR-G Bağıl gravite ölçer	24

1.GİRİŞ

Jeodezi içinde yaşadığımız yeryuvarının bütünün veya parçalara ayırdığımız kısımlarının ölçülmesi ve bu yapılmış ölçülerin matematiksel ve fiziksel dayanaklara göre analiz edilip değerlendirilmesi ile yeryuvarının boyutları, yüzey noktalarının belirlenmesi ve dış çekim alanı ile uğraşan bir bilim dalıdır. 1880 yılında alman jeodezi uzmanı F.R.Helmert jeodeziyi şu şekilde tanımlamıştır; "yeryüzünün ölçülmesi ve haritaya izdüşürülmesi" bilimi. F.R.Helmert'in bu tanımı 1970 li yıllara kadar kullanılmıştır fakat daha sonralarda bu tanıma "dış çekim alanını belirlemek" ifadesi de eklenmiştir.

Yine bir alman jeodezi uzmanı olan Wolfgang Torge "Jeodezinin problemi, zamanın bir fonksiyonu olarak yeryuvarının ve diğer gezegenlerin şeklini ve dış çekim alanlarını saptamak, yer yüzeyinden ve dışından gözlenen parametrelerden ortalama yer elipsoidini belirlemektir" tanımını kullanarak jeodeziye daha anlaşılır ve daha geniş bir açıklama getirmiştir.

Günümüzde jeodezinin pek çok tanımı olmak ile birlikte en uygun tanım "üç boyutlu ve zaman değişkenli uzayda çekim alanı da dikkate alınarak yeryuvarı ve diğer gök cisimlerinin ölçülmesi ve haritaya aktarılması" olarak tanımlanabilir.

Jeodezik çalışmalar, insanoğlunun, varlık gösterdiği tüm alanlarla yakın bir ilişkide olmasına rağmen, jeodezik çalışmalar insanlar tarafından az tanınmaktadır. Bunun ile birlikte dünyamızın şeklide insanoğlu tarafından az bilinmektedir. Jeodezide ulaşılmak istenen büyüklükler direkt olarak hesap edilememekte, ölçülerin matematiksel birer fonksiyonu olarak hesap edilebilmektedir.

Jeodezide dünyamızın şeklinin homojen bir yapı göstermemesinden dolayı hesaplamalar için matematiksel olarak tanımlanabilecek ve referans olarak alınacak yüzeyler gerekmektedir. Bu referans alınacak yüzeylerin seçimi ise çalışma alanının boyutuna bağlıdır. Yani çalışma alanımızın boyutuna göre referans alacağımız yüzeyler değişiklik göstermektedir. Çalışma alanının büyüklüğüne göre değişiklik gösteren bu

referans yüzeyleri düzlem, küre, elipsoid olabilir. Dünyanın şekli, geometrik ve fiziksel olmak üzere iki şekilde tanımlanmaktadır. Büyük çalışma alanlarında yapılan jeodezik amaçlı çalışmalarda karşımıza çıkan en büyük problem, referans alınacak hesap yüzeyidir. Yani, yeryuvarının şeklinin ne alınacağı problemidir. Jeodezi biliminde konum bilgileri için alınacak referans yüzeyi geometrik bir yüzey olan elipsoid, yükseklik bilgileri için yerin gravite alanıyla ilişkili bir yüzey olan jeoid kullanılır. Elipsoid yeryuvarının meridyen elipsinin küçük yarı ekseni b etrafından kendi ekseni etrafında döndürülmesiyle oluşturulan dönel bir referans yüzeydir. Jeoid yani eşpotansiyelli yüzey, her türlü fiziksel etkenleri yok edilmiş denge durumundaki durgun deniz yüzeyidir. Jeoid özel bir nivo yüzeyi olup, yüzeyindeki her noktasından çekül doğrultusuna diktir. Ayrıca her noktasındaki potansiyel değerleri birbirine eşit ve sabittir. Yani eşpotansiyelli bir yüzeydir.

Bu da dünyamızı anlayabilmemiz için tasarlanan matematiksel yeryüzüdür. Fiziksel yeryüzünün şeklinin belirlenmesinde öncelikli olan jeoidin belirlenmesi, bulunmasıdır. Eşpotansiyelli bir yüzey olan jeoidi bulabilmek için yeryuvarının gravite değerlerinin bilinmesi gerekir. Gravite, çekim kuvvetinin ve merkezkaç kuvvetinin bileşkesi olan toplam kuvvettir (Turgut 1996).

Yeryuvarında ölçülen gerçek gravite değeri ile hesap edilen gravite değeri doğrudan birbirleri ile karşılaştırılamaz. Eşpotansiyelli yüzey olan jeoide indirgenmesi gerekir. Böylelikle yeryuvarı üzerinde ölçülen gravite üzerindeki etkiler kaldırılarak gravite değeri hesaplanmış olur. Gravite ölçüm yöntemleri yersel (mutlak ve bağıl yöntem) ve uydu bazlı sistemler olmak üzere ikiye ayrılır.

Bu çalışmamızda uydu bazlı sistemler ele alınmıştır. Çalışma alanı olarak Türkiye üzerinde $36.5^{\circ} < \phi < 40.5^{\circ}$ ve $26.5^{\circ} < \lambda < 33^{\circ}$ enlem ve boylam değerlerini kuşatan bir bölgede enlem, boylam, ortometrik ve elipsoidal yüksekliği bilinen noktalarda EGM08, GECO, EIGN-6C4 jeopotansiyel modelleri REQTOPO2015 topografya modeli ve WGM2012 gravite modeli kullanılarak gravite değerleri belirlenecektir. Bulunan gravite değerlerine serbest hava indirgemesi ve Bouguer indirmesi yapılacaktır. Sonuç olarak; EGM08, GECO, EIGN-6C4, REQTOPO2015, WGM2012 modelleri kullanılarak

uygulama alanımızdaki noktalarda gravite değerleri her bir model için ayrı ayrı hesaplanarak, elde edilen gravite değerleri modeller arasında karşılaştırılacaktır. Karşılaştırma sonucunda yer yuvarı için modellenecek en uygun jeoidin tespitinde kullanılabilecek modelin gravite yönünden belirlenmesi amaçlanmaktadır.

Ayrıca bu tez çalışmasında BGI kurumu tarafından yersel yöntemler ile elde edilmiş uygulama alanımız içerisinde yer alan enlem, boylam, serbest hava anomalisi ve Bouguer anomolisi bilinen noktalar vardır. Uygulama da EGM08, GECO, EIGN-6C4, REQTOPO2015, WGM2012 modellerinden elde edilen serbest hava anomalileri ve Bouguer anomalileri karşılaştırılacak ve haritalamaları yapılacaktır. Sonuç olarak anomali değerlerinin karesel ortalama hatası en düşük olan modeller sıralanacaktır.

Şekil 1.1 Enlem, boylam, ortometrik yükseklik ve elipsoidal yükseklikleri bilinen noktalar.

2. ÇEKİM KUVVETİ, ÇEKİM İVMESİ ve POTANSİYEL KAVRAMLARI

2.1 Çekim Kuvveti

Newton'un bulmuş olduğu evrensel çekim kanununa göre, kütleleri M ve m olan, aralarındaki mesafe r olan iki noktasal cisim (kısaca nokta) birbirlerini

$$F = \frac{k.M.m}{r^2} \tag{2.1}$$

F kuvvetiyle çekerler. Bu formülde k, evrensel çekim katsayısıdır (sabitidir)

$$k = 6,6742 \times 10^{-8} \, cm^3 \,/\, gs^2 \tag{2.2}$$

Her ne kadar, iki nokta birbirine aynı oranda çekim kuvveti uygulasa da bunlardan kütlesi M büyük olanı çeken, diğerini de çekilen olarak tanımlayacağız. Böylece çekim kuvvetinin yönünü M' ye doğru göstereceğiz. F çekim kuvveti kütlelerin çarpımıyla doğru, aralarındaki uzaklığın karesiyle ters orantılıdır.

Şekil 2.1 Çekim kuvveti ve cisimler.

2.2 Çekim İvmesi

Çekilen cismin birim kütleli olması halinde (yani m=1), üzerine uygulanan çekim kuvveti çekim ivmesi olarak isimlendirilir: (2.1) eşitliğinden çekim ivmesi,

$$F = \frac{k.M}{r^2} \tag{2.3}$$

çıkar. (2.1) ve (2.3) eşitlikleri birbirleri ile kıyaslandığında çekim ivmesinin tanımını şu şekilde yapabiliriz:

"Çekim ivmesi, bir cismin her bir birim kütlesine uygulanan çekim kuvvetidir."

Çekim ivmesinin birimi, m/s^2 ya da cm/s^2 dir. cm/s^2 birimine Galieo'a saygıyı temsil etmek için "Gal" denir:

$$cm/s^2$$
=Gal 1 Gal=1000 μ Gal

Bir X,Y,Z koordinat sistemi alınırsa ve M, çeken cismin koordinatlarına u,v,y; çekilen cisminde koordinatlarına da x, y, z denirse kuvvet büyüklüğü F olan \overline{F} vektörünün bileşenleri aşağıdaki gibi olur.

Şekil 2.2 Gravite kuvveti.

$$F_{x} = -\frac{k.M}{r^{3}}(x-u)$$
(2.4)

$$F_{y} = -\frac{k.M}{r^{3}}(y - v)$$
(2.5)

$$F_{z} = -\frac{k.M}{r^{3}}(z - w)$$
(2.6)

$$r = \sqrt{(x-u)^2 + (y-v)^2 + (z-w)^2}$$
(2.7)

2.3 Çekim Potansiyeli

Gravite ve manyetik alanın temeli potansiyeldir. Bir kütlenin oluşturduğu çekim alanı büyüklüğünü hesaplamak için potansiyellerin göz önüne alınan noktada türevleri alınır (Sanver ve İşseven 2007).

M kütleli cismin r kadar uzaktaki bir noktada meydana getirdiği çekim potansiyeli,

$$V = \frac{G.M}{r} \tag{2.8}$$

ile tanımlanır. Çekim potansiyeli, skaler bir fonksiyondur, x,y ve z'e göre kısmi türevleri çekim kuvveti bileşenlerini verir, sonsuzda sıfıra gider.

İlk olarak Lagrange 1773 yılında bu üç bileşenin bir V(x,y,z) fonksiyonunun kısmi türevleri olduğunu belirlemiş ve Gauss'da bu V fonksiyonunu potansiyel olarak adlandırmıştır (Erden 1979).

$$\frac{\partial(\frac{1}{r})}{\partial x} = \frac{\partial(\frac{1}{\sqrt{(x-u)^2 + (y-v)^2 + (z-w)^2}}}{\partial x} = \frac{-2(x-u)}{2r} \cdot \frac{1}{r^2} = \frac{-(x-u)}{r^3}$$
(2.9)

olduğundan,

$$\frac{\partial V}{\partial x} = -\frac{G.M}{r^3}(x-u) \tag{2.10}$$

eşitliği elde edilmiş olur. Bu eşitlikte (2.4) ile verilen F_x bileşenine eşittir. Aynı şekilde y ve z bileşeni içinde kısmi türevler alınırsa ilgili bileşenler elde edilir. Böylelikle

$$F_x = \frac{\partial V}{\partial_x}$$
, $F_y = \frac{\partial V}{\partial_y}$, $F_z = \frac{\partial V}{\partial_z}$ (2.11)

olduğu ispatlanmış olur.

V fonksiyonu m kütleli bir nokta kitlenin $m_0=1$ birim kütleli A(x,y,z) noktası çekim potansiyelidir. Potansiyel birim kitleyi sonsuzdan belli bir konuma getirmek için yapılır. F kuvveti;

$$\overline{F} = (F_x, F_y, F_z) = (\frac{\partial V}{\partial_x}, \frac{\partial V}{\partial_y}, \frac{\partial V}{\partial_z}) = gradV = \nabla V$$
(2.12)

şeklinde yazılır.

Burada grad ve ∇ operatörleri, "gradyent" olarak okunur ve "potansiyelin gradyenti çekim kuvvetini verir" denir.

Aynı zamanda;

$$\overline{F} = \frac{\partial V}{\partial_x} i^{\rightarrow} + \frac{\partial V}{\partial_y} j^{\rightarrow} + \frac{\partial V}{\partial_z} k^{\rightarrow} = gradV = \nabla V$$
(2.13)

şeklinde de ifade edilir.

2.4 Yer Yuvarı ve Yüzeyler

Fiziksel yer yüzeyi, okyanus ve kara parçalarından oluşmaktadır. Okyanuslar homojen dağılımlı (durağan) kabul edilebilir. Dünyamızın fiziksel şekli dağlar ve vadiler nedeniyle girintili-çıkıntılı bir yapıya sahiptir. Bu durumlardan dolayı dünyanın gerçek şekline basit bir modelle yaklaşmak mümkün değildir ve matematiksel olarak ifade edilemez. Bu sebepten dolayı fiziksel yeryuvarı yüzeyindeki bilinmeyen parametrelerin bulunabilmesi için matematiksel bir modele referansa ihtiyacımız vardır. Referans yüzeyi olarak alınacak yüzeyin nivo yüzeyi (durgun su yüzeyi) ve kapalı bir fonksiyonla hesaplamaları yapılabilecek bir yüzey olması gerekmektedir. Buna en uygun referans ise dönel elipsoit olarak kabul edilmektedir.

2.5 Jeoid ve Elipsoid

Jeoidi tanımlayabilmemiz için tüm Dünya yüzeyinin okyanus yüzeyi boyunca su ile

kaplı olduğunu düşünelim. Bu yüzeydeki gel git ve su akımı etkilerinin ihmal edildiği varsayılırsa, küresel okyanustan oluşan bir su yüzeyi oluşacaktır ve bu yüzey sadece gravite değerlerinden etkilenir. Kütle dağılımından kaynaklanan kütle anomalilerine bağlı değişen gravite değerleri küresel okyanusta sapmalar meydana getirir. Gravite değerlerinin etkilediği küresel okyanustan oluşan bu yüzeye jeoid adı verilmektedir (Arslan 2014).

J.B.Listing ise jeoidi şu şekilde tanımlamıştır;

Durgun her su yüzeyi yani nivo yüzeyi ağırlık kuvvetine diktir. Akıntıların, gel git olayının, rüzgarın etkisinde olmayan deniz yüzeyinin, karaların altından devam ettirilerek bulunacak olan yüzey dünyanın matematiksel şekli olarak alınabilir. Bu yüzeyede J.B.Listing jeoid adını vermiştir (Ulusoy 1977). Gauss, jeoidi "yeryuvarının matematiksel şekli" olarak tanımlar. Fakat bu yüzey üzerinde matematiksel işlemler yapılamayacak kadar karmaşık ve düzensiz bir yüzeydir.

Şekil 2.3 Goce uydu bazlı üretilmiş jeoid.

İşte bu karmaşıklık ve düzensizlikten kurtulmak için jeoide oldukça yakın ve üzerinde hesaplamalar yapabileceğimiz yeryuvarını okunabilen bir model haline dönüştürebileceğimiz referans elipsoidini yani dönel elipsoidi ele almalıyız. Fiziksel yeryuvarını modellemekte en uygun referans dönel elipsoit olarak kabul edilmektedir. Dönel elipsoit, elipsin küçük ekseni etrafında döndürüldüğünde meydana gelmektedir. 1909 Hayford elipsoidi Uluslararası Jeodezi ve Jeofizik Birliği (IUGG) kongresinde Uluslararası Elipsoit olarak kabul edilmiştir (Bilgin 1976). Diğer bir referans elipsoidi GRS80 (Geodetic Reference System-1980) ve onun bir türevi olan WGS84 (World Geodetic System-1984) elipsoididir. Fiziksel yeryuvarını modellemekte en uygun referans dönel elipsoit olarak kabul edilmektedir.

Matematiksel özellikleri çok iyi bilinen bir dönel elipsoit geometrik anlamda jeoide, fiziksel anlamda gerçek gravite alanına çok yaklaşan bir referans model olarak tanımlanabilir. Hem geometrik hem fiziksel tanımı yapılmış referans elipsoidine nivo elipsoidi denir.

Şekil.2.4 Referans elipsoidi ve yeryuvarı (Aydın 2014).

- $\gamma_e =$ Ekvatordaki normal gravite
- γ_k = Kutuplardaki normal gravite
- ω = Yeryuvarının sabit açısal hızı (0.00007292115 rad/s)

3.GRAVİTE

3.1 Gravite Kuvveti ve Potansiyeli

Fiziksel yeryüzünde hareket halinde olmayan bir cismin her bir kütlesine yeryuvarının kütlesi ve kendi ekseni etrafında dönmesinden dolayı iki tür kuvvet etki eder bu kuvvetler; çekim kuvveti (F) ve merkezkaç kuvveti (Fc) dir. Bir birim kütleye etkiyen toplam kuvvet (ya da ivme), yani bu iki kuvvetin bileşkesi, gravite kuvveti olarak adlandırılır (Aydın 2014).

$$g = F + F_C \tag{3.1}$$

Şekil 3.1 Çekim kuvveti, merkezkaç kuvveti ve gravite kuvveti (Aydın 2014).

