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Abstract 
This work presents the multiple query optimization (MOQ) problem and state of the art optimal solutions for 

this problem. Then, we design 16 new methods to solve the MQO problem. These proposed methods are executed 
to solve randomly generated instances of MQO problem. Each method is run on 20 MQO problem instances and 
their averages are taken to calculate the performance of each method on the same instances. In order to compare 
the methods we calculate the rank of each method and the method with the best overall average rank is chosen as 
the best method. 
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Büyük Çoklu Sorgu Eniyileme Problemlerinin Çözülmesi
 
Özet

Bu çalışmada çoklu sorgu optimizasyonu (ÇSO) için varolan çağdaş ve eniyi optimal çözümler sunulmaktadır. 
Daha sonra ÇSO problemi için 16 yeni algoritma tasarlanmıştır. Bu önerilen algoritmalar kullanılarak rastgele 
üretilmiş ÇSO problemleri çözülmüştür. Her bir algoritma farklı 20 ÇSO problemi üzerinde çalıştırılmış ve 
bunların ortalaması o yöntemin performansı olarak hesaplanmış, ve aynı 20 problem üzerinde bütün algoritmalar 
çalıştırılarak ortalamaları bulunmuştur. Önerilen algoritmaları karşılaştırmak için ortalama maliyetlerine göre 
sıralanmış ve en iyi algoritma 1, en kötü algoritma 16 sıralaması verilmiştir. En küçük ortalama sıralamaya sahip 
olan algoritma en iyi algoritma olarak belirlenmiştir.
Anahtar Kelimeler: İlişkisel veritabanları, Çoklu sorgu optimizasyonu, A*

1. Introduction

The multiple query optimization (MQO) 
problem has been studied in the database literature 
since 1980s. MQO tries to lower the execution cost 
of a group of queries by evaluating common tasks 
only once, whereas traditional query optimization 
considers a single query at a time. MQO has been 
formulated in [1] as an optimization problem 
where several heuristic functions are used to 
direct an A* search. Later in [2], and [3] a more 
informed cost estimation function, which is more 
expensive to calculate, has been used to reduce 
the number of states explored by the A* search. 
We show that this improved heuristic can be 
improved significantly by modifying it to use a 
dynamic query ordering scheme, instead of the 
static query ordering heuristics used before. As 
the MQO techniques are now beginning to be 
used for large optimization problems such as 
materialized view selection, the performance 

gains reported here will be very useful in solving 
these large optimization problems in less time 
and using less memory. 

The MQO problem can be divided into two 
phases. The first phase is to identify common 
tasks among a group of queries and prepare a set 
of alternative plans for each query, which will 
be the basis for the second phase of MQO. The 
second phase is the selection of exactly one plan 
for each query in the query set. As a result of 
second phase a global execution plan in the form 
of a directed acyclic graph of tasks is obtained, 
which will produce the required outputs for all 
queries when executed.

The first phase of MQO has been addressed in 
a recent paper [4] and it has been shown that for 
up to 10 queries near-optimal alternative plans can 
be generated in less than 2 seconds. What is even 
more exciting is that we can reduce the number of 
alternative plans generated for a query in a given 
group of queries, while we preserve the quality 
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of plans and obtain multi-plans always within 
20%(on the average 12%) of optimal. Another 
interesting observation is that, as the number of 
queries input to MQO increases the multi-plans 
generated remain close to optimal. 

The second phase of MQO is also very 
important because that is the most time consuming 
phase of the problem. For example, as reported in 
[1] the CPU time of the A* optimization algorithm 
could be as high as several hundred seconds for 
only 15 queries, while this time has been reduced 
to less than a second (for small MQO problems) 
using a better heuristic [2, 3], and in this work 
the optimization time is further reduced and it is 
experimentally shown that solving large problems 
with even one hundred queries and hundreds of 
alternative plans is now feasible.

