
Coşar/ AKÜ Fen Bilimleri Dergisi 2009-01 31-40

31

Solving Large Multiple Query Optimization Problems

Ahmet Coşar
Department of Computer Engineering, Middle East Technical University, 06531 Ankara

e-posta: cosar@metu.edu.tr

Abstract
This work presents the multiple query optimization (MOQ) problem and state of the art optimal solutions for

this problem. Then, we design 16 new methods to solve the MQO problem. These proposed methods are executed
to solve randomly generated instances of MQO problem. Each method is run on 20 MQO problem instances and
their averages are taken to calculate the performance of each method on the same instances. In order to compare
the methods we calculate the rank of each method and the method with the best overall average rank is chosen as
the best method.
Key Words: Relational databases, Multiple query optimization, A*

Büyük Çoklu Sorgu Eniyileme Problemlerinin Çözülmesi

Özet

Bu çalışmada çoklu sorgu optimizasyonu (ÇSO) için varolan çağdaş ve eniyi optimal çözümler sunulmaktadır.
Daha sonra ÇSO problemi için 16 yeni algoritma tasarlanmıştır. Bu önerilen algoritmalar kullanılarak rastgele
üretilmiş ÇSO problemleri çözülmüştür. Her bir algoritma farklı 20 ÇSO problemi üzerinde çalıştırılmış ve
bunların ortalaması o yöntemin performansı olarak hesaplanmış, ve aynı 20 problem üzerinde bütün algoritmalar
çalıştırılarak ortalamaları bulunmuştur. Önerilen algoritmaları karşılaştırmak için ortalama maliyetlerine göre
sıralanmış ve en iyi algoritma 1, en kötü algoritma 16 sıralaması verilmiştir. En küçük ortalama sıralamaya sahip
olan algoritma en iyi algoritma olarak belirlenmiştir.
Anahtar Kelimeler: İlişkisel veritabanları, Çoklu sorgu optimizasyonu, A*

1. Introduction

The multiple query optimization (MQO)
problem has been studied in the database literature
since 1980s. MQO tries to lower the execution cost
of a group of queries by evaluating common tasks
only once, whereas traditional query optimization
considers a single query at a time. MQO has been
formulated in [1] as an optimization problem
where several heuristic functions are used to
direct an A* search. Later in [2], and [3] a more
informed cost estimation function, which is more
expensive to calculate, has been used to reduce
the number of states explored by the A* search.
We show that this improved heuristic can be
improved significantly by modifying it to use a
dynamic query ordering scheme, instead of the
static query ordering heuristics used before. As
the MQO techniques are now beginning to be
used for large optimization problems such as
materialized view selection, the performance

gains reported here will be very useful in solving
these large optimization problems in less time
and using less memory.

The MQO problem can be divided into two
phases. The first phase is to identify common
tasks among a group of queries and prepare a set
of alternative plans for each query, which will
be the basis for the second phase of MQO. The
second phase is the selection of exactly one plan
for each query in the query set. As a result of
second phase a global execution plan in the form
of a directed acyclic graph of tasks is obtained,
which will produce the required outputs for all
queries when executed.

The first phase of MQO has been addressed in
a recent paper [4] and it has been shown that for
up to 10 queries near-optimal alternative plans can
be generated in less than 2 seconds. What is even
more exciting is that we can reduce the number of
alternative plans generated for a query in a given
group of queries, while we preserve the quality

Coşar/ AKÜ Fen Bilimleri Dergisi 2009-01 31-40

32

of plans and obtain multi-plans always within
20%(on the average 12%) of optimal. Another
interesting observation is that, as the number of
queries input to MQO increases the multi-plans
generated remain close to optimal.

The second phase of MQO is also very
important because that is the most time consuming
phase of the problem. For example, as reported in
[1] the CPU time of the A* optimization algorithm
could be as high as several hundred seconds for
only 15 queries, while this time has been reduced
to less than a second (for small MQO problems)
using a better heuristic [2, 3], and in this work
the optimization time is further reduced and it is
experimentally shown that solving large problems
with even one hundred queries and hundreds of
alternative plans is now feasible.