Gravite kuvvetinin büyüklüğü, g=|g| şeklinde ifade edilir. Gravite kuvveti fiziksel yeryüzünde cismin veya noktanın bulunduğu konuma göre değişiklik göstermektedir. Bu sebepten dolayı g her noktada farklıdır demek mümkündür. Gravite kuvvetini ifade etmekte potansiyel teorisinden de yararlanabiliriz. Bu durumu açıklamamız gerekirse, dolu bir cismin çekim potansiyelini şu şekilde ifade edilir;

$$V = G \iiint_{v} \frac{\rho}{r} dv \tag{3.2}$$

Bu aynı zamanda yeryuvarımızın da çekim potansiyeline eşittir. Merkezkaç kuvvetinin potansiyelini ise şu şekilde ifade edilir;

$$V_c = \frac{1}{2}\omega^2 (x^2 + y^2) = \frac{1}{2}\omega^2 p^2$$
(3.3)

Burada ω yeryuvarımızın kendi eksene etrafındaki dönüşün açısal hızını ifade eder. Yukarıda yazmış olduğumuz (3.1) eşitliği potansiyeller için düşünürsek şu sonuç ortaya çıkar;

$$W = V + V_c = G \iiint_{v} \frac{\rho}{r} dv + \frac{1}{2} \omega^2 p^2$$
(3.4)

Yani yeryuvarının potansiyeli ile merkezkaç potansiyelinin bileşkesi bize gravite potansiyelini vermiş olur. Buradan gravite potansiyelinin gradyentini alacak olursak;

$$g = gradW = (g_x, g_y, g_z) = (\frac{\partial W}{\partial x}, \frac{\partial W}{\partial y}, \frac{\partial W}{\partial z})$$
(3.5)

Gravite vektörünü potansiyellerden elde etmiş oluruz. Gravite kuvvetinin bileşenlerini de ifade edecek olursak (2.9) eşitliğindeki kısmi türev alma işlemlerini burada da gerçekleştirerek aşağıdaki sonuca ulaşırız;

$$g_x = \frac{\partial W}{\partial x} = \frac{\partial V}{\partial x} + \frac{\partial V_c}{\partial x} = -G \iiint_v \frac{(x-u)p}{r^3} \partial v + x\omega^2$$
(3.6)

$$g_{y} = \frac{\partial W}{\partial y} = \frac{\partial V}{\partial y} + \frac{\partial V_{c}}{\partial y} = -G \iiint_{v} \frac{(y-u)p}{r^{3}} \partial v + y\omega^{2}$$
(3.7)

$$g_{z} = \frac{\partial W}{\partial z} = \frac{\partial V}{\partial z} + \frac{\partial V_{c}}{\partial z} = -G \iiint_{v} \frac{(z-u)p}{r^{3}} \partial v + z\omega^{2}$$
(3.8)

3.2 Seviye Yüzeyleri

Potansiyelleri birbirinin aynısı olan noktaları birleştirdiğimiz zaman elde edeceğimiz yüzeye eşpotansiyelli yüzey ya da seviye yüzeyi ismi verilir. Eşpotansiyelli yüzeylerin normali ise gravite vektörüdür. Bütün eşpotansiyelli yüzeyleri kesen normallere ise çekül eğrisi denir.

Şekil.3.2 Çekül eğrileri ve eşpotansiyelli yüzeyler (Yaldız 2006).

Bir seviye yüzeyi şu şekilde ifade edilir ;

$$W = (x, y, z) = sabit \rightarrow W = sabit$$
 (3.9)

Şimdi yukarıda bahsetmiş olduğumuz iki durum üzerinde çıkarımlarda bulunalım. Seviye yüzeyi üzerindeki bir P(x,y,z) noktasının diferansiyel anlamda (çok küçük bir değişiklik) yer değiştirdiğini düşünürsek yani $x + \partial x$, $y + \partial y$, $z + \partial z$ bu şekilde ifade edersek, potansiyeldeki değişim ise aşağıdaki gibi olur;

$$dW = \frac{\partial W}{\partial x}\partial x + \frac{\partial W}{\partial y}\partial y + \frac{\partial W}{\partial z}\partial z$$
(3.10)

Vektörel olarak ifade edecek olursak;

$$dW = \left(\frac{\partial W}{\partial x}, \frac{\partial W}{\partial y}, \frac{\partial W}{\partial z}\right)(dx, dy, dz) = gdx$$
(3.11)

Bu P noktasının seviye yüzeyi üzerinde yerinin değiştirilmesi durumunda dW = 0 olur.

$$dW = gdx = 0 \tag{3.12}$$

Burada iki vektörün çarpımının 0' a eşit olduğu görülür. $gdx = |g||dx|\cos(g, dx)$ bu eşitliğe göre iki vektörün çarpımının 0 olabilmesi için aralarındaki açının 90° veya 270° olması gerektiğini ifade edebiliriz. Böylece eşpotansiyelli yüzeylerin normali gravite vektörüdür ifadesini ispatlanmış olur.

3.3 Yükseklik

Bir noktanın yüksekliği denince o nokta ile jeoid arasında kurulacak ilişki anlaşılır.

Şekil 2.3 Çekül eğrisi ve jeoid (Tongur 2010).

Bir noktanın yüksekliğinin bulunması için referans yüzeyinin belirlenmesi gerekir (Turgut 1996).

Su, gravitesi az olan noktadan gravitesi fazla olan noktaya akar. Öyleyse şu andaki

yükseklik algımızı bir yana koyarak gravitesi fazla olan noktayı alçakta, az olanı ise yüksekte diye tanımlamalıyız. O zaman yüksekliği geometrik bir büyüklük olarak değil fiziksel bir kavram olarak düşünmeliyiz. Bir başka deyişle yükseklik kavramını gravite alanı çerçevesinde irdelemeli, buna göre yükseklik tanımını yapmalıyız (Aydın 2014). Jeopotansiyel sayı (C), yeryüzündeki bir noktadan geçen nivo yüzeyinin potansiyeli w_p ile jeoidin potansiyeli w_0 kgalmetre birimindeki farktır.

Jeopotansiyel sayı;
$$C = W_0 - W = \int_{jeoid}^{nokta} gdh$$
 (3.13)

dh = Diferansiyel yükseklik farkı g = Gerçek gravite G= Ortalama gravite Yükseklik = $\frac{C}{G}$ elde edilmiş olur.

3.4 Ortometrik yükseklik

Fiziksel yeryüzündeki bir F noktasından geçen çekül eğrisinin eşpotansiyelli yüzeyi (jeodi) deldiği B noktasına kadar olan uzunluğa, F noktasının ortometrik yüksekliği denir. Ortometrik yükseklik F noktasının C jeopotansiyel yüksekliğinden aşağıdaki biçimde elde edilir;

Şekil 2.4 Ortalama gravite ve ortometrik yükseklik (Aydın 2014).

$$H = \frac{C}{g} \tag{3.14}$$

Formülde geçen \overline{g} F noktasından çekül eğrisi boyunca jeoide kadar olan gravite ortalamasıdır. Uygulamalarda ise F noktasında ölçülen gravite değeri g_p olarak kullanılır ve ortalama gravite şu eşitlik ile hesaplanır (Kılıçoğlu vd. 2010).

$$\overline{g} = g_{p} + 0.0424(gal/km)H$$
(3.15)

3.5 Elipsoidal Yükseklik

Bir noktadan elipsoit normali boyunca elipsoide kadar olan mesafeye elipsoidal yükseklik ismi verilir. Elipsoidal yüksekliğin ortometrik yükseklik gibi fiziksel bir anlamı yoktur çünkü yeryuvarını modellemekte kullandığımız elipsoidi kullanırız. Elipsoidal yükseklik günümüz dünyasında kullandığımız GPS'lerin üçüncü koordinat verisidir.

3.6 Jeoid Ondülasyonu

Jeoit ondülasyonu Jeoid ile elipsoid arasındaki mesafe olup Şekil 3.5'de N olarak gösterdiğimiz uzunluktur. Diğer bir ismi de jeoid yüksekliğidir. Jeoid yüksekliğini belirlemede birçok yöntem mevcuttur. Elipsoid yükseklikleri ile jeoit yükseklikleri arasında şöyle bir eşitlik vardır;

$$N = h - H \tag{3.16}$$

Öyleyse bu eşitlikten şöyle bir sonuç çıkartabiliriz; N jeoid yüksekliği biliniyor ise uygulamalarda kolaylıkla elde ettiğimiz elipsoidal yükseklik yardımı ile ortometrik yüksekliği kolaylıkla elde ederiz.

$$H = h - N \tag{3.17}$$

H= Ortometrik yükseklik h= Elipsoidal yükseklik

N= Jeoit yüksekliği

4. GRAVİTE ÖLÇMELERİ, FİZİKSEL YERYÜZÜNDE GRAVİTE NASIL ÖLÇÜLÜR?

Fiziksel yeryüzünün gravite alanını tespit etmekte üç farklı ölçme yöntemi bulunmaktadır. Bu yöntemler yersel yöntem, hava gravimetrisi ve uzaysal yöntemdir. Fiziksel yeryüzündeki bir noktanın gravite değerinin µGal inceliğinde belirlenmesine olanak sağlayan, fiziksel yeryüzündeki bir noktada durarak yapılan ölçmeler (yersel yöntem) bu bölümün ana konusunu oluşturmaktadır.

Bunlardan hava gravimetrisi, bir uçağın üzerine yerleştirilen ivme ölçere dayalı bir sistemdir ve hava gravimetrisi genellikle bölgesel jeoid belirleme çalışmalarında kullanılır.

Yersel yöntemleri ise kendi arasında ikiye ayırılır;

1. Mutlak gravimetrik yöntem

2. Bağıl gravimetrik yöntem

Bu yöntemleri de inceledikten sonra benimde uygulamamda kullandığım uzaysal yöntemden bahsedilecektir.

4.1 Yersel Yöntemler

4.1.1 Mutlak Gravimetrik Yöntem

Mutlak gravimetrik yöntemde nokta gravite değeri doğrudan bulunur. Bu yöntemdeki ölçmeler yalnızca karada yapılmaktadır. Mutlak gravite yönteminde kullanılan aletlere mutlak gravite ölçer ismi verilir.

Mutlak gravite değerleri, hava sürtünmesiz bir ortamda serbest düşüş gerçekleştiren bir cisim veya bir sarkaç sistemi kullanılarak belirlenmektedir. Mutlak gravimetrik yöntemde, ivmenin temel bileşenleri olan zaman ve uzunluğun her ikisi birden ölçülür (Aydın 2007). Bunun yanı sıra gravite değeri özel duyarlı sarkaçlar yardımıyla da hesap edilir.

4.1.1.1 Serbest düşüş gerçekleştiren cisim ile mutlak gravite hesabı

Mutlak gravimetrik yöntemde hem yolun hem de zamanın ölçülmesi gerekmektedir ve bunlar çok hassas bir çalışma gerektirir.

$$x = gt^2 / 2 \tag{4.1}$$

Bu yöntemin temel prensibi yukarıdaki eşitliğe dayanır x alınan yol t ise serbest düşüş yapan cismin x kadar mesafeyi kat ettiği süredir.

Bu yöntemde yukarıda da belirtildiği gibi hassasiyet çok önemlidir. Alınan yolun ve geçen zamanın ne kadar hassas ölçmesi gerektiği bilgileri aşağıda yer almaktadır; Gravite değerinin 0.1 μgal hassasiyetinde hesaplanabilmesi için x uzaklığının 10^{-5} cm duyarlığında hesaplanması ve aynı zamanda gravite değerinin 0.1 μgal hassasiyetinde hesaplanabilmesi için t zamanında 10^{-9} s duyarlıkla ölçülmesi gerekir.

Tüm bu koşullar sağlanmış olsa bile en önemli koşul gerçekleştirilen ölçümün hava sürtünmesinin olmadığı bir ortamda yapılmasıdır.

Şekil 4.1 Mutlak gravimetrik yöntemin çalışma prensibi (İlgar 2011).

Günümüz dünyasında en sık kullanılan mutlak gravite ölçerler Micro-g LaCoste firması tarafından üretilen A-10 ve FG5 model gravite ölçerlerdir; A10 taşınabilir bir cihaz iken FG5 modeli ise laboratuar ortamında çalışmaktadır. Her iki cihazında çalışma prensibi yukarıda açıklandığı gibi serbest bırakılan bir kütlenin aldığı yol ve hareket zamanı ölçülmesi ilkesine dayanmaktadır.

Hareket denklemi (4.1)'den "ivme" yani gravite değeri elde edilir.Ölçümü gerçekleştirilen noktanın gravite değerini FG5 cihazı ve A-10 cihazı 10 μgal doğruluğunda belirlemektedir. Micro-g LaCoste firması tarafından üretilen son mutlak gravite ölçer ise FG5-X cihazıdır ve bu cihaz gavite değerini 2 μgal doğruluğunda ölçmektedir.

Resim 4.1 Micro-g LaCoste A-10 mutlak gravite ölçer (Aydın 2014).

Resim 4.2 Micro-g LaCoste FG5-X mutlak gravite ölçer (Aydın 2014).

Kolaylıkla hareket ettirilen mutlak gravite ölçerler bir gravite ağının ana noktalarının ve bağıl gravite ölçerlerin kalibre edildiği kalibrasyon geçki noktalarının ölçümünde kullanılır. Gravite ağının sıklaştırılması ise ölçüm işlemi hızlı olması nedeniyle bağıl gravite ölçerlerle gerçekleştirilir (Aydın 2014).

4.1.1.2 Sarkaç yöntemi

Bu yöntemde özel duyarlı sarkaçlar kullanılarak, bilinen uzunluktaki bir sarkacın salınım zamanının gözlenmesi ilkesine dayanarak gravite değeri hesap edilir. Aynı sarkaca ait fakat sarkaç boyları ℓ_1 ve ℓ_2 olan sarkaçlar düşünelim ve bu sarkaçların salınım hareketini tamamlama süreleri T_1 ve T_2 olsun. İşte bu bilinenlerden gravite değerini şu şekilde çıkartabiliriz;

$$g = 4\pi^2 \left[\frac{\ell_1 - \ell_2}{T_1 - T_2} \right]$$
(4.2)

Şekil 4.2 Sarkaç yöntemi ile gravite değeri hesaplama.

4.1.2 Bağıl Gravimetrik Yöntem

Yersel yöntemlerden ikincisi bağıl gravimetrik yöntemin kullanım amacı bir bölgede birden fazla noktadaki gravite değerlerindeki değişimlerini belirlemektir. Bağıl gravimetrik yöntemde sadece zaman veya sadece uzunluk ölçülerek iki nokta arasındaki gravite değerleri arasındaki fark belirlenir. Bağıl gravite ölçmelerini, dinamik ve statik yöntemler olarak ikiye ayırabiliriz.

4.1.2.1 Dinamik yöntem

Dinamik yöntemte sensörler; sınırlandırılmış ya da serbest hareket içerisinde yaptığı salınımın tamamlanması için geçen zamanının gözlemlenmesi ilkesine dayanır. Bu yöntemde genelde yay ya da sarkaç sistemleri kullanılır. Sarkaç sisteminde sarkacın ucunda sabit kütleli bir cisim yer almaktadır ve bu cismin hareket etmesi sağlanır, bu hareketin yer çekimi yardımı ile tamamlanması için bir periyot geçer ve bu periyot;

$$T = 2\pi \sqrt{\frac{k}{g}} \tag{4.3}$$

eşitliği ile tanımlanır. Burada k sarkac boyudur.

Şekil 4.3 Dinamik yöntemlerden sarkaç ile gravite hesabı (İlgar 2011).

X ve Y noktalarındaki gravite değerleri;

$$g_x = 4\pi^2 \frac{k}{T_x}$$
 $g_y = 4\pi^2 \frac{k}{T_y}$ (4.4)

eşitliklerinden hesaplanır ve iki nokta arasındaki gravite farkı,

$$g_{x} - g_{y} = 4\pi^{2}k(\frac{1}{T_{y}^{2}} - \frac{1}{T_{x}^{2}})$$
(4.5)

olarak ifade edilir.

4.1.2.2 Statik yöntem

Bu yöntemde, bir denge durumu oluşana kadar genellikle yay gibi elastik kuvvetler yardımıyla sabit tutulmuş bir sensör kullanılır. İki farklı nokta arasında oluşan denge konumundaki gravite değişimi ölçülür (Torge 1989). Elastik bir kuvvetle statik denge yay sisteminde temel olarak, yayın ucuna bağlanan bir kütlenin hareketinin sonlanması halinde yaydaki oluşan hareket miktarı ölçülür.

Şekil 4.4 Statik yöntemlerden yay yardımı ile gravite hesabı (İlgar 2011).

Bu sistemde yayın ucunda herhangi bir kütle asılı olmadığındaki boyunun uzunluğu ι_0 bir m kütlesi ucuna takıldıktan sonraki yay uzunlu ι olmak üzere;

$$mg = f(t - t_0) \tag{4.6}$$

eşitliği ifade edilir. Burada f yay sabitidir Yay boyundaki değişim (4.7) eşitliği ile ifade edilir.

$$\Delta l = \frac{m}{f} \Delta g \tag{4.7}$$

Yayın periyodu T_0 olmak üzere;

$$T_0 = 2\pi \sqrt{\frac{m}{f}} = 2\pi \sqrt{\frac{l - l_0}{g}}$$
 (4.8)

Yay boyundaki değişim ;

$$\Delta l = \frac{T_0^2}{4\pi^2} \Delta g \tag{4.9}$$

şeklinde de ifade edilebilir.

4.1.2.3 Bağıl Gravite Ölçerler

Bağıl yöntemde gravite değerlerini ölçmek için kullanılan aletlere bağıl gravite ölçer ismi verilir. Günümüzde yaygın olarak kullanılan bağıl gravite ölçerler ;

LaCoste&Romberg (LCR)-D; LCR-G ve Scintrex CG5 marka isimlerine sahip gravite ölçerlerdir. Bu gravite ölçerlerde genel olarak yay sistemleri kullanılmaktadır. Yüzölçümü olarak büyük alanlara sahip yerlerde jeoid belirlemek amacıyla yapılan gravite ölçmelerinde kullanılırlar. Yay sistemi kullanılan bağıl gravite ölçerlerde yayın ucuna bir ağırlık bağlanır ve yayın gerilme aralıkları ölçülür. Gravite ölçeri kalibre etmek için, bağıl gravite ölçer daha önceden gravite ivmesi hesaplanmış bir noktaya konumlandırılır. Bir diğer bağıl gravite ölçerler de ise serbest düşme prensibi kullanılmaktadır. Yansıtıcı özelliğe sahip olan bir kütle hava sürtünmesi ihmal edilmiş boşlukta düşürülür. Bu sinyal bölgesel gravite ivmesinin belirlenmesinde kullanılır.