Example 1.1 (How common tasks and alternative 
plans can be identified). In Fig.1 an example 
task sharing is shown on how multiple-query 
optimization exploits common tasks and generate 
a global-plan to execute two queries in a group. In 
this example we have two queries:
Q1: Find the names of senior students in the 
computer science department.
Q2: Find the id’s of repeat students in the 
computer science department.

In Fig.1 only the select operation dname=”CS” 
on the Department relation is common in both 
queries. It is possible to share the join operation 
between Department and Student relations, as 
well, but, for this, we must delay the selection 
operations status=repeat and year=4, as shown 
in Fig.2.

Fig.1. A multi-plan for evaluating both Q1 and Q2.

Fig.2. Another multi-plan for evaluating both Q1 and Q2.

The important point to recognize in Fig.1 
and Fig.2 is the delaying of selection operations. 
This is just opposite of the conventional policy 

of performing selections as early as possible in 
single query optimization. By delaying selections 
we increase the cost of evaluating each query 
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individually, however, due to the potential 
increase in common tasks this becomes a good 
technique to obtain alternative plans for individual 
queries and use these alternative plans as input for 
multiple-query optimization phase.

2. Materials And Methods

In order to find the best algorithm for finding 
optimal solution to a MQO problem, a C program 
was written to implement the A* heuristic 
and calculate both the number of search states 
expanded by the A* algorithm and also the time 
taken in milliseconds. A second program in C 
language was also designed and implemented. 
The second program generates a randomly 
produced MQO problem instance by using 3 
parameters. (1) The range of costs of tasks (the 
minimum and maximum costs) and the number of 
such tasks. (2) The total number of plans and the 
range (minimum and maximum number of tasks) 
of number of tasks in any plan and the randomly 
selected tasks in each plan. (3) The total number 
of queries and the range of number of plans for 
each query and the actual selected plans for each 
query. 

Then, 16 possible algorithms are generated. 
For this purpose 4 different ordering criteria, 
DQO1 (current shared cost), DQO2 (ratio of 
current shared plan cost to unshared plan cost), 
DQO3 (difference of current shared cost from 
unshared plan cost) and DQO4 (estimated current 
plan cost) are defined. For each of these ordering 
criteria we select the MIN (the query with the 
minimum cost plan among all plans), MAX (the 
query with the maximum cost plan among all 
plans), MIN+AVG (the query with the minimum 
average plan cost, obtained by calculating the 
average of all plans for a query), and MAX+AVG 
(the query with the maximum average plan cost, 
obtained by calculating the average of all plans for 
a query). Each of these methods are implemented 
as a C function and depending on the selected 
algorithm the corresponding C function is 
executed to choose the next query to be expanded 
in the A* optimization algorithm.

Before comparing the DQO1-DQO4 
algorithms, we compare static query ordering 

and dynamic query ordering by using the same 
randomly generated MQO problem instances, and 
experimentally show that dynamic query ordering 
is vastly superior to static query ordering.

3. Related Work

Query optimizers for relational databases use 
relational algebra (RA) [5] for internal query 
representation. Most of the theoretical work 
on databases has focused on select-project-join 
queries and this article’s experiments have also 
been limited to those operations. It is assumed 
that the set of alternative plans will be generated 
by a multiple query optimizer as described in[6], 
or by post-processing of single query optimizer 
generated plans to obtain more sharable 
alternative plans as described in [7] and [8]. Once 
common tasks and their execution time estimates 
are provided, our optimization algorithm is 
applicable for the complete set of RA operations 
and vendor specific extensions.