Example 1.1 (How common tasks and alternative
plans can be identified). In Fig.1 an example
task sharing is shown on how multiple-query
optimization exploits common tasks and generate
a global-plan to execute two queries in a group. In
this example we have two queries:
Q1: Find the names of senior students in the
computer science department.
Q2: Find the id’s of repeat students in the
computer science department.

In Fig.1 only the select operation dname=”CS”
on the Department relation is common in both
queries. It is possible to share the join operation
between Department and Student relations, as
well, but, for this, we must delay the selection
operations status=repeat and year=4, as shown
in Fig.2.

Fig.1. A multi-plan for evaluating both Q1 and Q2.

Fig.2. Another multi-plan for evaluating both Q1 and Q2.

The important point to recognize in Fig.1
and Fig.2 is the delaying of selection operations.
This is just opposite of the conventional policy

of performing selections as early as possible in
single query optimization. By delaying selections
we increase the cost of evaluating each query

Coşar/ AKÜ Fen Bilimleri Dergisi 2009-01 31-40

33

individually, however, due to the potential
increase in common tasks this becomes a good
technique to obtain alternative plans for individual
queries and use these alternative plans as input for
multiple-query optimization phase.

2. Materials And Methods

In order to find the best algorithm for finding
optimal solution to a MQO problem, a C program
was written to implement the A* heuristic
and calculate both the number of search states
expanded by the A* algorithm and also the time
taken in milliseconds. A second program in C
language was also designed and implemented.
The second program generates a randomly
produced MQO problem instance by using 3
parameters. (1) The range of costs of tasks (the
minimum and maximum costs) and the number of
such tasks. (2) The total number of plans and the
range (minimum and maximum number of tasks)
of number of tasks in any plan and the randomly
selected tasks in each plan. (3) The total number
of queries and the range of number of plans for
each query and the actual selected plans for each
query.

Then, 16 possible algorithms are generated.
For this purpose 4 different ordering criteria,
DQO1 (current shared cost), DQO2 (ratio of
current shared plan cost to unshared plan cost),
DQO3 (difference of current shared cost from
unshared plan cost) and DQO4 (estimated current
plan cost) are defined. For each of these ordering
criteria we select the MIN (the query with the
minimum cost plan among all plans), MAX (the
query with the maximum cost plan among all
plans), MIN+AVG (the query with the minimum
average plan cost, obtained by calculating the
average of all plans for a query), and MAX+AVG
(the query with the maximum average plan cost,
obtained by calculating the average of all plans for
a query). Each of these methods are implemented
as a C function and depending on the selected
algorithm the corresponding C function is
executed to choose the next query to be expanded
in the A* optimization algorithm.

Before comparing the DQO1-DQO4
algorithms, we compare static query ordering

and dynamic query ordering by using the same
randomly generated MQO problem instances, and
experimentally show that dynamic query ordering
is vastly superior to static query ordering.

3. Related Work

Query optimizers for relational databases use
relational algebra (RA) [5] for internal query
representation. Most of the theoretical work
on databases has focused on select-project-join
queries and this article’s experiments have also
been limited to those operations. It is assumed
that the set of alternative plans will be generated
by a multiple query optimizer as described in[6],
or by post-processing of single query optimizer
generated plans to obtain more sharable
alternative plans as described in [7] and [8]. Once
common tasks and their execution time estimates
are provided, our optimization algorithm is
applicable for the complete set of RA operations
and vendor specific extensions.

There has been a lot of recent interest in using
multi-query optimization techniques in the context
of materialized views and data warehouses. In [9]
it is shown that multi-query optimization can be
easily added to existing optimizers and is feasible
for use in complex decision support systems. In [10]
multi-query optimization is used to identify and
exploit common sub expressions for materialized
view maintenance. Another possibility is to
materialize views such that it would improve
query response times by considering frequently
used common sub expressions as candidates for
view materialization, a very detailed survey of
previous work on answering queries using views
is given in [11]. An extension of multiple query
optimizations to queries with aggregate operators
has also been proposed in [12] and shows the great
potential MQO has for expensive queries. The
maintenance and verification tasks on relational
databases can be improved by employing multi-
query optimization techniques as discussed in
[13], as well. The query model used in this study
doesn’t include the effect of pipelining which
would make it very difficult to calculate a given
plan’s cost. It would cause the cost of a sub-query
to depend on ordering of relations while in our