Resim 4.3 A- Scintrex CG5 ve B- LCR-G Bağıl gravite ölçer.

Bu iki cihazında çalışma prensibi yaya asılı duran bir kütlenin hareketinin izlenmesi temeline dayanmaktadır. Bu iki alet ile iki nokta arasındaki gravite değeri farkı 5-10 μGal doğruluğunda hesaplanabilir. Fakat bu doğruluk aralığını yakalayabilmek için bir takım düzeltme ve indirgeme işlemleri yapmak gerekmektedir.

Bunlar;

- Atmosferik basınç ve sıcaklık düzeltmeleri
- Gelgit deformasyonu düzeltmesi,
- Alet yüksekliği-nokta yüksekliği indirgemesi,
- Drift (sürüklenme) düzeltmesi,

olarak isimlendirilir.

4.2 Uydu Bazlı Sistemler

GNSS (Global Navigation Satellite System) ile ölçüm yapılarak hesap edilen elipsoidal yüksekliklerden ortometrik yüksekliklere geçiş yapılabilmesi eş potansiyelli yüzey olan jeoit kullanılır. Gravimetrik yöntem aracılığı ile jeoid yüksekliği hesap edilebilir fakat hesap edilen jeoit yüksekliği jeodezik amaçlı uygulamalarda istenilen doğruluğu vermeyebilir. Bu sebepten dolayı lokal bir bölgede ortometrik yüksekliği daha önceden belirlenmiş noktaların aynı zamanda GNSS ölçümleri ile elipsoidal yükseklikleri belirlenerek bir model oluşturulabilir. Böyle bir model için gravite alanı belirleme amaçlı uydulardan alınan veriler kullanılarak bulunan değerlerle sonuçlar karşılaştırılır. Fiziksel yeryüzünün gravite alanı bugün ki koşullarda CHAMP, GRACE ve GOCE adı verilen alçak irtifalı yörüngelerde belirli periyotlar da hareket eden uydular yoluyla izlenebilmektedir. Bu amaca yönelik yörüngeye oturtulan ilk uydu 2000 tarihinde CHAMP (Challenging Mini-Satellite Payload for Geophysical Research and Application) olup, 2002 tarihinde ikinci olarak yörüngeye giren GRACE (Gravity Recovery and Climate Experiment) ve 2006 tarihinde GOCE (The Gravity Field and Steady-State Ocean Circulation Explorer)' dur (Kılıçoğlu 2009).

4.2.1 CHAMP (Challenging Minisatellite Payload)

2000 yılında firlatılıp yörüngesine oturtulan CHAMP uydusu GFZ (Geoforschungzentrum)-Potsdam (Almanya) tarafından izlenmiş ve 2010 yılı içerisine görevini sonlandırmıştır.

Şekil 4.5 CHAMP uydusu.

CHAMP uydusu gravite alanı belirleme amacı ile yörüngeye oturtulan ilk uydu projesi olma özelliğini taşımaktadır. Bu uydu projesinin diğer amaçları şunlardır;

- Yeryuvarı gravite alanının yapısını ve zamansal değişimlerini incelemek
- Yeryuvarının manyetik alanını ve zamansal değişimlerini incelemek
- Troposfer ve iyonosfer tabakalarını incelemektir.

4.2.2 GRACE (Gravity Recovery and Climate Experiment)

GRACE projesinin temel görevi yeryuvarı gravite alanındaki zamana bağlı olarak değişimini belirlemektir. Alman ve Amerikan ortaklığı ile 17 Mart 2002'de yörüngeye yerleştirilmiştir. GRACE uydu sisteminin çalışma sistemi diğerlerinden farklı olarak aynı yörünge üzerinde birbirlerini belirli mesafe aralıkları ile takip eden iki uydudan oluşmaktadır.

Şekil 4.6 GRACE uyduları.

GRACE verileri ile okyanuslardaki su miktarlarındaki değişimler, buzullardaki değişimler, yer altı su kaynaklarındaki değişimler vb. kütle değişimi çalışmaları da gözlemlenmektedir. Bunun yanı sıra tektonik yeryüzü hareketlerin gözlenmesi, jeoit ve gravite değişiminin gözlemlenmesi gibi farklı amaçlarda kullanılmaktadır (Aydın 2014).

4.2.3 GOCE

GOCE uydusu 2009 yılının Eylül ayında yörüngeye oturtulmuş olup bu projelerin üçünsüdür. Kasım 2013 yılında ise ömrünü tamamlamıştır. Bu projenin işletmesini Avrupa Uzay Ajansı (ESA) yapmıştır. GOCE'un en temel amaçlarından birisi, jeoidi ve yeryuvarının zamana bağlı olmayan gravite alanını çok yüksek doğrulukta belirlemektedir GOCE projesinin misyonunda; 100 km lik konumsal çözünürlükle gravite anomalisi için 1 mGal ve jeoit için 1 cm doğruluk hedeflenmiştir (Drinkwater *et al.* 2003).

Şekil 4.7 GOCE uydusu.

GOCE uydusu yardımı ile yeryuvarının gravite alanından kaynaklanan ivmelerin belirlenmesi için bu uydu üzerine gradyometre ismi verilen 3 eksenli ivme ölçerlerden oluşan bir sistem bulunmaktadır. Bu ölçerlerin (ya da sensörlerin) yardımı ile gravite alanı belirlemesi yüksek doğrulukta yapılabilmektedir (Aydın 2014).

5. FİZİKSEL YERYUVARU BOYUNCA GRAVİTE DEĞİŞİMLERİ ve GRAVİTE İNDİRGEMESİ

Fiziksel yeryüzü üzerindeki kitlelerden (dağlar, denizler, okyanuslar vb.) dolayı yeryuvarı üzerinde ölçülen gerçek gravite (g) ile elipsoit yüzeyine ait olan normal gravite (γ) birbirlerinden farklıdır çünkü gerçek gravite fizksel yeryüzünde ölçülmektedir ve gerçek gravitenin deniz yüzeyine yani eşpotansiyelli bir yüzeye indirgenmesi gerekir.

Şekil 5.1 Gravite indirgemesi (Tongur 2010).

5.1 Gravite Ölçülerine Yapılan Düzeltmeler

5.1.1 Sürüklenme Düzeltmesi

Bu düzeltme gravite ölçerlerdeki yayların zamanla deforme olmasından kaynaklanan bir düzeltmedir. Bu hatayı yok etmemiz için öncelikli olarak aleti bir referans noktasına kurmalı ve orada ölçüm yapmalıyız daha sonra diğer ölçümlerimizi tamamlayıp en son gene aynı referans noktasında bir ölçüm daha gerçekleştirmeliyiz. Bu iki ölçüm arasındaki farkı ise diğer ölçtüğümüz noktalara dağıtmamız gerekmektedir. Sürüklenme, tekrarlı ölçüler yardımıyla öngörülen zamana bağlı uygun bir fonksiyonla belirlenir. Yaklaşık kalibre edilmiş ve indirgenmiş okuma değeri c(t)'nin elde edilmesinden sonra sürüklenmenin olmadı t_0 zamanında yapılan c(t_0) okuması ile c(t) okuması arasında;

$$c(t) = c(t_0) + D(t) = c(t_0) + \sum_{k=1}^{w} dk (t - t_0)^{w}$$
(5.1)

İlişkisi vardır (Aydın 2007). Bu eşitlikte D(t), w. dereceden sürüklenme polinomunu d_k ise polinom katsayısını ifade eder.

5.1.2 Enlem Etkisi ve Düzeltmesi

Gravite değeri ekvatorda kutuplara göre daha küçüktür bunun sebebi ise dünyamızın şeklidir. Çünkü dünyamız kutuplardan basık ekvatorda da şişik bir görünüme sahiptir yani ekvator yarıçapı kutupların yarıçapından büyüktür. Kuzey yarımkürede bulunan ölçü noktaları için düzeltme eksi işaretli, güneyde bulunan ölçü noktaları için düzeltme artı işaretlidir (Erden 1979).

$$\gamma = \gamma_0 \frac{1 + k \sin^2 \omega}{\sqrt{1 - e^2 \sin^2 \omega}}$$
(5.2)

Yukarıdaki eşitliği kullanarak enlemden kaynaklanan gravite değişikliğini hesaplanır.

 γ_0 = Ekvatordaki normal gravite değeri

$$\varphi =$$
 Elipsoidal enlem

- k = Gravite sabiti
- e^2 = Referans elipsoidin birinci dışmerkezlik elemanı

5.1.3 Yükseklik Etkisi ve düzeltmesi

Farklı yükseklik değerlerine sahip olan ölçü noktaları bir referans yüzeyine indirgenmeleri gerekmektedir. Referans alınacak bu yüzeye datum adı verilir. Datum herhangi bir noktanın konum bilgilerini belirlemek için kullanılan referans yüzeyidir. Yatay koordinatlar için referans alınan yüzey yatay datum, düşey koordinat yani yükseklik için referans alınan yüzey düşey datum olarak isimlendirilir. Yükseklikten kaynaklanan düzeltme iki aşamada incelenir (Tongur 2010).

Jeoit üzerinde yer alan bir J noktasındaki gravite vektörü (g_j) ile bu noktadan geçen elipsoit normalinin elipsoidi deldiği E noktasındaki normal gravite vektörü (γ_E) arasındaki farka gravite anomali vektörü denir. Bu vektörün büyüklüğüne ise gravite anomalisi adı verilir (Aydın 2014).

Şekil 5.2 Gravite anomalisi (Aydın 2014).

$$\Delta g = g_J - \gamma_E \tag{5.3}$$

Eşitliği gravite anomalisini verir. Bu eşitlikte verilen gravite anomalisini hesaplamak için eşpotansiyelli yüzey üzerindeki J noktasının gravite değerine ihtiyaç vardır. Fakat biz gravite değerini fiziksel yeryüzünde ölçeriz. J noktasının gravite değerini hesaplayabilmek için iki temel indirgeme yapılır.

5.1.3.1 Serbest Hava İndirgemesi

Bu indirgeme fiziksel yeryüzünde farklı yüksekliklere sahip noktaların yüksekliklerinden kaynaklanan etkiyi gidermek için yapılır. Serbest hava indirgemesi;

$$d_{gs} = -0.3086(\mu gal/m)H \tag{5.4}$$

eşitliği kullanarak hesaplanır. Burada 0.3086 değeri Türkiye için kullanılan katsayıdır, H ise gravitenin ölçülen noktadan itibaren indirgenecek yüzeye yani jeoide olan yüksekliğidir.

5.1.3.2 Bouguer İndirgemesi

Gravite değerlerini fiziksel yeryüzünde ölçeriz ve bu ölçümlerimizi jeoite indirgememiz için jeoid ile fiziksel yeryüzü arasında kalan kütlelerin etksini gidermemiz gerekmektedir. Bouguer indirgemesi bu yüzden yapılır. Bouguer indirgemesi;

$$d_{gb} = 2\pi k p H \tag{5.5}$$

eşitliği kullanılar hesaplanır. Burada $p = 2,67g/cm^3$ yoğunluğa sahip bir Bouguer tabakasını, k gravitasyon sabitini, H ise ortometrik yüksekliği ifade eder. Buradan;

$$d_{sb} = 0.1119(\mu gal/m)H$$
(5.6)

eşitliği elde edilir. Bir noktanın jeoid üzerindeki gravite değeri;

$$g_{i} = g - d_{gs} - d_{gb} = g + 0.1967 (\mu gal / m)H$$
(5.7)

olur. Buna Bouguer Gravitesi ismi verilir.

5.1.4 Arazi Düzeltmesi

Ölçü noktasının etrafındaki saha engebeli ise, ölçülen gravite değeri için ayrıca topografik düzeltme yapmak gerekir. Bouguer düzeltmesi yaparken plaka varmış kabul ederek ve düzeltme değeri negatif olduğundan ölçü değerinden çıkarılmıştı. Topografik düzeltme ise yine kütle varmış kabul ederek önceden çıkartılan düzeltme değeri kadar pozitif olarak P noktasındaki ölçü değerine ilave edilir. Böylece Bouguer düzeltmesi ile ölçü değerinden çıkarılan etkisi arazi düzeltmesi ile ilave edilirse birbirini götürür. P noktasından geçen nivo yüzeyinin üstündeki ve altındaki kitlenin etkisinden ileri gelen düzeltme yapılmış olur.

Şekil 5.3 Arazi düzeltmesi.

 $g_j = g_p - \Delta g_B + g_H + g_A$ tamamlanmış Bouguer indirgemesine arazi düzeltmesi g_A nın da eklenmesi ile;

$$g_{i} = g_{P} - g_{B} + g_{H} + g_{A} \tag{5.8}$$

olgunlaştırılmış Bouguer İndirgemesi bulunur.

5.1.5 İzostatik Etki ve Düzeltmesi

İzostasi modelinde mantık dağların altında bir cins kitle noksanlığının bulunmasıdır. Topoğrafik kitleler türdeş bir kabuğun dışta kalan parçaları olmuş olsaydı Bouguer indirgemesinin gravite alanının ana düzensizlikleri ortadan kaldırması gerekirdi ki bu da Bouguer anamolilerinin hem çok küçük olmasını hem de sıfır civarında artı eksi işaretlerle rastgele dağılmasını gerektirir. Oysa durum bunun tersine olup Bouguer anomali değerleri yükseklikle birlikte artıp sistematik bir şekilde eksi işaretlidir. Bu sebeple mantık "dağların altında kitle noksanlığı vardır"a gelmiştir. Yani topografik kitleler bir yolla dengelenmiş olur. Böyle bir denge için iki ana kuram geliştirilmiştir. Bunlardan birincisi J. H. Pratt tarafından belirtilmiştir. Pratt'a göre dağlar yer altından mayalı hamur gibi yükselmişlerdir bunun anlamı hacmi büyüyüp yükselen dağların aslında kütlesinde bir değişimin olmadığıdır. İkinci kuram G. B. Airy'e aittir. Airy ise dağların kendilerinden daha yoğun bir sıvı içerisinde yüzdüğünü ileri sürer. Böylece dağ ne kadar yüksekse o oranda sıvıya batmaktadır (Yaldız 2006).

6. MATERYAL ve METOT

Çalışma alanı olarak $36.5^{\circ} < \phi < 40.5^{\circ}$ enlem ve $26.5^{\circ} < \lambda < 33^{\circ}$ boylam değerlerini kuşatan bir bölgede enlem, boylam, ortometrik ve elipsoidal yüksekliği bilinen 120 referans noktasının ortometrik yükseklikleri kullanılarak topografya haritası elde edilmiştir (Şekil 6.1).

Şekil 6.1 Çalışma alanının topografyası.

BGI tarafından tez çalışmasındaki modellerden elde edilen verileri karşılaştırmak için 145 adet, çalışma bölgemizi kapsayan, yersel gravite verileri temin edilmiştir ve bunların çalışma alanı içerisinde dağılımını gösteren harita aşağıda verilmiştir. Temin edilen bu veriler ile modellerden elde edilen değerler karşılaştırılacaktır.

Şekil 6.2 Yersel gravite noktaları.

6.1 Jeopotansiyel Modeller

6.1.1 EGM2008 Modeli

EGM2008 jeopotansiyel modeli, 2160 adet küresel harmonik katsayısı kullanır. İlave katsayılarla 2190 dereceye yani bu sıraya kadar çıkabilmektedir. EGM2008 jeopotansiyel modeli NGA (Ulusal Jeodezi Ajansı) kurumu geliştirmiştir. Bu model 5'x5' çözünürlüğe sahip global gravite anomali bilgileriyle GRACE uydusunun gravite anomali bilgisini içerisinde bulundurmaktadır (Pavlis *et al.* 2008).

Bu gravite modeli, 3 adet farklı teknik kullanarak değerlendirme yapmaktadır. Bunlar;

- Birbirinden farklı dalga boylarında topografya modelleme
- Okyanus üzerinde jeoid doğruluğu model performansı
- Uydu dinamiklerinin modellenmesi dir.

Bu modelde gerçekleştirilen test aşamaları okyanus dolaşımı, deniz jeoid testlerini,

GRACE ve SLR testlerini ve GNSS/Nivelman testlerini içermektedir. Bu testlerden GNSS/Nivelman testi EGM2008 jeopotansiyel modeli ile çok iyi sonuçlar gösterir ve jeoid belirleme hataları da test sınır değer aralığının içinde olduğu belirtilmiştir. Bu model aynı zamanda kısa dalga boyuna sahip deniz jeoidine de en iyi sonuca ulaştırır (Cheng *et al.* 2009).

6.1.2 EIGEN-6C4 Modeli

EIGEN-6C4 modeli kendi serisinin dördüncü modelidir. LAGEOS, GRACE, GOCE uydularından elde edilen verilerin birleştirilmesi ile oluşmaktadır. Bu model altimetrik ve gravimetrik yüzey verilerinin birleştirilmesi ile oluşur. EIGEN-6C4, küresel harmonik açınımları 2190 derece ve sıraya kadar kullanır (Barthelmes 2013). EGM2008 jeopotansiyel modelinin geliştirilmiş halidir. EIGEN-6C4 modeli GOCE sistemi için en iyi yörünge bilgisi sonucunu verir.

EIGEN-6C4 modeli ve EGM2008 modeli birbirleri ile kıyaslandığında EIGEN-6C4 modelinde GNSS/Nivelman veri setlerinde de bir iyileşme olduğu ortaya çıkmıştır (Kostelecky *et al.* 2015).

6.1.3 GECO Modeli

EGM2008 jeopotansiyel modeline GECO'nun TIM-R5 çözümü ilave edilerek hesaplanmış küresel bir yerçekimi modelidir.