There has been a lot of recent interest in using 
multi-query optimization techniques in the context 
of materialized views and data warehouses. In [9] 
it is shown that multi-query optimization can be 
easily added to existing optimizers and is feasible 
for use in complex decision support systems. In [10] 
multi-query optimization is used to identify and 
exploit common sub expressions for materialized 
view maintenance. Another possibility is to 
materialize views such that it would improve 
query response times by considering frequently 
used common sub expressions as candidates for 
view materialization, a very detailed survey of 
previous work on answering queries using views 
is given in [11]. An extension of multiple query 
optimizations to queries with aggregate operators 
has also been proposed in [12] and shows the great 
potential MQO has for expensive queries. The 
maintenance and verification tasks on relational 
databases can be improved by employing multi-
query optimization techniques as discussed in 
[13], as well. The query model used in this study 
doesn’t include the effect of pipelining which 
would make it very difficult to calculate a given 
plan’s cost. It would cause the cost of a sub-query 
to depend on ordering of relations while in our 
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model a sub-query is a set of relations where 
ordering of relations is immaterial. Recently, 
there has been renewed interest in multiple query 
optimization in the domain of sensor networks. 
The need for executing the same query on multiple 
sensor outputs and also executing multiple queries 
on a given sensor output naturally gives rise to 
MQO problems[14].

In addition to A*, in recent work other 
optimization techniques have been proposed 
for solving MQO problem. One of these is 
dynamic programming (DP) and it has been 
studied in [15] where it was shown that DP has 
comparable performance to depth-first branch-
and-bound (DFBB) but its memory overhead 
is much larger than DFBB. Genetic Algorithm 
(GA) is also a recent technology which can be 
used for optimizing a variety of problems and its 
performance on MQO problem has been reported 
in [16] which show that optimal solutions can be 
obtained in a reasonable time. The advantageous 
side of GA is its ability to provide a solution at 
any time during optimization which makes it very 
attractive for real-time constrained applications. 
The ability of GA to limit the solution pool to 
minimize the used memory also makes it perfect 
for real-time limited memory environments.

Single query optimization aims to minimize 
the time required to calculate the output for a given 
query. This problem has been addressed in great 
detail by database researchers since 1970s [17, 
18]. Because of the large number of alternative 
join methods and join orders, state of the art 
optimizers search only a subset of the possible 
query plans, to be specific, left-deep (non-bushy) 
join trees and generate a single execution plan in 
the form a tree with RA operations as its internal 
nodes and base relations as leaf nodes. 

Even though above approach is acceptable for 
single queries, we are faced with the problem that 
in MQO we may prefer a sub-optimal plan for a 
query if it results in more common tasks with the 
other queries in the group and thus yield a better 
global plan for the query group. This can be seen 
easily from Example 3.1. We are assuming that 
common tasks have been already determined 
by the first phase of MQO, alternative plan 
generation.

Example 3.1 (A sample MQO problem). Given 
two queries, Q1 and Q2, and below alternative 
plans for them, where Pi,j is the j-th alternative 
plan for Qi:

	 P1,1={t1, t2, t3}=75	 P1,2={t4, t5}=55

	 P2,1={t1, t6, t7}=55	 P2,2={t2, t8, t9}	

=45	 P2,3={t5,t10}=50

Given task costs: t1=40, t2=30, t3=5,  t4=35, t5=20, 

t6=10, t7=5, t8=5, t9=10, t10=30.

The lowest cost plans for Q1 and Q2 are 
P1,2 and P2,2, respectively. For multiple query 
optimization, however, the preferred plans for 
Q1 and Q2 will be P1,2 and P2,3, respectively, since 
these two plans share t5 and give a global plan 
cost of 85, while P1,2 and P2,2 have no common 
tasks  and a global plan cost of 100.

4. MQO Problem Formulation

This formulation has been given in [1]. It 
defines the search space for A* and also a heuristic 
function, ht, to direct the search.

Initial State: This state has all null values 
denoting that no plan has been selected for any 
queries yet.

Intermediate State: These are states where at 
least one plan has been assigned for one or more 
queries, but there is at least one query left for 
which no plan has been assigned. In our notation 
the i-th position holds the assigned plan for Qi.