Bu modelin girdi verileri;

- GOCE TIM-R5'in hata kovaryans matrisini
- EGM2008 modelinin (5'x5' çözünürlüklü) küresel jeoid hata miktarları,
- EGM2008 küresel harmonik katsayıları ve standart hata miktarları,
- GOCE TIM-R5'in küresel harmonik katsayılarını içerisinde bulundurmaktadır.

GECO modeli küresel jeoid aralığından yararlanarak küresel harmonik katsayıları hesaplanmaktadır. Bu hesap işlemi 359 dereceye kadar yapılmaktadır. 360 dereceden sonrası 2190 dereceye kadar olan kısmında GECO modelinin küresel harmonik katsayıları EGM2008 modelinin katsayıları ile aynıdır. GECO modelinin hata katsayı miktarları EGM2008 ve TIM-R5'in katsayı miktarlarının ağırlıklı ortalaması ile hesaplanmaktadır (Gilardoni *et al.* 2016).

6.2 Topografya Modeli

6.2.1 REQTOPO215 Topografya Modeli

REQ_TOPO_2015, sırasıyla yükseklik anomalisi, yerçekimi bozukluğu ve radyalradyal yerçekimi gradiyenti bakımından yaklaşık 1 m, 50 mGal ve 20 mE'lik maksimum amplitüdlere ulaşır. Bu farklılıklar elipsoidin yüksekliğindeki artışla azalmakla birlikte, mevcut yerçekimi alan misyonlarının uydu irtifaları durumunda da önemli büyüklükler tespit edilebilir. RWI_TOPO_2015, REQ_TOPO_2015 ve RWI_TOPO_2012 performanslarını değerlendirmek için, mevcut global jeodegatif modellerin bağımsız yerçekimi bilgisine karşı doğrulanmış olup, yeni RWI modelinde elde edilen iyileştirmeleri açıkça göstermektedir. Ayrıca REQ_TOPO_2015 topografik modeli küresel harmonik açılımlarda 2190 dereceye kadar ulaşır (Grombein et al. 2016).

6.3 Gravite Modeli

6.3.1 WGM12 Gravite Modeli

WGM12, küresel ölçekte hesaplanan, yüksek çözünürlüklü Dünya'nın yerçekimi anomalilerinin haritalarının üretilmesidir. WGM12, küresel geometride küresel ölçekte hesaplanan yüksek çözünürlüklü ızgaraların ve Dünya'nın yerçekimi anomalilerinin (Bouguer, izostatik ve yüzeysiz hava) haritalarının ilk yayımıdır. Dünya Jeoloji haritası Komisyonu (CGMW), UNESCO, Uluslararası Jeodezi Birliği (IAG), Jeodezi ve Jeofizik Birliği (IUGG), Uluslararası Jeoloji Bilimleri Birliği (IUGS) ve çeşitli bilimsel kuruluşlar gibi uluslararası organizasyonlarla işbirliği çerçevesinde Bureau

Gravimétrique International (BGI) tarafından gerçekleştirilmiştir.WGM2012 yerçekimi anomalileri EGM2008 ve DTU10'dan türetilmiştir ve ETOPO1'den türetilmiş 1'*1' çözünürlük arazi düzeltmeleri içerir (İnt.Kyn.2). Yerçekimi anomalileri, küresel ölçekte doğru hesaplamalar yapmak için Dünya'nın topografya-batimetrisinin 10800 dereceye kadar küresel harmonik genişlemesi ile hesaplanmıştır (Bonvalot *et al.* 2012).

7. BULGULAR

Bu araştırmada, 5 farklı model kullanılarak birbirleri arasındaki karşılaştırma yapılmıştır. Çalışma alanımızda en iyi sonuç veren model belirlenmiştir. Modeli belirlerken kriter olarak karesel ortalama hata değerinin en küçük olduğu model en doğru model olarak belirlenmiştir. Çalışma alanımızda BGI' dan temin ettiğimiz 145 adet noktaya ait Bouguer gravite anomali değerleri Çizelge 7.2' de ve serbest hava gravite anomali değerleri Çizelge 7.1'de verilmiştir. Bu değerler her model için ayrı ayrı hesaplanmıştır. Daha sonra hesaplanan bu model değerleri ile gerçek değerler arası farklar hesaplanmıştır ve haritaları sunulmuştur.

N.N	EGM2008	EIGEN-6C4	GECO	REQTOPO15	WGM12
1	38.6999	35.5816	34.4974	325.3837	38.7110
2	24.9520	21.9259	20.1416	310.7060	24.4028
3	28.1815	25.1746	23.2154	318.1036	27.6813
4	27.9193	24.9211	22.9564	318.2090	27.3951
5	35.5725	32.5764	32.1752	322.3336	34.7884
6	73.4041	70.7496	68.2946	369.9173	73.9616
7	38.2827	35.7199	34.7210	331.3411	37.3545
8	54.7750	52.9788	52.5695	332.4160	54.6472
9	63.5841	62.0554	61.6458	364.5942	64.3457
10	89.9074	89.3511	87.2112	333.8548	89.5607
11	42.3949	40.5696	39.2766	327.3888	42.2341
12	27.1642	25.4227	23.6400	328.8807	25.8281
13	58.0485	58.1551	55.8493	319.5971	57.8575
14	25.1107	25.7263	27.5128	342.0741	24.2044
15	11.2047	10.4337	8.4784	319.8394	10.4587
16	15.0759	14.7763	15.3855	323.0393	15.0983
17	79.9593	80.1457	78.3608	345.3564	80.4495
18	34.4119	35.8332	38.0693	347.2276	33.1039
19	54.7249	56.3433	55.9494	329.3924	56.3490
20	41.3586	43.3378	45.1939	360.6295	41.5887
21	24.9344	25.9217	29.3087	348.5520	25.1048
22	10.4203	11.1126	13.9588	320.1935	10.3808
23	46.4032	46.4706	45.5258	327.9538	46.7017
24	49.9511	48.1166	50.0876	329.5763	49.3374
25	61.6758	62.3630	62.9828	322.1206	64.5949
26	18.2554	20.7083	23.0366	341.1643	18.0918
27	6.6652	6.9665	4.6190	320.8445	5.6431
28	67.7270	67.9055	67.4903	354.6026	67.3706
29	51.6078	50.1527	51.9129	332.6324	51.6034
30	14.9916	17.5864	19.7995	333.6029	15.0374
31	17.0964	19.6935	21.6143	336.6584	17.0993

Çizelge 7.1 Modellerdeki serbest hava gravite anomali değerleri.

Çizelge 7.1 (Deva	mı) Modellerdeki	serbest hava gravite	anomali değerleri.
-------------------	------------------	----------------------	--------------------

32	108.0018	108.1433	108.6118	425.4122	109.3821
33	23.4021	25.4743	23.9806	303.6801	22.8308
34	43.0144	41.3958	43.3065	317.5882	43.0506
35	7.5163	8.4876	6.1769	324.8856	6.1506
36	23.8589	24.8086	24.0605	332.5436	23.3858
37	28.6769	31.0735	31.4992	350.4484	29.1822
38	26.5252	27.3590	27.7168	323.7569	25.7105
39	21.6447	22.5029	23.1771	330.7272	20.3613
40	29.2150	27.9519	28.8954	317.4065	29.5085
41	45.2519	45.7582	47.2902	351.0100	44.6325
42	10.1607	10.0512	9.1863	314.0946	10.0377
43	44.4019	44.9460	46.8344	354.0128	45.1302
44	16.3187	17.7200	16.4358	327.6699	16.1369
45	-5.5218	-3.8135	-5.4846	317.5398	-8.3735
46	51.2766	51.6703	53.7613	368.7141	50.3773
47	52.7982	53.2344	55.3842	368.3764	51.8440
48	8.6103	8.1556	9.3627	342.8722	8.7598
49	10.2688	9.8398	11.0201	345.6503	10.7188
50	11.6164	11.3802	12.8200	335.1999	12.1273
51	-14.8958	-12.7898	-13.1091	308.4441	-16.3878
52	2.8215	2.8541	4.1640	336.5659	1.9113
53	68.9789	69.4794	71.7433	402.2715	67.4472
54	70.8314	71.3536	73.6359	405.1738	69.0943
55	45.6102	45.8397	47.7699	389.1258	46.0685
56	30.4153	30.6351	32.3429	382.5966	30.7008
57	1.7717	4.0605	5.7546	335.2702	-0.4109
58	-7.6937	-7.6581	-7.6221	336.9433	-7.0719
59	10.5603	12.7610	15.9077	352.3776	8.2308
60	-35.4340	-35.8261	-36.8218	300.6187	-35.5918
61	-21.6664	-22.6438	-24.3623	317.2108	-21.9311
62	-61.7610	-67.4415	-65.4081	268.6543	-64.7979
63	-32.4895	-30.6957	-26.6656	328.4603	-31.6612
64	-31.0492	-29.2427	-25.2508	327.7777	-30.7918
65	-5.9802	-7.7839	-9.0903	332.4268	-5.6188
66	-17.9408	-20.5999	-21.0205	311.3330	-18.4296
67	-29.3675	-27.8650	-25.8414	324.2351	-30.1481
68	-25.0570	-28.5805	-27.8648	314.4403	-25.7391
69	11.4706	12.7026	12.6694	367.5634	10.0392
70	44.1068	45.2141	43.7699	412.3578	44.2564
71	93.7973	90.6332	89.0205	491.2742	91.9841
72	138.2874	134.1404	135.2462	494.6249	135.9152
73	47.3641	48.3240	46.4767	405.4516	47.3663
74	52.0639	48.2993	47.4677	405.7072	48.7972
75	70.6806	67.6282	65.5443	459.8277	72.3147
76	52.4153	52.7074	50.0825	419.7176	53.5883
77	80.7212	78.7846	76.3172	471.4810	80.4209
78	25.2931	25.4441	23.2883	406.8268	23.4978
79	43.0642	43.2803	43.0352	422.5810	43.0413
80	39.2488	40.2061	40.2739	436.5324	38.8115
81	32.0053	33.1206	33.6166	421.6307	31.3554

Çizelge 7.1 (Devamı) Modellerdeki serbest hava gravite anomali değerleri.	
---	--

-		,	-		-	
	81	32.0053	33.1206	33.6166	421.6307	31.3554
	82	53.9596	51.7080	49.5414	428.0237	55.5611
	83	38.1983	38.8586	39.3192	408.8326	37.6786
	84	56.8229	58.9041	61.1700	423.3131	57.3001
	85	33.5782	35.1695	36.5530	413.0780	33.4431
	86	38.3103	40.9113	44.2957	393.3843	38.1015
	87	46.9278	49.5743	53.2570	397.1266	46.8566
	88	52.3214	54.3732	56.5929	427.6754	51.3216
	89	4.0102	3.4504	1.3133	285.7527	2.4406
	90	88.8490	91.3388	94.2246	465.9662	90.7296
	91	6.8838	8.3007	9.1501	336.9868	6.4470
	92	-2.0785	-1.1442	-0.9076	329.2083	-1.0327
	93	-8.7904	-8.7022	-8.6933	297.1524	-8.6101
	94	39.8961	41.7574	42.7564	410.3078	39.5856
	95	-15.5966	-14.7832	-14.9109	309.2029	-15.1301
	96	-28.3461	-26.1788	-25.6277	316.5359	-28.1556
	97	41.1602	43.2141	43.1165	411.9847	41.0772
	98	-43.5359	-42.0713	-42.4367	309.7052	-42.9951
	99	-46.4832	-44.9752	-45.4600	310.5579	-45.9817
	100	29.7694	31.3330	30.7461	412.6415	28.7160
	101	35.3137	36.1178	35.8597	424.7316	35.1068
	102	-36.3980	-35.0274	-36.2611	309.3080	-36.3971
	103	-23.5932	-22.0693	-23.3094	324.3554	-22.7666
	104	-16.9249	-15.4254	-17.2972	310.8959	-16.7386
	105	45.6441	46.8217	45.5119	417.3341	44.5233
	106	-11.3878	-9.2657	-12.1391	307.7764	-9.5938
	107	-9.8125	-8.0546	-10.5180	312.6291	-8.6476
	108	-10.0767	-8.6072	-10.7470	312.1147	-9.3084
	109	0.9365	1.8486	0.1372	309.0916	1.4630
	110	52.1665	53.5917	52.3852	434.2001	52.3794
	111	9.4084	10.2110	8.6921	311.7640	10.4722
	112	20.7420	21.8165	20.2341	305.9648	20.5490
	113	25.4152	26.6207	24.9686	304.1178	25.2731
	114	55.7319	56.4560	55.3952	443.0733	55.0685
	115	24.5914	25.3829	24.5729	308.9543	23.4961
	116	22.1373	22.7105	22.1859	299.6204	21.2178
	117	23.9397	24.4988	23.9909	308.6059	22.7785
	118	79.1600	79.2699	77.8142	483.6545	78.0680
	119	57.0724	55.2713	54.9935	420.5680	56.5904
	120	134.8999	135.3379	135.2875	508.6366	136.6248
	121	75.9843	74.3047	73.4768	455.1104	76.4494
	122	51.7646	50.8911	49.3884	411.2964	51.2154
	123	103.6791	104.0471	105.1260	472.9984	104.4020
	124	57.8571	56.9825	55.5626	414.0380	57.8778
	125	66.8738	66.5118	66.0704	418.4630	67.2056
	126	56.3212	56.5613	58.0827	440.8865	56.2362
	127	31.9154	30.4258	29.6297	417.5824	31.9010
	128	44.4563	44.4529	45.3673	420.8038	44.5095
	129	47.5063	48.0522	48.2063	429.0081	45.6827
	130	27.0638	25.8559	29.2566	392.2742	25.9393

131	27.7576	26.9054	29.4495	395.5053	25.4165
132	44.6376	44.2665	45.5964	423.9423	45.2311
133	53.0662	51.2800	51.7521	418.8230	53.1694
134	42.4115	42.6151	44.2808	423.6126	42.5626
135	43.7761	42.6900	45.7374	416.5534	43.1208
136	45.4229	43.5193	45.4467	411.5783	45.2836
137	37.1723	36.0005	39.0912	402.9333	36.7958
138	45.2675	44.3677	46.5702	432.9592	45.9231
139	39.2320	38.0816	40.9253	409.3061	39.0425
140	41.5853	40.7946	42.2436	436.0948	41.4335
141	42.3686	41.7169	42.3910	430.2062	42.0357
142	44.7163	43.3518	45.2600	410.1382	44.7737
143	34.4644	33.5126	34.3821	406.7064	34.4070
144	38.5309	38.8916	40.6961	411.0422	37.7961
145	22.7737	24.0779	22.7800	373.3374	17.0296

Çizelge 7.1 (Devamı) Modellerdeki serbest hava gravite anomali değerleri.

* Çizelgedeki değerlerin birimleri mGal'dir.

Çizelge 7.2 Modellerde ki serbest hava gravite anomali değerleri istatistikleri.

MODELLER	MİNUMUM	MAKSİMUM	ORTALAMA	STANDART SAPMA
EGM2008	-61.7610	138.287	31.042	33.761971
EIGEN-6C4	-67.4415	135.338	31.103	33.447652
GECO	-65.4081	135.288	31.290	33.538283
REQTOPO15	268.6543	508.637	366.892	53.379871
WGM12	-64.7979	136.625	30.766	33.873800

* Çizelgedeki değerlerin birimleri mGal'dir.

Çizelge 7.1 ve 7.2 gösterilen bu değerlere şu şekilde ulaşılmıştır;

- Öncelikle çalışma alanı 3' lık gridlere ayrıldı ve 10611 nokta elde edilmiştir.
- ICGEM hesaplama servisinden her bir model için çalışma alanımızdaki her bir grid noktasında serbest hava gravite anomali değerleri hesaplanmıştır (İnt.Kyn.1).
- Hesaplanan bu değerlere ilişkin, her model için ayrı ayrı haritalama işlemi
 Surfer 13 programı ile gerçekleştirilmiştir.
- Hazırlanan ve sayısal veri elde edilebilen bu haritalardan, BGI' dan temin edilen ve çalışma alanın içerisine dahil olan 145 adet noktadaki serbest hava gravite anomali değerleri bu haritalar üzerinden hesaplanıp çizelgelerde sunulmuştur.

Sunulan bu değerlere ilişkin istatistik verileri de Surfer 13 programından hesaplanmıştır.

N.N	EGM2008	EIGEN-6C4	GECO	REQTOPO15	WGM12
1	25.5352	22.4143	21.3200	314.9464	131.2831
2	20.2684	17.2408	15.4464	313.3744	124.9104
3	18.9681	15.9598	13.9906	314.1766	127.8878
4	18.5692	15.5697	13.5949	314.1829	127.3392
5	23.1044	20.1042	19.6969	314.2317	127.7789
6	22.5803	19.9240	17.4616	315.0562	125.0388
7	20.7563	18.1910	17.1859	314.4442	128.5643
8	37.2029	35.4057	34,9916	315.9725	144.5253
9	26.0950	24.5682	24.1518	317.7562	136.6317
10	80.0888	79.5374	77.3839	319.6641	194.9476
11	29 1787	27 3518	26 0530	314 7608	138 4366
12	8 8295	7 0890	5 3061	313 7384	116 7138
13	53 2300	53 3358	51 0271	315 8971	159 3674
13	-6 7120	-6 0927	-4 3021	312 9754	105 9767
15	3 2470	2 4747	0 5140	315 6259	108 4955
16	5.0951	4 7985	5 4157	314 0138	113 8068
10	54 5057	5/ 603/	52 0010	316 2202	170 3702
17	1 1272	3 0110	07740	310.2292	100.2000
10	-4.4372	-3.0119	-0.7740 53 2777	312.2783	157 7874
19	3 30/3	1 4114	0 4 4 4	313 5684	100 2688
20	-3.3943	-1.4114	0.4444	214.0525	102.4427
21	-7.3034	-0.3/14	-2.9734	514.0555 212.9592	105.4457
22	0.5712	1.00/1	3.9234	512.6565	103.5750
23	28.9009	28.9689	28.0221	313.7730	137.7114
24	35.4338	33.5915	35.5657	312.1396	144.5643
25	60.7524	61.43/6	62.0558	316.6309	165.9294
26	-10.2592	-/.8040	-5.4/81	312.1265	97.2722
27	-8.5222	-8.2203	-10.5758	312.0471	98.9628
28	27.3780	27.5586	27.1399	314.8563	141.7678
29	34.8531	33.3931	35.1546	312.5383	140.1269
30	-6.7247	-4.1288	-1.9191	312.5883	102.0188
31	-6.5457	-3.9481	-2.0312	313.0567	103.2149
32	17.5505	17.6926	18.1618	320.1799	122.7729
33	23.1973	25.2766	23.7752	313.4885	125.4060
34	38.6031	36.9746	38.8928	313.4554	145.1269
35	-13.2965	-12.3228	-14.6433	311.2855	100.1559
36	1.6640	2.6169	1.8611	313.3211	116.7099
37	-7.0499	-4.6564	-4.2372	311.7140	100.7220
38	1.1096	1.9448	2.2991	310.0004	117.9707
39	-9.2919	-8.4309	-7.7597	309.7141	108.6121
40	24.2704	22.9954	23.9467	312.3565	129.0153
41	-0.9817	-0.4726	1.0606	311.9922	103.2895
42	6.2370	6.1172	5.2534	311.2626	112.0249
43	-1.9356	-1.3899	0.5011	312.3932	103.2680
44	-3.2284	-1.8345	-3.1249	311.3987	106.6156
45	-24.9928	-23.2812	-24.9622	309.1631	81.2472
46	-10.6056	-10.2088	-8.1143	311.4983	96.0023
47	-9.8883	-9.4488	-7.2955	311.0701	98.0561
48	-11.9683	-12.4227	-11.2125	318.4498	109.7644
49	-12.7767	-13.2053	-12.0217	318.0611	106.4946
50	-10.6883	-10.9235	-9.4791	313.9163	100.2218
51	-28.2344	-26.1255	-26.4524	307.9234	77.4628
52	-21.6468	-21.6108	-20.2974	315.0610	98.2349

Çizelge 7.3 Modellerdeki Bouguer gravite anomali değerleri.

53	-19.5992	-19.0942	-16.8254	313.6101	87.9183
54	-20.2311	-19.7043	-17.4169	313.8552	88.5987
55	-25.3060	-25.0731	-23.1369	314.2124	83.5524
56	-33.6023	-33.3789	-31.6646	315.2771	78.3634
57	-33.0502	-30.7583	-29.0679	309.0652	82.6936
58	-31.7332	-31.6917	-31.6529	313.9996	87.0117
59	-42.1524	-39.9494	-36.8026	308.5254	69.7830
60	-34.8533	-35.2389	-36.2336	311.3248	65.3893
61	-27.2418	-28.2108	-29.9339	313.6321	85.5006
62	-4.6810	-10.3700	-8.3289	321.5803	102.7924
63	-56.0659	-54.2713	-50.2364	310.0259	57.7522
64	-56.9750	-55.1673	-51.1705	308.3586	54.5128
65	-28.4702	-30.2658	-31.5784	311.3940	80.2910
66	-22.6528	-25.3046	-25.7326	311.2733	90.1513
67	-63.2336	-61.7304	-59.7012	303.7845	47.0649
68	-48.0111	-51.5284	-50.8196	305.5959	62.5275
69	-60.3941	-59.1627	-59,1937	304.5911	45,9015
70	-61.7110	-60.6051	-62.0520	307.6212	45.8964
71	-77.6594	-80.8177	-82.4387	315.7553	35.3486
72	-42,4629	-46.6072	-45.5083	314.0237	81.9941
73	-55.9872	-55.0299	-56.8847	305.3830	49.7084
74	-66.3953	-70.1549	-70.9932	301.1313	50.1592
75	-70 9898	-74 0364	-76 1273	313 1512	37 8270
76	-54 7523	-54 4653	-57 1002	309 1975	51 2105
70	-79 8417	-81 7703	-84 2408	310 0940	45 4073
78	-84 3654	-84 2208	-86 3857	303 4031	26 5161
70 79	-76 4204	-76 1950	-76 4337	306.0034	30 3163
80	-89.0522	-88 0999	-88 0395	307 4273	27 2641
81	-87 1877	-86 0771	-85 5878	305 2456	25 7650
82	-54 3523	-56 5992	-58 7694	311 7609	47 1449
83	-61 3344	-60 6650	-60 1968	308 8745	36 8903
84	-47 3671	-45 2772	-43 0024	311 9907	65 3664
85	-78 5862	-76 9990	-75 6195	303 9790	22 9196
86	-55 7652	-53 1588	-49 7665	304 9234	54 6185
87	-56 8267	-54 1781	-50 4906	302 0415	47 5492
88	-74 9997	-72 9506	-70 7326	304 0730	34 4432
89	12 5904	12.0359	9 8986	302 2933	115 6999
90	-55 8970	-53 4067	-50 5192	312 6239	43 0037
91	-30 5574	-29 1310	-28 2757	305 4090	78 3077
92	-22 6584	-21 71/1	-21 4735	309.7677	83 3367
93	-5 0883	-4 9847	-4 9790	307 2770	102 5296
94	-75 0471	-73 1896	-72 1935	301.27765	37 7940
95	-17/1811	-16 6529	-16 783/	308 3766	92 01/15
96	-17.4011	-11.6769	-10.7854	306.1/08	61 3/38
97	-75 8323	-73 7820	-73 8820	300.7736	35 8016
08	-75.8525	-73.7820	-75.8820	300.7730	61 7540
90	-44.8704	-45.5950	47 3322	309.5438	50 0702
99 100	-40.3042	-40.0437	-47.3322	309.3430	33.1573
100	-07.30//	-01.0293 80 1061	-00.4100 80 6508	300.17/3	16 7712
101	-70.2040 _28 2875	-07.4004 _37.0109	-07.0370 _38 7/5/	302.2031	67 7878
102	-30.3073	-37.0100	-30.2434	307.2907	60 7419
105	-20.4014	-30.9322	-30.1920	307.0388 306 7771	07./410
104	-21.7/18	-20.40/0	-22.3400	200.///4	00.7002
105	-03.9804	-02.0000	-04.1102	277.0880	23.3993 101 7267
100	-3.89/0	-3./023	-0.04/2	511.5012	101./30/

	`	6 6		e	
111	16.0865	16.8979	15.3698	314.7289	127.1281
112	24.4013	25.4848	23.8925	309.7486	135.5184
113	28.0484	29.2630	27.6007	308.3848	137.6831
114	-87.6351	-86.9150	-87.9822	301.9294	21.8844
115	20.3650	21.1646	20.3451	307.8718	127.0539
116	26.5624	27.1440	26.6095	308.1810	135.6487
117	15.6564	16.2226	15.7061	304.8549	128.4373
118	-96.4256	-96.3202	-97.7835	305.9532	21.1116
119	-61.9500	-63.7560	-64.0297	302.2034	39.9671
120	-52.3483	-51.9109	-51.9567	311.6077	49.6042
121	-66.8554	-68.5406	-69.3662	306.4503	34.6736
122	-62.0954	-62.9747	-64.4829	300.3381	42.4996
123	-56.5682	-56.2015	-55.1173	307.6685	41.5389
124	-55.0303	-55.9105	-57.3360	301.8919	47.9835
125	-47.3883	-47.7548	-48.2027	303.3558	55.7715
126	-75.9799	-75.7422	-74.2186	305.2488	30.1124
127	-82.3958	-83.8911	-84.6869	302.8220	24.8187
128	-71.9412	-71.9478	-71.0366	303.6306	33.0951
129	-87.8154	-87.2614	-87.1110	298.7714	24.5796
130	-69.3568	-70.5615	-67.1564	299.5107	36.0556
131	-76.7657	-77.6128	-75.0694	297.8392	32.1032
132	-78.6729	-79.0372	-77.7109	301.1837	29.3125
133	-63.7575	-65.5486	-65.0720	301.7492	38.5167
134	-77.4727	-77.2721	-75.6036	303.0397	29.2383
135	-74.9691	-76.0534	-73.0003	300.3175	34.6197
136	-63.7901	-65.6972	-63.7627	302.1487	40.2829
137	-67.9490	-69.1185	-66.0253	300.0350	38.2215
138	-79.9675	-80.8662	-78.6574	303.8265	24.1167
139	-69.0188	-70.1665	-67.3219	301.5106	41.1197
140	-86.2204	-87.0101	-85.5556	304.2685	16.7459
141	-82.7372	-83.3880	-82.7102	302.9179	18.8442
142	-63.9384	-65.3035	-63.3933	301.4034	37.7745
143	-70.6903	-71.6416	-70.7728	301.4707	31.2588
144	-75.7463	-75.3882	-73.5793	300.2212	27.7554
145	-75.1075	-73.8014	-75.1029	293.5657	46.6038

Çizelge 7.3 (Devamı) Modellerdeki Bouguer gravite anomali değerleri.

* Çizelgedeki değerlerin birimleri mGal'dir.

Çizelge 7.4 Modellerde ki Bou	guer anomali	değerleri	istatistikleri.
-------------------------------	--------------	-----------	-----------------

MODELLED	MİNILIMLIM	MALSIMUM		STANDART
MODELLEK		WARSIWUW	UKTALAMA	SAPMA
EGM2008	-96.4256	80.0887	-28.460396	41.2219772
EIGEN-6C4	-96.3201	79.5374	-28.397762	41.106774
GECO	-97.7835	77.3839	-28.211897	40.7904415
REQTOPO15	293.5657	321.5803	309.09679	5.5839018
WGM12	16.2712	194.9475	80.0960245	41.5376795

* Çizelgedeki değerlerin birimleri mGal'dir.

Çizelge 7.3 ve 7.4 gösterilen bu değerlere şu şekilde ulaşılmıştır;

- Öncelikle çalışma alanı 3' lık gridlere ayrıldı ve 10611 nokta elde edilmiştir.
- ICGEM hesaplama servisinden her bir model için çalışma alanımızdaki her bir grid noktasında Bouguer gravite anomali değerleri hesaplanmıştır (İnt.Kyn.1).
- Hesaplanan bu değerlere ilişkin, her model için ayrı ayrı haritalama işlemi
 Surfer 13 programı ile gerçekleştirilmiştir.
- Hazırlanan ve sayısal veri elde edilebilen bu haritalardan, BGI' dan temin edilen ve çalışma alanın içerisine dahil olan 145 adet noktadaki Bouguer gravite anomali değerleri bu haritalar üzerinden hesaplanıp çizelgelerde sunulmuştur.

Sunulan bu değerlere ilişkin istatistik verileri de Surfer 13 programından hesaplanmıştır.

7.1 Serbest Hava Gravite Anomali Haritaları

Şekil 7.1 EGM2008 jeopotansiyel modeli serbest hava anomali haritası.

Şekil 7.2 EIGEN-6C4 jeopotansiyel modeli serbest hava anomali haritası.

Şekil 7.3 GECO jeopotansiyel modeli serbest hava anomali haritası.

Şekil 7.4 REQTOPO2015 topografya modeli serbest hava gravite anomali haritası.

Şekil 7.5 WGM2012 gravite modeli serbest hava gravite anomali haritası.

7.2 Bouguer Gravite Anomali Haritaları

Şekil 7.6 EGM2008 jeopotansiyel modeli Bouguer gravite anomali haritası.

Şekil 7.7 EIGEN-6C4 jeopotansiyel modeli Bouguer gravite anomali haritası.

Şekil 7.8 GECO jeopotansiyel modeli Bouguer gravite anomali haritası.

Şekil 7.9 REQTOPO2015 topografya modeli Bouguer gravite anomali haritası.

Şekil 7.10 WGM2012 gravite modeli Bouguer gravite anomali haritası.

7.3 Yersel Gravite Verileri ile Modeller Arası Farklar ve Haritaları

N.N	EGM2008	EIGEN-6C4	GECO	REQTOPO15	WGM12
1	38.69987	35.58161	34.49741	325.38373	38.71099
2	24.95205	21.92586	20.14163	310.70600	24.40278
3	28.18152	25.17463	23.21545	318.10356	27.68130
4	27.91932	24.92112	22.95643	318.20899	27.39513
5	35.57247	32.57643	32.17519	322.33361	34.78839
6	73.40414	70.74959	68.29456	369.91727	73.96162
7	38.28265	35.71992	34.72104	331.34115	37.35449
8	54.77502	52.97882	52.56954	332.41602	54.64716
9	63.58409	62.05540	61.64577	364.59420	64.34575
10	89.90739	89.35114	87.21115	333.85476	89.56068
11	42.39486	40.56960	39.27663	327.38879	42.23411
12	27.16416	25.42265	23.64003	328.88074	25.82814
13	58.04845	58.15515	55.84930	319.59708	57.85752
14	25.11068	25.72626	27.51279	342.07413	24.20442
15	11.20469	10.43365	8.47841	319.83942	10.45872
16	15.07590	14.77633	15.38547	323.03926	15.09827
17	79.95928	80.14573	78.36084	345.35642	80.44955
18	34.41188	35.83324	38.06934	347.22761	33.10385
19	54.72489	56.34326	55.94937	329.39241	56.34901
20	41.35855	43.33784	45.19387	360.62951	41.58869

Çizelge 7.5 Serbest hava gravite anomali farkları.

Çizelge 7.5 (Devamı) Serbe	st hava gravite anomali farkları.
----------------------------	-----------------------------------