Solution State: A state where all queries are 
assigned a plan.
4.1 Heuristic Function (ht)

Assume that the state after selecting plans for 
queries Q1 through Qk is 

Sk=<P1,j1,...,Pk,jk, null, ...,null>.

est_cost(ti)=
i

i

n
tt )(cos

	 est_cost(Pi,j)=

€ 

est _cos t(ti
ti ∈Pi , ji

∑ )
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Here, ni is the number of queries, among the 
original set of n queries, with a plan containing 
ti. Then,

ht(Sk)=

€ 

est _cos t(Pi, ji
1≤ i≤k
∑ )+ 

€ 

min(est _ cos t(Pi1
1≤i≤k

∑ ) i,ni,., est_cost (P ))

A more informed heuristic for plan cost 
estimation has been defined in [2] and [3], which 
improves the performance of MQO drastically. 
The only difference is the use of mi, instead of 
ni, which is the number of queries, among the 
remaining (instead of all queries as in ni) set 
of queries without an assigned plan, with an 
alternative plan containing ti. By using mi now 
it becomes possible to use the actual cost of the 
partial global plan for cost estimation as the 
admissibility [19] is guaranteed as proven in 

4.2.Heuristic Function hs

Let 
  

€ 

t sel=
1≤i≤k
U Pi, ji

 be the set of tasks in the 

selected plans for queries Q1 through Qk.

est_cost(ti)=
i

i

m
ttreal )(cos_

, if ti Ϊtsel, and 
zero otherwise.

hs(Sk)=

€ 

real _ cos t
tx ∈ tsel

∑ (tx )+

  

€ 

min(est_cost
k< i≤n
∑ ( i,1P ),.,est_cost( i,niP ))

The DFBB optimization algorithm:
   S:= <null,null,null,…,null>;
   Q:= makeDEQueue( S); // a double ended 
queue
   OptimalSolution:= 
      chooseLowestCostPlanForEachQuery();
   While isNotEmpty( Q ) Do
      S := delFront (Q);
   Qnum:= chooseQuery(S); // select a query not 
                             // assigned a plan yet
      For Pnum:=1 to 
NumberOfPlansForQuery[Qnum]

       // assign plan to Query[Qnum]
       NewState := assignPlan (S, P[Qnum][Pnum] 
);       
If( estimatedCost(NewsState) > 
            real_cost(OptimalSolution)) Continue;
       If( isASolution(NewState) ) then
         Q:= removeStatesWithHigherEstimatedC
ost(Q, 
                             real_cost(NewState) );
         OptimalSolution:= NewState;
       Else  // add new state at head of queue
         Q:= addFront(Q, NewState);
       End If
      End For
   End While

4.3 Proof of Admissibility of hs

	
	 In ht, the first term corresponds to the plans 
already selected and a lower bound is calculated 
for cost. In hs, the real shared cost for plans is 
used. Thus, the first term of hs is at least as large 
as the first term of ht. The second term of hs uses 
mi istead of ni and  mi≤ni , so the second term of ht 
is at least as large as the second term of ht. Hence, 
hs≤ht, and hs is more informed than ht.

In order to show admissibility we note that 
the first part of summation for hs gives real 
shared cost of selected plans for Q1 through 
Qk. The second part calculates a lower bound 
for remaining queries by assuming maximum 
possible sharing of all tasks in the queries Qk+1 
through Qn. Therefore, it is guaranteed that sum 
of these two values will not exceed the actual cost 
of the best possible solution reachable from that 
state in search, and thus hs is admissible like ht 
while it is more informed than ht.

4.4	 Query Ordering Heuristics Defined in [1].
 

	 In order to reduce the estimation error in 
heuristic function ht [1] defines and experimentally 
evaluates six alternative query ordering heuristics 
(1: original query order, 2: increasing number 
of plans, 3: decreasing average query cost, 4: 
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decreasing average estimated query cost, 5: 
decreasing average query cost per number of 
plans, 6: decreasing average estimated query cost 
per number of plans) for determining the order of 
alternative plan assignment for each query in the 
MQO query set. This order is calculated before 
MQO search begins and remains static throughout 
the A* search. As a result of these experiments 
it is reported that the third ordering heuristic, 
which orders queries in decreasing average query 

costs, gives the best performance. This result is 
verified in [2]; therefore, in our experiments we 
use this query ordering heuristic for comparison 
of performance results.