21 24.93441 25.92167 29.30865 348.55202 22.10432 22 10.42027 11.11264 13.95879 320.19353 10.38083 23 46.40319 46.47061 45.52582 322.12061 64.33744 25 61.67576 62.36301 62.98281 322.12061 64.9491 26 18.25536 20.70832 23.03658 341.16429 18.09182 27 6.66515 6.96645 4.61002 32.84447 5.64306 28 67.72700 67.90553 67.49032 354.60264 67.37057 29 5.60777 50.15275 51.91290 33.360295 15.03735 31 17.09640 19.69350 21.61433 33.665845 17.09333 32 108.00178 108.14322 108.61185 425.41223 109.38215 33 23.40209 25.47432 23.98064 303.68010 22.83085 34 43.01441 41.39580 43.30652 317.58819 45.05057 <tr< th=""><th>, 0</th><th>· · · · ·</th><th>e</th><th></th><th></th><th></th></tr<>	, 0	· · · · ·	e			
22 10.42027 11.11264 13.98879 320.19353 10.38083 23 46.40319 46.47061 45.52582 327.95375 46.70175 24 49.95113 48.11655 50.08763 329.57631 49.33744 25 61.67576 62.36301 62.98281 322.12061 64.59491 26 18.25536 20.70832 23.03658 344.16429 18.09182 27 6.66515 6.96645 4.61902 320.84447 5.64306 28 67.72700 67.90553 67.49032 334.60264 61.3044 30 14.99158 17.58642 19.79952 333.60255 15.03735 31 17.09640 19.69350 21.61433 336.65845 17.09933 32 108.0178 108.14332 108.61185 425.41223 100.938215 33 23.40209 25.47432 23.98064 332.54363 23.38857 34 43.0141 41.39580 43.30652 317.58819 43.05057 <t< td=""><td>21</td><td>24.93441</td><td>25.92167</td><td>29.30865</td><td>348.55202</td><td>25.10483</td></t<>	21	24.93441	25.92167	29.30865	348.55202	25.10483
23 46.40319 46.47061 45.5282 327.95375 46.70175 24 49.95113 48.11655 50.08763 329.57631 49.33744 25 61.67576 62.36301 62.98281 322.12061 64.59491 26 18.25536 20.70832 23.03658 341.16429 18.09182 27 6.66515 6.96645 4.61902 320.84447 5.64306 28 67.72700 67.90553 67.49032 334.60264 67.37057 29 51.60777 50.15275 51.91290 333.60295 15.03735 31 17.09640 19.69350 21.61433 336.6845 17.09933 32 108.0178 108.14332 108.61185 425.41223 109.38215 33 23.40209 25.47432 23.98064 303.68010 22.83085 34 43.01441 41.39580 43.30652 317.58819 43.50557 35 7.51625 8.48762 6.17692 32.488537 6.15056	22	10.42027	11.11264	13.95879	320.19353	10.38083
24 49.95113 48.11655 50.08763 329.57631 49.33744 25 61.67576 62.36301 62.98281 322.12061 64.59491 26 18.25536 20.70832 23.03658 344.16429 18.09182 27 6.66515 6.96645 4.61902 320.84447 5.64306 28 67.72700 67.90553 67.49032 354.60264 67.37057 29 51.60777 50.15275 51.91200 332.63244 51.60344 30 14.99158 17.58642 19.79952 333.60295 15.03735 31 17.09640 19.69350 21.61433 336.65845 17.09933 32 108.01185 433.0652 317.58819 43.05057 61.5056 35 7.51625 8.48762 6.17692 324.8857 6.15056 36 23.88893 24.80863 24.00045 332.54363 23.8879 37 28.67692 31.07350 31.49916 350.44837 29.18220	23	46.40319	46.47061	45.52582	327.95375	46.70175
25 61.67576 62.36301 62.98281 322.12061 64.59491 26 18.25536 20.70832 23.03658 341.16429 18.09182 27 6.66515 6.96645 4.61902 320.84447 5.64306 28 67.72700 67.90553 67.49032 354.60264 67.37057 29 51.60777 50.15275 51.91290 332.623244 51.60334 30 14.99158 17.58642 19.79952 333.6255 15.03735 31 17.09640 19.69350 21.61433 336.65845 17.09933 32 108.00178 108.14332 108.61185 425.41223 109.38215 33 23.40209 25.47432 23.98064 303.68010 23.28305 34 43.01441 41.39580 43.30652 317.58819 43.0557 35 7.51625 8.48762 6.17692 324.8857 6.15056 36 23.85893 24.80863 24.00045 332.54363 23.28769	24	49.95113	48.11655	50.08763	329.57631	49.33744
26 18.25536 20.70832 23.03658 341.16429 18.09182 27 6.66515 6.96645 4.61902 320.84447 5.64306 28 67.72700 67.90553 51.91290 332.63244 51.60344 30 14.99158 17.58642 19.79952 333.60295 15.03735 31 17.09640 19.69350 21.61433 336.65845 17.09933 32 108.00178 108.14332 108.61185 425.41223 109.38215 33 23.40209 25.47432 23.98064 303.68010 22.83085 34 43.01441 41.39580 43.30652 317.58819 43.0557 35 7.51625 8.48762 61.0692 32.48557 6.15056 36 23.85893 24.80663 24.06045 332.54363 23.38579 37 28.67692 31.07350 31.49916 350.44837 29.18220 38 26.52521 27.73588 27.71675 323.75690 25.71050	25	61.67576	62.36301	62.98281	322.12061	64.59491
27 6.66515 6.96645 4.61902 320.84447 5.64306 28 67.72700 67.90553 67.49032 354.60264 67.37057 29 51.60777 50.15275 51.91290 332.63244 51.60344 30 14.99158 17.58642 19.79952 333.60295 15.03735 31 17.09640 19.69350 21.61433 336.65845 17.09933 32 108.00178 108.14332 108.61185 425.41223 109.38215 33 23.40209 25.47432 23.98064 303.68010 22.83085 34 43.01441 41.39580 43.30652 317.5819 43.05057 35 7.51625 8.48762 6.17692 324.38579 21.83087 37 28.67692 31.07350 31.49916 350.44837 29.18220 38 26.52521 27.35898 27.71675 323.75690 25.71050 39 21.64471 22.50294 23.1713 30.72722 20.36130	26	18.25536	20.70832	23.03658	341.16429	18.09182
28 67.72700 67.90553 67.49032 354.60264 67.37057 29 51.60777 50.15275 51.91290 332.63244 51.60344 30 14.99158 17.58642 19.79952 333.60295 15.03735 31 17.09640 19.69350 21.61433 336.65845 17.09933 32 108.00178 108.14332 108.61185 425.41223 109.38215 33 23.40209 25.47432 23.98064 303.68010 22.83085 34 43.01441 41.39580 43.30652 317.58819 43.05057 35 7.51625 8.48762 6.17692 324.8857 6.15056 36 23.85893 24.80863 24.06045 332.54363 23.38579 37 28.67692 31.07350 31.19916 330.72722 20.36130 38 26.52521 27.35898 27.1075 323.75690 25.71050 39 21.64471 22.50294 23.17713 30.72722 20.36130 <tr< td=""><td>27</td><td>6.66515</td><td>6.96645</td><td>4.61902</td><td>320.84447</td><td>5.64306</td></tr<>	27	6.66515	6.96645	4.61902	320.84447	5.64306
29 51.6077 50.15275 51.91290 332.63244 51.60344 30 14.99158 17.58642 19.79952 333.60295 15.03735 31 17.09640 19.69350 21.61433 336.65845 17.09933 32 108.00178 108.14332 108.61185 425.41223 109.38215 33 23.40209 25.47432 23.98064 303.68010 22.83085 34 43.01441 41.39580 43.30652 317.5819 43.05057 35 7.51625 8.48762 6.17692 324.88557 6.15056 36 23.85893 24.80863 24.06045 332.54363 23.38579 37 28.67692 31.07350 31.49916 350.44837 29.18220 38 26.52521 27.35898 27.71675 323.7690 25.71050 39 21.64471 22.50294 23.17713 330.72722 2.06130 40 29.21503 27.95186 28.89545 317.40653 29.50848	28	67.72700	67.90553	67.49032	354.60264	67.37057
30 14.99158 17.58642 19.79952 333.60295 15.03735 31 17.09640 19.69350 21.61433 336.65845 17.09933 32 108.00178 108.14332 108.61185 425.41223 109.38215 33 23.40209 25.47432 23.98064 303.68010 22.83085 34 43.01441 41.39580 43.30652 317.58819 43.05057 35 7.51625 8.48762 6.17692 324.88575 6.15056 36 23.85893 24.80863 24.06045 332.54363 23.38579 37 28.67692 31.07350 31.49916 350.44837 29.18220 38 26.5251 27.35898 27.71675 323.75690 25.71050 39 21.64471 22.0294 23.17713 330.72722 2.0.36130 40 29.21503 27.95186 28.89545 317.40653 29.50848 41 45.25188 45.75816 47.29023 351.01000 44.63253 <	29	51.60777	50.15275	51.91290	332.63244	51.60344
31 17.09640 19.69350 21.61433 336.65845 17.09933 32 108.00178 108.14332 108.61185 425.41223 109.38215 33 23.40209 25.47432 23.98064 30.68010 22.83085 34 43.01441 41.39580 43.30652 317.58819 43.05057 35 7.51625 8.48762 6.17692 324.88557 6.15056 36 23.85893 24.80863 24.06045 332.54363 23.38579 37 28.67692 31.07350 31.49916 350.44837 29.18220 38 26.52521 27.35898 27.71675 323.75690 25.71050 39 21.64471 22.50294 23.17713 330.72722 20.36130 40 29.21503 27.95186 42.29023 351.01000 44.63253 41 45.25188 45.75816 47.29023 351.01000 44.63253 42 10.16068 10.05118 9.18632 314.09462 10.03773 <t< td=""><td>30</td><td>14.99158</td><td>17.58642</td><td>19.79952</td><td>333.60295</td><td>15.03735</td></t<>	30	14.99158	17.58642	19.79952	333.60295	15.03735
32 108.00178 108.14332 108.61185 425.41223 109.38215 33 23.40209 25.47432 23.98064 303.66010 22.83085 34 43.01441 41.39580 43.30652 317.58819 43.05057 35 7.51625 8.48762 6.17692 324.88557 6.15056 36 23.85893 24.80863 24.06045 332.54363 23.38579 37 28.67692 31.07350 31.49916 350.44837 29.18220 38 26.52521 27.35898 27.71675 323.75690 25.71050 39 21.64471 22.50294 23.17713 30.72722 20.36130 40 29.21503 27.95186 28.89545 317.40653 29.50848 41 45.25188 45.75816 47.29023 351.01000 44.63253 42 10.16068 10.05118 9.18632 314.09462 10.3773 43 44.0187 17.72001 16.43579 327.66992 16.13686	31	17.09640	19.69350	21.61433	336.65845	17.09933
33 23.40209 25.47432 23.98064 303.68010 22.83085 34 43.01441 41.39580 43.30652 317.5819 43.05057 35 7.51625 8.48762 6.17692 324.88557 6.15056 36 23.88593 24.80863 24.06045 332.54363 23.38579 37 28.67692 31.07350 31.49916 350.44837 29.18220 38 26.52521 27.35898 27.71675 323.75690 25.71050 39 21.64471 22.50294 23.17713 330.72722 20.36130 40 29.21503 27.95186 28.89545 317.40633 29.50848 41 45.25188 45.75816 47.2023 351.01000 44.63253 42 10.16068 10.05118 9.18632 314.09462 10.03773 43 44.40187 44.94601 46.83436 354.01276 45.13020 44 16.31870 17.72001 16.43579 327.66992 16.13686	32	108.00178	108.14332	108.61185	425.41223	109.38215
34 43.01441 41.39580 43.30652 317.58819 43.05057 35 7.51625 8.48762 6.17692 324.8857 6.15056 36 23.85893 24.80863 24.06045 332.54363 23.38579 37 28.67692 31.07350 31.49916 350.44837 29.18220 38 26.52521 27.35898 27.71675 323.75690 25.71050 39 21.64471 22.50294 23.17713 330.72722 20.36130 40 29.21503 27.95186 28.89545 317.0653 29.50848 41 45.25188 45.75816 47.29023 351.01000 44.63253 42 10.16068 10.05118 9.18632 314.09462 10.03773 43 44.40187 44.94601 46.83436 354.01276 45.13020 44 16.31870 17.72001 16.43579 327.66992 16.13686 45 -5.52177 -3.81349 53.8417 368.37641 51.84404	33	23.40209	25.47432	23.98064	303.68010	22.83085
35 7.51625 8.48762 6.17692 324.88557 6.15056 36 23.85893 24.80863 24.06045 332.54363 23.38579 37 28.67692 31.07350 31.49916 350.44837 29.18220 38 26.52521 27.35898 27.71675 323.75690 25.71050 39 21.64471 22.50294 23.17713 330.72722 20.36130 40 29.21503 27.95186 28.89545 317.40653 29.50848 41 45.25188 45.75816 47.29023 351.01000 44.63253 42 10.16068 10.05118 9.18632 314.09462 10.03773 43 44.40187 44.94601 46.83436 354.01276 45.13020 44 16.31870 17.72001 16.43579 327.66992 16.13686 45 -5.52177 -3.81349 -5.48459 317.53978 -8.37352 46 51.27656 51.67029 53.76128 368.71407 50.37733	34	43.01441	41.39580	43.30652	317.58819	43.05057
36 23.85893 24.80863 24.06045 332.54363 23.38579 37 28.67692 31.07350 31.49916 350.44837 29.18220 38 26.52521 27.35898 27.71675 323.75690 25.71050 39 21.64471 22.50294 23.17713 330.72722 20.36130 40 29.21503 27.95186 28.89545 317.40653 29.50848 41 45.25188 45.75816 47.29023 351.01000 44.63253 42 10.16068 10.05118 9.18632 314.09462 10.03773 43 44.40187 44.94601 46.83436 354.01276 45.13020 44 16.31870 17.72001 16.43579 327.66992 16.13686 45 -5.52177 -3.81349 -5.48459 317.53978 -8.37352 46 51.27656 51.67029 53.76128 368.71407 50.37733 47 52.79821 53.23440 55.38417 368.37641 51.84404 <	35	7.51625	8.48762	6.17692	324.88557	6.15056
37 28.67692 31.07350 31.49916 350.44837 29.18220 38 26.52521 27.35898 27.71675 323.75690 25.71050 39 21.64471 22.50294 23.17713 330.72722 20.36130 40 29.21503 27.95186 28.89545 317.40653 29.50848 41 45.25188 45.75816 47.29023 351.01000 44.63253 42 10.16068 10.05118 9.18632 314.09462 10.03773 43 44.40187 44.94601 46.83436 354.01276 45.13020 44 16.31870 17.72001 16.43579 327.66992 16.13886 45 -5.52177 -3.81349 -5.48459 317.7337 46 51.27656 51.67029 53.76128 368.71407 50.37733 47 52.79821 53.23440 55.38417 368.37641 51.84404 48 8.61027 8.15562 9.36267 342.87225 8.75976 49	36	23.85893	24.80863	24.06045	332.54363	23.38579
38 26.52521 27.35898 27.71675 323.75690 25.71050 39 21.64471 22.50294 23.17713 330.72722 20.36130 40 29.21503 27.95186 28.89545 317.40653 29.50848 41 45.25188 45.75816 47.29023 351.01000 44.63253 42 10.16068 10.05118 9.18632 314.09462 10.03773 43 44.40187 44.94601 46.83436 354.01276 45.13020 44 16.31870 17.72001 16.43579 327.66992 16.13686 45 -5.52177 -3.81349 -5.48459 317.53978 -8.37352 46 51.27656 51.67029 53.76128 368.71407 50.37733 47 52.79821 53.23440 55.38417 368.37641 51.84404 48 8.61027 8.15562 9.36267 342.87225 8.75976 49 10.26884 9.83984 11.02012 345.65028 10.71883	37	28.67692	31.07350	31.49916	350.44837	29.18220
39 21.64471 22.50294 23.17713 330.72722 20.36130 40 29.21503 27.95186 28.89545 317.40653 29.50848 41 45.25188 45.75816 47.29023 351.01000 44.63253 42 10.16068 10.05118 9.18632 314.09462 10.03773 43 44.40187 44.94601 46.83436 354.01276 45.13020 44 16.31870 17.72001 16.43579 327.66992 16.13686 45 -5.52177 -3.81349 -5.48459 317.53978 -8.37352 46 51.27656 51.67029 53.76128 368.71407 50.37733 47 52.79821 53.23440 55.38417 368.37641 51.84404 48 8.61027 8.15562 9.36267 342.87225 8.75976 49 10.26884 9.83984 11.02012 345.65028 10.71883 50 11.61642 11.38018 12.81999 336.56585 1.91130	38	26.52521	27.35898	27.71675	323.75690	25.71050
4029.2150327.9518628.89545317.4065329.508484145.2518845.7581647.29023351.0100044.632534210.1606810.051189.18632314.0946210.037734344.4018744.9460146.83436354.0127645.130204416.3187017.7200116.43579327.6699216.1368645-5.52177-3.81349-5.48459317.53978-8.373524651.2765651.6702953.76128368.7140750.377334752.7982153.2344055.38417368.3764151.84404488.610278.155629.36267342.872258.759764910.268849.8398411.02012345.6502810.718835011.6164211.3801812.81998335.1999412.1273551-14.89579-12.78984-13.10913308.44406-16.38781522.821542.854104.16399336.565851.911305368.9789369.4794271.74325402.2714967.447165470.8314271.3535873.63595405.1737869.094335545.6101845.8396547.76993389.1257746.068515630.4152830.6350732.34289382.5966530.70076571.771744.060465.75456335.27023-0.4108858-7.69371-7.65806-7.62209336.94327-7.071865910.56033<	39	21.64471	22.50294	23.17713	330.72722	20.36130
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	29.21503	27.95186	28.89545	317.40653	29.50848
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	45.25188	45.75816	47.29023	351.01000	44.63253
4344.4018744.9460146.83436354.0127645.130204416.3187017.7200116.43579327.6699216.1368645-5.52177-3.81349-5.48459317.53978-8.373524651.2765651.6702953.76128368.7140750.377334752.7982153.2344055.38417368.3764151.84404488.610278.155629.36267342.872258.759764910.268849.8398411.02012345.6502810.718835011.6164211.3801812.81998335.1999412.1273551-14.89579-12.78984-13.10913308.44406-16.38781522.821542.854104.16399336.565851.911305368.9789369.4794271.74325402.2714967.447165470.8314271.3535873.63595405.1737869.094335545.6101845.8396547.76993389.1257746.668515630.4152830.6350732.34289382.5966530.70076571.771744.060465.75456335.27023-0.4108858-7.69371-7.65806-7.62209336.94327-7.071865910.5603312.7609815.90772352.377648.2308360-35.43402-35.82610-36.82177300.61868-35.5918561-21.66638-22.64380-24.36227317.21075-21.9311362-61.76	42	10.16068	10.05118	9.18632	314.09462	10.03773
44 16.31870 17.72001 16.43579 327.66992 16.13686 45 -5.52177 -3.81349 -5.48459 317.53978 -8.37352 46 51.27656 51.67029 53.76128 368.71407 50.37733 47 52.79821 53.23440 55.38417 368.37641 51.84404 48 8.61027 8.15562 9.36267 342.87225 8.75976 49 10.26884 9.83984 11.02012 345.65028 10.71883 50 11.61642 11.38018 12.81998 335.19994 12.12735 51 -14.89579 -12.78984 -13.10913 308.44406 -16.38781 52 2.82154 2.85410 4.16399 336.56585 1.91130 53 68.97893 69.47942 71.74325 402.27149 67.44716 54 70.83142 71.35358 73.63595 405.17378 69.09433 55 45.61018 45.83965 47.76993 389.12577 46.06851 56 30.41528 30.63507 32.34289 382.59665 30.7076 57 1.77174 4.06046 5.75456 335.27023 -0.41088 58 -7.69371 -7.65806 -7.62209 336.94327 -7.07186 59 10.56033 12.76098 15.90772 352.37764 8.23083 60 -35.43402 -35.82610 -36.82177 300.61868 -35.59185 61 -21.66638 -22.64380	43	44.40187	44.94601	46.83436	354.01276	45.13020
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	16.31870	17.72001	16.43579	327.66992	16.13686
46 51.27656 51.67029 53.76128 368.71407 50.37733 47 52.79821 53.23440 55.38417 368.37641 51.84404 48 8.61027 8.15562 9.36267 342.87225 8.75976 49 10.26884 9.83984 11.02012 345.65028 10.71883 50 11.61642 11.38018 12.81998 335.19994 12.12735 51 -14.89579 -12.78984 -13.10913 308.44406 -16.38781 52 2.82154 2.85410 4.16399 336.56585 1.91130 53 68.97893 69.47942 71.74325 402.27149 67.44716 54 70.83142 71.35358 73.63595 405.17378 69.09433 55 45.61018 45.83965 47.76993 389.12577 46.06851 56 30.41528 30.63507 32.34289 382.59665 30.70076 57 1.77174 4.06046 5.75456 335.27023 -0.41088 58 -7.69371 -7.65806 -7.62209 336.94327 -7.07186 59 10.56033 12.76098 15.90772 352.37764 8.23083 60 -35.43402 -35.82610 -36.82177 300.61868 -35.59185 61 -21.66638 -22.64380 -24.36227 317.21075 -21.93113 62 -61.76098 -67.44155 -65.40806 268.65429 -64.79789 63 -32.48	45	-5.52177	-3.81349	-5.48459	317.53978	-8.37352
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46	51.27656	51.67029	53.76128	368.71407	50.37733
488.610278.155629.36267342.872258.759764910.268849.8398411.02012345.6502810.718835011.6164211.3801812.81998335.1999412.1273551-14.89579-12.78984-13.10913308.44406-16.38781522.821542.854104.16399336.565851.911305368.9789369.4794271.74325402.2714967.447165470.8314271.3535873.63595405.1737869.094335545.6101845.8396547.76993389.1257746.068515630.4152830.6350732.34289382.5966530.70076571.771744.060465.75456335.27023-0.4108858-7.69371-7.65806-7.62209336.94327-7.071865910.5603312.7609815.90772352.377648.2308360-35.43402-35.82610-36.82177300.61868-35.5918561-21.66638-22.64380-24.36227317.21075-21.9311362-61.76098-67.44155-65.40806268.65429-64.7978963-32.48954-30.69571-26.66560328.46034-31.6612064-31.04922-29.24267-25.25078327.77767-30.7917865-5.98022-7.78390-9.09026332.42681-5.6187866-17.94082-20.59995-21.02049311.33300-18.42964<	47	52.79821	53.23440	55.38417	368.37641	51.84404
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48	8.61027	8.15562	9.36267	342.87225	8.75976
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49	10.26884	9.83984	11.02012	345.65028	10.71883
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	11.61642	11.38018	12.81998	335.19994	12.12735
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51	-14.89579	-12.78984	-13.10913	308.44406	-16.38781
5368.9789369.4794271.74325402.2714967.447165470.8314271.3535873.63595405.1737869.094335545.6101845.8396547.76993389.1257746.068515630.4152830.6350732.34289382.5966530.70076571.771744.060465.75456335.27023-0.4108858-7.69371-7.65806-7.62209336.94327-7.071865910.5603312.7609815.90772352.377648.2308360-35.43402-35.82610-36.82177300.61868-35.5918561-21.66638-22.64380-24.36227317.21075-21.9311362-61.76098-67.44155-65.40806268.65429-64.7978963-32.48954-30.69571-26.66560328.46034-31.6612064-31.04922-29.24267-25.25078327.77767-30.7917865-5.98022-7.78390-9.09026332.42681-5.6187866-17.94082-20.59995-21.02049311.3300-18.42964	52	2.82154	2.85410	4.16399	336.56585	1.91130
5470.8314271.3535873.63595405.1737869.094335545.6101845.8396547.76993389.1257746.068515630.4152830.6350732.34289382.5966530.70076571.771744.060465.75456335.27023-0.4108858-7.69371-7.65806-7.62209336.94327-7.071865910.5603312.7609815.90772352.377648.2308360-35.43402-35.82610-36.82177300.61868-35.5918561-21.66638-22.64380-24.36227317.21075-21.9311362-61.76098-67.44155-65.40806268.65429-64.7978963-32.48954-30.69571-26.66560328.46034-31.6612064-31.04922-29.24267-25.25078327.77767-30.7917865-5.98022-7.78390-9.09026332.42681-5.6187866-17.94082-20.59995-21.02049311.33300-18.42964	53	68.97893	69.47942	71.74325	402.27149	67.44716
5545.6101845.8396547.76993389.1257746.068515630.4152830.6350732.34289382.5966530.70076571.771744.060465.75456335.27023-0.4108858-7.69371-7.65806-7.62209336.94327-7.071865910.5603312.7609815.90772352.377648.2308360-35.43402-35.82610-36.82177300.61868-35.5918561-21.66638-22.64380-24.36227317.21075-21.9311362-61.76098-67.44155-65.40806268.65429-64.7978963-32.48954-30.69571-26.66560328.46034-31.6612064-31.04922-29.24267-25.25078327.77767-30.7917865-5.98022-7.78390-9.09026332.42681-5.6187866-17.94082-20.59995-21.02049311.33300-18.42964	54	70.83142	71.35358	73.63595	405.17378	69.09433
5630.4152830.6350732.34289382.5966530.70076571.771744.060465.75456335.27023-0.4108858-7.69371-7.65806-7.62209336.94327-7.071865910.5603312.7609815.90772352.377648.2308360-35.43402-35.82610-36.82177300.61868-35.5918561-21.66638-22.64380-24.36227317.21075-21.9311362-61.76098-67.44155-65.40806268.65429-64.7978963-32.48954-30.69571-26.66560328.46034-31.6612064-31.04922-29.24267-25.25078327.77767-30.7917865-5.98022-7.78390-9.09026332.42681-5.6187866-17.94082-20.59995-21.02049311.33300-18.42964	55	45.61018	45.83965	47.76993	389.12577	46.06851
571.771744.060465.75456335.27023-0.4108858-7.69371-7.65806-7.62209336.94327-7.071865910.5603312.7609815.90772352.377648.2308360-35.43402-35.82610-36.82177300.61868-35.5918561-21.66638-22.64380-24.36227317.21075-21.9311362-61.76098-67.44155-65.40806268.65429-64.7978963-32.48954-30.69571-26.66560328.46034-31.6612064-31.04922-29.24267-25.25078327.77767-30.7917865-5.98022-7.78390-9.09026332.42681-5.6187866-17.94082-20.59995-21.02049311.33300-18.42964	56	30.41528	30.63507	32.34289	382.59665	30.70076
58 -7.69371 -7.65806 -7.62209 336.94327 -7.07186 59 10.56033 12.76098 15.90772 352.37764 8.23083 60 -35.43402 -35.82610 -36.82177 300.61868 -35.59185 61 -21.66638 -22.64380 -24.36227 317.21075 -21.93113 62 -61.76098 -67.44155 -65.40806 268.65429 -64.79789 63 -32.48954 -30.69571 -26.66560 328.46034 -31.66120 64 -31.04922 -29.24267 -25.25078 327.77767 -30.79178 65 -5.98022 -7.78390 -9.09026 332.42681 -5.61878 66 -17.94082 -20.59995 -21.02049 311.33300 -18.42964	57	1.77174	4.06046	5.75456	335.27023	-0.41088
5910.5603312.7609815.90772352.377648.2308360-35.43402-35.82610-36.82177300.61868-35.5918561-21.66638-22.64380-24.36227317.21075-21.9311362-61.76098-67.44155-65.40806268.65429-64.7978963-32.48954-30.69571-26.66560328.46034-31.6612064-31.04922-29.24267-25.25078327.77767-30.7917865-5.98022-7.78390-9.09026332.42681-5.6187866-17.94082-20.59995-21.02049311.33300-18.42964	58	-7.69371	-7.65806	-7.62209	336.94327	-7.07186
60-35.43402-35.82610-36.82177300.61868-35.5918561-21.66638-22.64380-24.36227317.21075-21.9311362-61.76098-67.44155-65.40806268.65429-64.7978963-32.48954-30.69571-26.66560328.46034-31.6612064-31.04922-29.24267-25.25078327.77767-30.7917865-5.98022-7.78390-9.09026332.42681-5.6187866-17.94082-20.59995-21.02049311.33300-18.42964	59	10.56033	12.76098	15.90772	352.37764	8.23083
61-21.66638-22.64380-24.36227317.21075-21.9311362-61.76098-67.44155-65.40806268.65429-64.7978963-32.48954-30.69571-26.66560328.46034-31.6612064-31.04922-29.24267-25.25078327.77767-30.7917865-5.98022-7.78390-9.09026332.42681-5.6187866-17.94082-20.59995-21.02049311.33300-18.42964	60	-35.43402	-35.82610	-36.82177	300.61868	-35.59185
62-61.76098-67.44155-65.40806268.65429-64.7978963-32.48954-30.69571-26.66560328.46034-31.6612064-31.04922-29.24267-25.25078327.77767-30.7917865-5.98022-7.78390-9.09026332.42681-5.6187866-17.94082-20.59995-21.02049311.33300-18.42964	61	-21.66638	-22.64380	-24.36227	317.21075	-21.93113
63-32.48954-30.69571-26.66560328.46034-31.6612064-31.04922-29.24267-25.25078327.77767-30.7917865-5.98022-7.78390-9.09026332.42681-5.6187866-17.94082-20.59995-21.02049311.33300-18.42964	62	-61.76098	-67.44155	-65.40806	268.65429	-64.79789
64-31.04922-29.24267-25.25078327.77767-30.7917865-5.98022-7.78390-9.09026332.42681-5.6187866-17.94082-20.59995-21.02049311.33300-18.42964	63	-32.48954	-30.69571	-26.66560	328.46034	-31.66120
65-5.98022-7.78390-9.09026332.42681-5.6187866-17.94082-20.59995-21.02049311.33300-18.42964	64	-31.04922	-29.24267	-25.25078	327.77767	-30.79178
66-17.94082-20.59995-21.02049311.33300-18.42964	65	-5.98022	-7.78390	-9.09026	332.42681	-5.61878
	66	-17.94082	-20.59995	-21.02049	311.33300	-18.42964