4.5 Comparison of ht and hs

We explain ht and hs using their trace Figure 3 
and Figure 4 for the problem instance defined in 
Example 2.1. Initial upper bound is 85.

state estimated cost real cost action
<-,-> 70 - expand

<P1,1,-> 70 - expand
<P1,1,P2,2> 70 100 prune
<P1,1,P2,1> 75 90 prune
<P1,2,-> 75 - expand

<P1,2,P2,2> 75 100 prune
<P1,2,P2,1> 80 110 prune
<P1,1,P2,3> 80 125 prune
<P1,2,P2,3> 85 85 optimal

state estimated cost real cost action
<-,-> 70 - expand

<P1,1,-> 90 - prune
<P1,2,-> 85 - expand

<P1,2,P2,1> 90 - prune
<P1,2,P2,2> 90 - prune
<P1,2,P2,3> 85 85 optimal

Fig.3. Execution of A* with ht. Fig.4. Execution of A* with hs.

5. Comparison of dynamic query ordering 
with static query ordering

As reported in [1] the number of states 
expanded by A* for MQO problem is greatly 
affected by the order in which queries are 
considered for alternative plan selection. This 
is because the accuracy of state cost estimation 
greatly depends on the query order. By using a 
static order determined at the beginning of search 
we ignore the fact that, due to task sharing between 
alternative plans, as the search progresses the 
query order may need to be changed. For example, 

the third query ordering heuristic uses decreasing 
average query costs while the costs of remaining 
queries for a given search states greatly changes 
due to selected common tasks (which have now 
effectively no cost) and the number of queries 
that can possibly share a common task. Fig.5 and 
Fig.6 pictorially show static and dynamic query 
ordering n A* proceed during optimization.

The search heuristic defined in this work uses 
several dynamic query ordering heuristics. For 
each state, dynamically, new estimated costs are 
calculated for each plan of queries that have not 
been assigned a plan yet. 

Fig.5. State expansion using static query ordering
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Fig.6. State expansion using dynamic query ordering.

5.1.	Dynamic Query Ordering Heuristics
 

	 In this work four alternative dynamic query 
ordering heuristics have been defined and 
experimentally evaluated. Each heuristic is tried 
with selecting the query with the plan giving the 
minimum and maximum values, as well as the 
queries that have minimum and maximum values 
of average of values for all plans of a query.  The 
results in Table 1 clearly show that the policy 

of choosing the most costly queries for plan 
assignment is the best solution. 

DQO1: Current shared cost.

DQO2: Ratio of current shared plan cost to 
unshared plan cost.

DQO3: Difference of current shared cost from 
unshared plan cost.

DQO4: Estimated current plan cost(hs)

Table 1. Comparison of dynamic query ordering heuristics.

#of Qs 5 6 7 8 9 10 11 AVG. RANK

DQO1

Min 31 23 79 114 910 534 7796 9,46

Min+Avg 33 37 88 118 886 744 7055 11,00

Max 17 17 35 48 577 206 3336 3,38

Max+Avg 14 17 30 58 232 195 1631 1,46

DQO2

Min 28 25 87 122 960 512 5599 9,54

Min+Avg 29 33 82 125 910 590 3897 9,92

Max 20 16 41 49 502 226 4627 3,69

Max+Avg 14 17 32 36 222 197 1792 1,23

DQO3
Min 26 32 52 67 823 384 5880 7,92

Min+Avg 24 31 49 65 860 361 5501 6,85

Max 28 23 61 69 592 499 5774 7,38

Max+Avg 14 27 34 64 575 402 2711 4,08

DQO4

Min 28 23 59 69 593 504 5770 7,38

Min+Avg 14 27 32 64 689 436 2949 4,69

Max 25 36 52 67 732 389 4925 7,46

Max+Avg 25 30 50 69 748 361 4800 6,92
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6. Experimental Comparison of  hs and ht

In order to compare the performances of 
hs and ht in the presence of static and dynamic 
query ordering several query sets were generated 
randomly. The parameters used for this random 
query-task-plan generation were as follows:

The number of queries: The size of query sets 
was varied from 5 to 15 so that the performance 
of heuristics could be observed as the MQO 
problem got larger.

The number of plans per query: Each query 
was assigned between a minimum of 3 to a 
maximum of 5 plans, randomly.

The number of tasks per plan: This parameter 
was used to control the amount of task sharing 
between queries. The tasks of plan were selected 
from a fixed set, so that as the number of tasks 
per plan increased so did the possibility of having 

a common task.  This number was randomly 
assigned between a minimum of three to a 
maximum of 6. The total number of plans in 
the query set was increased in proportion to the 
number of queries in the query group.

The cost of a task: This parameter was also 
varied randomly between a minimum of 10 to a 
maximum of 100. Later, the task costs were fixed 
at 1 to make the MQO even more difficult by 
forcing the optimization algorithm to try every 
shared task alternative.

Table 2 shows the number of states expanded 
by hs and ht and also how dynamic query ordering 
affects the performance. From these experiments 
it became clear that the number of states expanded 
by hs is much smaller than ht and execution time is 
about 60 times faster for 15 queries, and increases 
linearly with the size of MQO problem.

Table 2. Experimental comparison of hs and ht.

# of
queries

# of states
expanded

MQO
Time(sec)

ht hs ht hs

5 14 14 0.1 0.2
6 56 10 0.1 0.2
7 137 15 0.2 0.3
8 527 15 0.5 0.3
9 2,929 37 2.2 0.5
10 19,464 185 14.5 1.6
11 24,780 239 17.5 1.7
12 67,875 156 50.0 1.5
13 222,558 267 175.9 2.5
14 598,117 520 477.3 5.3
15 593,997 691 492.4 7.3

The experimental results given in Table 3 show 
clearly that dynamic query ordering is much 
better than static query ordering. Each result 

given in Table 3 is an average of 20 repeated runs; 
therefore the reliability of these experimental 
results is high.

Table 3. Experimental comparison of static and dynamic query ordering.
# of expanded states

# of
Queries

A* with hs and
Static query ordering

A* with hs and
DQO1

15 179 51
16 289 178
17 228 142
18 286 132
19 119 58
20 1000 442
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In Table 4 we give a comparison of DQO1, 
DQO2, and DQO3. DQO4 is eliminated because 
the results in Table 1 show that DQO4 is the 
worst algorithm. In fact, DQO4 was run on some 

problem instances but its execution time was so 
long that it was decided to be kept outside the 
experiments reported in Table 4 which take the 
most time.

Table 4. Experimental comparison of static and dynamic query ordering.
# of expanded states

# of
queries

A* with hs and
Static query ordering

A* with hs and
Dynamic query ordering

DQO1 DQO2 DQO3
5 66 30 23 22
6 22 40 49 18
7 59 60 51 29
8 1126 328 358 128
9 1045 1591 2382 380

10 1954 1025 983 396
11 2420 16999 3021

7. Conclusions And Future Research Directions

DQO3 is clearly the best optimal algorithm and 
it should be preferred when an optimal solution 
must be found in the shortest possible time. Our 
experimental results clearly show that MQO 
execution times have been reduced to acceptable 
levels for use in on-line query processing 
environments.  It needs to be investigated what 
would be an acceptable query grouping size 
where the overhead of MQO could be overcome 
by its savings and without noticeably delaying 
processing of queries while forming them into 
query groups.  For critical applications where 
even a minimal overhead for MQO cannot be 
tolerated, approximate algorithms could be 
employed provided that they have acceptable 
performance in terms of multi-plan quality. For 
materialized view selection and maintenance 
environments it remains to be seen how feasible 
it is to apply current algorithms to optimization 
problems where hundreds of relations and queries 
are involved, and it could be necessary to develop 
new approximate algorithms in order to be able to 
handle such large problems.
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