Çizelge 7.5 (Devamı) Serbest hava gravite anomalı farkları

		-			
70	44.10677	45.21407	43.76989	412.35783	44.25636
71	93.79725	90.63322	89.02051	491.27417	91.98413
72	138.28737	134.14040	135.24622	494.62489	135.91521
73	47.36407	48.32400	46.47668	405.45156	47.36634
74	52.06387	48.29929	47.46772	405.70720	48.79722
75	70.68057	67.62824	65.54432	459.82766	72.31465
76	52.41529	52.70740	50.08248	419.71758	53.58831
77	80.72121	78.78461	76.31721	471.48104	80.42086
78	25.29308	25.44412	23.28833	406.82676	23.49780
79	43.06421	43.28034	43.03517	422.58095	43.04130
80	39.24881	40.20612	40.27392	436.53236	38.81150
81	32.00533	33.12062	33.61660	421.63067	31.35538
82	53.95959	51.70798	49.54137	428.02372	55.56109
83	38.19833	38.85860	39.31919	408.83262	37.67859
84	56.82290	58.90406	61.16995	423.31312	57.30008
85	33.57825	35.16948	36.55296	413.07798	33.44312
86	38.31025	40.91126	44.29573	393.38433	38.10148
87	46.92780	49.57432	53.25696	397.12658	46.85664
88	52.32137	54.37322	56.59286	427.67537	51.32158
89	4.01015	3.45040	1.31328	285.75271	2.44061
90	88.84897	91.33877	94.22461	465.96625	90.72963
91	6.88382	8.30065	9.15006	336.98681	6.44705
92	-2.07848	-1.14422	-0.90756	329.20825	-1.03269
93	-8.79038	-8.70220	-8.69331	297.15242	-8.61009
94	39.89613	41.75742	42.75636	410.30782	39.58559
95	-15.59657	-14.78320	-14.91087	309.20287	-15.13005
96	-28.34610	-26.17882	-25.62770	316.53585	-28.15555
97	41.16020	43.21412	43.11647	411.98467	41.07717
98	-43.53585	-42.07126	-42.43673	309.70518	-42.99513
99	-46.48317	-44.97517	-45.46001	310.55790	-45.98168
100	29.76941	31.33301	30.74615	412.64148	28.71603
101	35.31370	36.11775	35.85974	424.73162	35.10676
102	-36.39802	-35.02744	-36.26108	309.30804	-36.39711
103	-23.59318	-22.06930	-23.30939	324.35544	-22.76663
104	-16.92493	-15.42543	-17.29725	310.89595	-16.73861
105	45.64408	46.82165	45.51187	417.33413	44.52331
106	-11.38775	-9.26575	-12.13910	307.77645	-9.59385
107	-9.81250	-8.05460	-10.51801	312.62905	-8.64758
108	-10.07669	-8.60717	-10.74699	312.11466	-9.30838
109	0.93649	1.84858	0.13724	309.09162	1.46297
110	52.16654	53.59166	52.38521	434.20009	52.37937
111	9.40840	10.21097	8.69214	311.76397	10.47218
112	20.74198	21.81654	20.23409	305.96478	20.54904
113	25.41524	26.62073	24.96860	304.11784	25.27306
114	55.73186	56.45596	55.39522	443.07328	55.06849
115	24.59135	25.38289	24.57285	308.95434	23.49610

<u> </u>		-			
116	22.13734	22.71053	22.18585	299.62036	21.21780
117	23.93972	24.49882	23.99086	308.60586	22.77850
118	79.15997	79.26990	77.81415	483.65449	78.06799
119	57.07241	55.27134	54.99347	420.56804	56.59043
120	134.89991	135.33790	135.28751	508.63659	136.62482
121	75.98430	74.30466	73.47681	455.11043	76.44943
122	51.76464	50.89105	49.38844	411.29640	51.21537
123	103.67914	104.04708	105.12595	472.99841	104.40196
124	57.85713	56.98250	55.56259	414.03799	57.87779
125	66.87378	66.51177	66.07044	418.46299	67.20559
126	56.32124	56.56131	58.08266	440.88655	56.23624
127	31.91544	30.42580	29.62968	417.58241	31.90097
128	44.45626	44.45292	45.36726	420.80384	44.50952
129	47.50627	48.05222	48.20628	429.00805	45.68273
130	27.06379	25.85587	29.25657	392.27425	25.93927
131	27.75764	26.90537	29.44950	395.50525	25.41648
132	44.63756	44.26653	45.59635	423.94230	45.23105
133	53.06618	51.28000	51.75207	418.82305	53.16942
134	42.41152	42.61511	44.28084	423.61263	42.56255
135	43.77612	42.69001	45.73743	416.55344	43.12084
136	45.42290	43.51927	45.44674	411.57832	45.28361
137	37.17231	36.00049	39.09118	402.93335	36.79578
138	45.26747	44.36775	46.57020	432.95918	45.92310
139	39.23202	38.08163	40.92530	409.30612	39.04248
140	41.58534	40.79460	42.24364	436.09478	41.43353
141	42.36858	41.71692	42.39103	430.20621	42.03567
142	44.71633	43.35177	45.26004	410.13823	44.77367
143	34.46436	33.51257	34.38212	406.70635	34.40697
144	38.53089	38.89164	40.69607	411.04221	37.79614
145	22.77370	24.07795	22.77996	373.33736	17.02964

Çizelge 7.5 (Devamı) Serbest hava gravite anomali farkları.

* Çizelgedeki değerlerin birimleri mGal'dir.

N.N	EGM2008	EIGEN-6C4	GECO	REQTOPO15	WGM12
1	25.53521	22.41434	21.31997	314.94643	131.28313
2	20.26842	17.24083	15.44642	313.37444	124.91042
3	18.96811	15.95978	13.99056	314.17664	127.88776
4	18.56923	15.56966	13.59494	314.18292	127.33920
5	23.10444	20.10415	19.69691	314.23168	127.77890
6	22.58029	19.92400	17.46161	315.05616	125.03876
7	20.75627	18.19101	17.18589	314.44417	128.56429
8	37.20289	35.40569	34.99159	315.97254	144.52533
9	26.09498	24.56819	24.15177	317.75625	136.63169
10	80.08876	79.53742	77.38391	319.66413	194.94757
11	29.17868	27.35183	26.05302	314.76077	138.43660
12	8.82953	7.08898	5.30609	313.73837	116.71384
13	53.23000	53.33575	51.02713	315.89713	159.36736
14	-6.71196	-6.09265	-4.30206	312.97537	105.97666
15	3.24702	2.47473	0.51397	315.62588	108.49546
16	5.09511	4.79852	5.41567	314.01379	113.80682
17	54.50569	54.69336	52.90189	316.22918	170.37922
18	-4.43717	-3.01190	-0.77395	312.27833	100.29090
19	52.05825	53.67238	53.27770	321.03423	157.78742
20	-3.39430	-1.41138	0.44439	313.56841	100.26878
21	-7.36343	-6.37142	-2.97543	314.05354	103.44370
22	0.37122	1.06715	3.92539	312.85827	105.37504
23	28.90089	28.96894	28.02205	313.77304	137.71142
24	35.43378	33.59149	35.56571	312.13955	144.56432
25	60.75244	61.43764	62.05581	316.63093	165.92936
26	-10.25924	-7.80404	-5.47811	312.12652	97.27222
27	-8.52220	-8.22032	-10.57583	312.04705	98.96278
28	27.37796	27.55861	27.13994	314.85628	141.76785
29	34.85308	33.39314	35.15465	312.53832	140.12686
30	-6.72470	-4.12876	-1.91912	312.58826	102.01884
31	-6.54574	-3.94808	-2.03121	313.05671	103.21487
32	17.55046	17.69259	18.16180	320.17988	122.77286
33	23.19727	25.27657	23.77518	313.48855	125.40602
34	38.60309	36.97460	38.89278	313.45544	145.12688
35	-13.29654	-12.32283	-14.64333	311.28554	100.15591
36	1.66397	2.61692	1.86113	313.32110	116.70986
37	-7.04994	-4.65642	-4.23720	311.71399	100.72202
38	1.10962	1.94484	2.29912	310.00036	117.97070
39	-9.29186	-8.43085	-7.75967	309.71405	108.61205
40	24.27036	22.99544	23.94665	312.35646	129.01532
41	-0.98173	-0.47260	1.06062	311.99221	103.28946
42	6.23700	6.11719	5.25339	311.26260	112.02486
43	-1.93562	-1.38985	0.50112	312.39324	103.26798
44	-3.22842	-1.83454	-3.12493	311.39867	106.61557
45	-24.99277	-23.28115	-24.96218	309.16305	81.24715

Çizelge 7.6 Bouguer gravite anomali farkları.

Çizelge 7.6 (Devamı) Bouguer gravite anomali farkları

46	-10.60558	-10.20884	-8.11434	311.49835	96.00234
47	-9.88827	-9.44882	-7.29552	311.07013	98.05607
48	-11.96831	-12.42272	-11.21248	318.44975	109.76439
49	-12.77675	-13.20530	-12.02171	318.06106	106.49457
50	-10.68826	-10.92351	-9.47906	313.91635	100.22183
51	-28.23443	-26.12551	-26.45237	307.92343	77.46284
52	-21.64678	-21.61080	-20.29741	315.06102	98.23488
53	-19.59921	-19.09419	-16.82537	313.61007	87.91827
54	-20.23109	-19.70432	-17.41693	313.85520	88.59875
55	-25.30601	-25.07307	-23.13693	314.21245	83.55244
56	-33.60233	-33.37888	-31.66457	315.27709	78.36341
57	-33.05016	-30.75831	-29.06791	309.06517	82.69357
58	-31.73323	-31.69174	-31.65289	313.99964	87.01167
59	-42.15237	-39.94941	-36.80257	308.52544	69.78299
60	-34.85329	-35.23891	-36.23362	311.32478	65.38935
61	-27.24181	-28.21083	-29.93390	313.63207	85.50063
62	-4.68097	-10.37005	-8.32885	321.58033	102.79236
63	-56.06592	-54.27128	-50.23636	310.02587	57.75221
64	-56.97498	-55.16730	-51.17048	308.35858	54.51275
65	-28.47020	-30.26576	-31.57839	311.39401	80.29096
66	-22.65277	-25.30461	-25.73261	311.27328	90.15127
67	-63.23365	-61.73037	-59.70117	303.78453	47.06485
68	-48.01108	-51.52841	-50.81960	305.59594	62.52749
69	-60.39411	-59.16266	-59.19369	304.59111	45.90148
70	-61.71098	-60.60513	-62.05196	307.62120	45.89638
71	-77.65939	-80.81771	-82.43866	315.75528	35.34857
72	-42.46287	-46.60721	-45.50834	314.02368	81.99412
73	-55.98723	-55.02994	-56.88465	305.38303	49.70842
74	-66.39530	-70.15489	-70.99323	301.13134	50.15919
75	-70.98985	-74.03639	-76.12733	313.15124	37.82699
76	-54.75226	-54.46534	-57.10015	309.19754	51.21055
77	-79.84165	-81.77028	-84.24078	310.09405	45.40728
78	-84.36544	-84.22082	-86.38568	303.40307	26.51607
79	-76.42044	-76.19496	-76.43373	306.00341	30.31634
80	-89.05224	-88.09994	-88.03948	307.42731	27.26412
81	-87.18766	-86.07711	-85.58782	305.24556	25.76495
82	-54.35234	-56.59919	-58.76944	311.76087	47.14492
83	-61.33437	-60.66497	-60.19677	308.87452	36.89030
84	-47.36707	-45.27718	-43.00236	311.99066	65.36641
85	-78.58619	-76.99896	-75.61952	303.97905	22.91964
86	-55.76515	-53.15883	-49.76650	304.92341	54.61848
87	-56.82670	-54.17809	-50.49059	302.04153	47.54916
88	-74.99969	-72.95064	-70.73256	304.07302	34.44316
89	12.59044	12.03587	9.89859	302.29325	115.69991
90	-55.89702	-53.40672	-50.51915	312.62387	43.00366
91	-30.55735	-29.13104	-28.27574	305.40898	78.30774
Çizelge 7.6 (Devamı) Bouguer gravite anomali farkları.

		-			
100	-89.38770	-87.82935	-88.41603	300.19732	33.15729
101	-90.20404	-89.40642	-89.65984	302.28308	16.27129
102	-38.38753	-37.01082	-38.24545	309.29867	67.78278
103	-38.48142	-36.95216	-38.19264	309.63878	69.74179
104	-21.97180	-20.46700	-22.34056	306.77740	86.78015
105	-83.98039	-82.80826	-84.11616	297.08804	23.59934
106	-5.89757	-3.76235	-6.64721	311.50119	101.73671
107	-11.19987	-9.43316	-11.90342	309.60813	98.16774
108	-13.07613	-11.60060	-13.74431	308.67572	96.54123
109	5.27341	6.19345	4.47439	311.77624	112.57690
110	-77.69736	-76.27526	-77.48711	303.78411	29.09357
111	16.08648	16.89786	15.36981	314.72885	127.12811
112	24.40134	25.48481	23.89247	309.74864	135.51843
113	28.04838	29.26305	27.60071	308.38482	137.68312
114	-87.63513	-86.91499	-87.98218	301.92941	21.88439
115	20.36500	21.16462	20.34511	307.87178	127.05386
116	26.56241	27.14403	26.60949	308.18099	135.64874
117	15.65637	16.22261	15.70610	304.85494	128.43729
118	-96.42561	-96.32017	-97.78352	305.95325	21.11155
119	-61.95002	-63.75597	-64.02965	302.20339	39.96707
120	-52.34831	-51.91094	-51.95666	311.60769	49.60423
121	-66.85544	-68.54059	-69.36625	306.45031	34.67355
122	-62.09543	-62.97473	-64.48287	300.33812	42.49961
123	-56.56820	-56.20147	-55.11732	307.66850	41.53891
124	-55.03025	-55.91052	-57.33596	301.89192	47.98354
125	-47.38833	-47.75478	-48.20268	303.35578	55.77148
126	-75.97994	-75.74215	-74.21860	305.24881	30.11241
127	-82.39581	-83.89107	-84.68686	302.82203	24.81867
128	-71.94123	-71.94781	-71.03655	303.63055	33.09506
129	-87.81538	-87.26144	-87.11100	298.77145	24.57958
130	-69.35675	-70.56146	-67.15636	299.51073	36.05556
131	-76.76573	-77.61276	-75.06939	297.83919	32.10319
132	-78.67290	-79.03721	-77.71091	301.18370	29.31251
133	-63.75753	-65.54864	-65.07197	301.74921	38.51671
134	-77.47275	-77.27206	-75.60361	303.03969	29.23834
135	-74.96907	-76.05343	-73.00034	300.31754	34.61975
136	-63.79010	-65.69716	-63.76272	302.14870	40.28290
137	-67.94901	-69.11851	-66.02526	300.03499	38.22147
138	-79.96753	-80.86620	-78.65744	303.82651	24.11670
139	-69.01881	-70.16652	-67.32189	301.51063	41.11968
140	-86.22036	-87.01011	-85.55558	304.26846	16.74592
141	-82.73724	-83.38804	-82.71024	302.91787	18.84416
142	-63.93843	-65.30348	-63.39329	301.40344	37.77453
143	-70.69029	-71.64158	-70.77283	301.47074	31.25880
144	-75.74633	-75.38822	-73.57927	300.22123	27.75541
145	-75.10751	-73.80144	-75.10288	293.56573	46.60385

* Çizelgedeki değerlerin birimleri mGal'dir.

Çizelge 7.5 ve 7.6 gösterilen değerler BGI'dan alınan serbest hava ve Bouguer gravite anomalileri ile modellerden elde edilen serbest hava ve Bouguer gravite anomalileri arasındaki farkları göstermektedir. Bu farklara ilişkin haritalar aşağıda verilmiştir ve bu haritaların oluşturulmasında Surfer 13 programı kullanılmıştır.

7.3.1 Serbest Hava Gravite Anomali Fark Haritaları

Şekil 7.11 EGM2008 jeopotansiyel modeli serbest hava gravite anomali fark haritası.

Şekil 7.12 EIGEN-6C4 jeopotansiyel modeli serbest hava gravite anomali fark haritası.

Şekil 7.13 GECO jeopotansiyel modeli serbest hava gravite anomali fark haritası.

Şekil 7.14 REQTOPO2015 topografya modeli serbest hava gravite anomali fark haritası.

Şekil 7.15 WGM12 gravite modeli serbest hava gravite anomali fark haritası.

7.3.1 Bouguer Gravite Anomali Fark Haritaları

Şekil 7.16 EGM2008 jeopotansiyel modeli Bouguer gravite anomali fark haritası.

Şekil 7.17 EIGEN-6C4 jeopotansiyel modeli Bouguer gravite anomali fark haritası.

Şekil 7.18 GECO jeopotansiyel modeli Bouguer gravite anomali fark haritası.

Şekil 7.19 REQTOPO2015 topografya modeli Bouguer gravite anomali fark haritası.

Şekil 7.20 WGM2012 gravite modeli Bouguer gravite anomali fark haritası.

8. SONUÇ

Yukarıdaki fark haritalarında gösterilen anomali değerlerine ait maksimum, minumum, ortalama, ranj ve karesel ortalama hata değerleri aşağıdaki Çizelge 8.1 ve 8.2 verilmiştir. Bu fark haritalarının oluşturulmasında Surfer 13 programı kullanılmıştır. Fark haritaları BGI' dan temin edilen veriler ile ICGEM (Barthelmes et al.2015) hesaplama servisinden hesaplanılan ilgili gravite anomali değerlerine ait farkları içermektedir. Karesel ortalama hata değerleri Eşitlik 8.1 ile hesaplanmıştır;

$$KOH = \sqrt{\frac{\sum \delta \Delta g}{n}}$$
(8.1)

bu eşitlikte $\delta \Delta g = \Delta g_{versel} - \Delta g_{GM}$ 'e eşittir.

MODEL	Minimum	Maksimum	Ortalama	Ranj	КОН
EGM2008	-43.2873707	32.58984677	-7.90204803	75.87721751	13.62810242
GECO	-46.0077217	35.2867223	-8.15042621	81.29444407	13.87777316
EIGEN-6C4	-42.8609819	35.0415466	-7.96315007	77.90252862	13.72283037
REQTOPO2015	-437.974169	-249.152715	-343.751782	188.8214574	40.37814339
WGM2012	-40.9152107	34.1593895	75.07460023	-7.62656882	13.45359055

Cizelge 8.1 Serbest hava anomali fark değerlerinin istatistikleri.

* Çizelgedeki değerlerin birimleri mGal'dir.

Çizelge 8.2 Bouguer anomali fark değerlerinin istatistikleri.

MODEL	Minimum	Maksimum	Ortalama	Ranj	КОН
EGM2008	-29.719034	24.0095631	-1.18925940	53.72859786	8.131802218
GECO	-26.071147	26.7014061	-1.43775784	52.77255343	8.157556755
EIGEN-6C4	-24.029952	24.5641253	-1.25189285	48.5940776	8.049862388
REQTOPO2015	-405.05324	-251.264128	-338.746445	153.7891201	37.33742877
WGM2012	-137.19236	-79.0999123	-109.745679	58.09244949	9.748156989

* Çizelgedeki değerlerin birimleri mGal'dir.

Bu çalışmada $36.5^{\circ} < \varphi < 40.5^{\circ}$ enlem ve $26.5^{\circ} < \lambda < 33^{\circ}$ boylam değerlerini kuşatan bir bölgede enlem, boylam, ortometrik ve elipsoidal yüksekliği bilinen noktalarda EGM08, GECO, EIGEN-6C4 jeopotansiyel modelleri, REQTOPO2015 topografya

modeli ve WGM2012 gravite modeli kullanılarak serbest hava ve Bouguer gravite anomali değerleri hesaplanmıştır. Hesap edilen bu gravite değerleri ile BGI' dan temin edilen değerler arasındaki farkların iki istatistiksel çizelgesi oluşturulmuştur. Bu iki istatistiksel çizelge incelendiğinde serbest hava anomali fark değerleri için, karesel ortalama hata değerinin 13.45 μgal ile en düşük WGM2012 modelinde olduğu gözlenmiştir. Modeller arası serbest hava gravite anomalisi karesel ortalama hata değerlerinin WGM2012 < EGM2008 < EIGEN-6C4 < GECO < REQTOPO2015 şeklinde olduğu görülmüştür. Bouguer gravite anomali fark değerlerinin istatistiksel çizelgesi incelendiğinde en küçük karesel ortalama hata değerinin 8.04 μgal ile EIGEN-6C4 jeopotansiyel modeline ait olduğu görülmektedir. Bouguer gravite anomali fark değerlerinin istatiksel çizelgesinden yola çıkarak modeller arası karesel ortalama hata sıralamasının EIGEN-6C4 < EGM2008 < GECO < WGM2012 < REQTOPO2015 şeklinde olduğu ortaya çıkmıştır.

Modellerin, çalışma bölgelerinin gravite alanını modelleme yeteneğini inceleme bakımından Çizelge 8.1 ve 8.2 deki Ranj (min-max) değerleri incelenecek olursa serbest hava gravite anomalisi bakımından EGM2008'in Bouguer gravite anomalisi bakımından EIGEN-6C4' ün daha iyi olduğu söylenebilir.

Bölüm 5.1.3 de belirtildiği üzere Bouguer gravite anomali değeri serbest hava gravite anomali değerinden daha sonra hesaplandığı için bu tez kapsamında sonuç ürün olarak değerlendirildiğinden EIGEN-6C4 modelinin en iyi sonuç verdiği gözlenmiştir. EIGEN-6C4 jeopotansiyel modeline göre hesaplanmış elipsoid yüzeyi gravite haritası Şekil 8.1'de verilmiştir.

Şekil 8.1 EIGEN-6C4 elipsoidal gravite haritası.

Öneri olarak EIGEN-6C4 Türkiye'nin 1/3 lik bir çalışma alanında çıkardığı başarılı sonucundan dolayı gravite değerlerinin hesaplanmasında kullanılabir. Ancak karşılaştırılan bu yersel gravite değerleri 1950 ve 1975 yılları arasında hesap edilen gravite değerleri olmasından dolayı, bu gravite değerlerinin günümüzde hesap edilip EIGEN-6C4 modelinden elde edilen veriler ile karşılaştırma yapılması daha sağlıklı olacaktır.

9. KAYNAKLAR

- Arslan N. (2014). Uzaktan Algılama ve Coğrafi Bilgi Sistemlerinde Jeodezik Kavramlar Taslak Ders Notları, Çukurova Üniversitesi Harita Mühendisliği Bölümü, Adana.
- Aydın C. (2014). Fiziksel Jeodezi Ders Notları, Yıldız Teknik Üniversitesi İnşaat Fakültesi Harita Mühendisliği Bölümü, İstanbul.
- Aydın C. (2007). Marmara Bölgesi Gravite Değişimlerinin Belirlenmesi için Model Tasarımı, Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
- Barthelmes, F., Köhler W. (2015). Global Gravity Field Models and The IAG Services ICGEM, Potsdam.
- Bilgin T. (1976). Genel Kartografya İstanbul Üniversitesi Yayını, İstanbul.
- Bonvalot, S., Balmino, G., Briais, A., M. Kuhn, Peyrefitte, A., Vales N., Biancale, R., Gabalda, G., Reinquin, F., Sarrailh, M. (2012). World Gravity Map. Commission for the Geological Map of the World. Eds. BGI-CGMW-CNES-IRD, Paris.
- Cheng, M., Ries, J.C., Chambers, D.P. (2009). Evaluation of the EGM2008 Gravity Model, *International Geoid Service Joint Bulletin*, **4** : 18-25
- Çankaya Tongur E. (2010). Gravitenin Bazı Jeodezik Problemlerde Kullanımı, Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstütüsü, Konya.
- Drinkwater, M.R., Floberghagen, R., Haagmans, R., Muzi, D., Popescu, A. (2003). GOCE: ESA's first Earth Explorer Core Mission. *Space Science Reviews*, **00** : 1-14.
- Erden, F. (1979). Uygulamalı Gravite, Eğitim Serisi No:21, MTA Yayını, Ankara.
- Franz Barthelmes. (2013). Definition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models, Potsdam.
- Gilardoni, M., Reguzzoni, M., Sampietro D. (2016). GECO: a global gravity model by locally combining GOCE data and EGM2008. *Studia Geophysica et Geodaetica*, 60, 228-247.

- Grombein, T., Seitz, K., Heck, B. (2016). The Rock–Water–Ice Topographic Gravity Field Model RWI_TOPO_2015 and Its Comparison to a Conventional Rock-Equivalent Version, *Surv Geophy*, **37**: 937–976 DOI 10.1007/s10712-016-9376-0
- İlgar A. (2011). Marmara Bölgesi'nde Düşey Yer Kabuğu Hareketlerinin Bağıl Gravite ve GPS Ölçüleri İle Belirlenmesi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstütüsü, İstanbul.
- Kılıçoğlu, A., Lenk, O., Diren., A., Simav, M., Yıldız, H., Aktuğ, B., Türkezer, A., Göçmen, C., Paslı, E., Akçakaya, M.(2009), Türkiye İzostatik Gravite Anomali Haritası, *Harita Dergisi*, **144**: 1-19.
- Kılıçoğlu A. (2009). Küresel Jeodezik Gözlem Sistemi (GGOS) ve Yer Gravite Alanı : Türkiye Açısından Bir İnceleme, *Harita Dergisi*, **142**: 17-31.
- Kostelecky J., Förste C., Klokocnik J., Bezdek A., Bucha B. (2015). Evaluation of the gravity field model EIGEN-6C4 in comparison with EGM2008 by means of various functions of the gravity potential and by GNSS/levelling, *Geoinformatics FCE CTU* 14(1): doi:10.14311/gi.14.1.1.
- Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K. (2012). The development and evalution of the Earth Gravitational Model 2008 (EGM 2008). *Journal of Geophysical Research*, **117**: B04406, doi:10.1029/2011JB008916
- Sanver, M., İşseven T. (2007). Gravite ve Manyetik Arama Yöntemleri, Ankara
- Torge W. (1989). Gravimetry, Walter de Gruyter, Berlin.
- Turgut B. (1996). Fiziksel Jeodezi Ders Notları, Selçuk Üniversitesi Mühendislik Mimarlık Fakültesi, Konya.
- Ulusoy E. (1977). Matematiksel Jeodezi, İstanbul.
- Yaldız F.N. (2006). Gravite Ölçülerinin İndirgenmesi ve Gravimetrik Jeoidin Belirlenmesi, Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstütüsü, Konya.

İnternet Kaynakları

1) http://icgem.gfz-potsdam.de, 01.04.2018

2) http://bgi.obs-mip.fr/, 04.05.2018

ÖZGEÇMİŞ

Adı Soyadı: Bürhan KOZLUDoğum Yeri ve Tarihi: Soma 28.08.1993

Yabancı Dili : İngilizce

İletişim (Telefon/e-posta) :0537 918 86 87 bkozlu.6361@gmail.com

Eğitim Durumu (Kurum ve Yıl)

Lise	:	Rıfat Dağdelen Anadolu Lisesi (2007-2011)		
Lisans	:	Afyon Kocatepe Üniversitesi, Harita Mühendisliği		
		Bölümü, (2012-2016)		
Yüksek Lisans	:	Afyon Kocatepe Üniversitesi, Fen Bilimleri		
		Enstitüsü, Harita Mühendisliği Anabilim Dalı,		
		(2016-2018)		