Coşar/ AKÜ Fen Bilimleri Dergisi 2009-01 31-40

34

model a sub-query is a set of relations where
ordering of relations is immaterial. Recently,
there has been renewed interest in multiple query
optimization in the domain of sensor networks.
The need for executing the same query on multiple
sensor outputs and also executing multiple queries
on a given sensor output naturally gives rise to
MQO problems[14].

In addition to A*, in recent work other
optimization techniques have been proposed
for solving MQO problem. One of these is
dynamic programming (DP) and it has been
studied in [15] where it was shown that DP has
comparable performance to depth-first branch-
and-bound (DFBB) but its memory overhead
is much larger than DFBB. Genetic Algorithm
(GA) is also a recent technology which can be
used for optimizing a variety of problems and its
performance on MQO problem has been reported
in [16] which show that optimal solutions can be
obtained in a reasonable time. The advantageous
side of GA is its ability to provide a solution at
any time during optimization which makes it very
attractive for real-time constrained applications.
The ability of GA to limit the solution pool to
minimize the used memory also makes it perfect
for real-time limited memory environments.

Single query optimization aims to minimize
the time required to calculate the output for a given
query. This problem has been addressed in great
detail by database researchers since 1970s [17,
18]. Because of the large number of alternative
join methods and join orders, state of the art
optimizers search only a subset of the possible
query plans, to be specific, left-deep (non-bushy)
join trees and generate a single execution plan in
the form a tree with RA operations as its internal
nodes and base relations as leaf nodes.

Even though above approach is acceptable for
single queries, we are faced with the problem that
in MQO we may prefer a sub-optimal plan for a
query if it results in more common tasks with the
other queries in the group and thus yield a better
global plan for the query group. This can be seen
easily from Example 3.1. We are assuming that
common tasks have been already determined
by the first phase of MQO, alternative plan
generation.

Example 3.1 (A sample MQO problem). Given
two queries, Q1 and Q2, and below alternative
plans for them, where Pi,j is the j-th alternative
plan for Qi:

	 P1,1={t1, t2, t3}=75	 P1,2={t4, t5}=55

	 P2,1={t1, t6, t7}=55	 P2,2={t2, t8, t9}	

=45	 P2,3={t5,t10}=50

Given task costs: t1=40, t2=30, t3=5, t4=35, t5=20,

t6=10, t7=5, t8=5, t9=10, t10=30.

The lowest cost plans for Q1 and Q2 are
P1,2 and P2,2, respectively. For multiple query
optimization, however, the preferred plans for
Q1 and Q2 will be P1,2 and P2,3, respectively, since
these two plans share t5 and give a global plan
cost of 85, while P1,2 and P2,2 have no common
tasks and a global plan cost of 100.

4. MQO Problem Formulation

This formulation has been given in [1]. It
defines the search space for A* and also a heuristic
function, ht, to direct the search.

Initial State: This state has all null values
denoting that no plan has been selected for any
queries yet.

Intermediate State: These are states where at
least one plan has been assigned for one or more
queries, but there is at least one query left for
which no plan has been assigned. In our notation
the i-th position holds the assigned plan for Qi.

Solution State: A state where all queries are
assigned a plan.
4.1 Heuristic Function (ht)

Assume that the state after selecting plans for
queries Q1 through Qk is

Sk=<P1,j1,...,Pk,jk, null, ...,null>.

est_cost(ti)=
i

i

n
tt)(cos

	 est_cost(Pi,j)=

€

est _cos t(ti
ti ∈Pi , ji

∑)

Coşar/ AKÜ Fen Bilimleri Dergisi 2009-01 31-40

35

Here, ni is the number of queries, among the
original set of n queries, with a plan containing
ti. Then,

ht(Sk)=

€

est _cos t(Pi, ji
1≤ i≤k
∑)+

€

min(est _ cos t(Pi1
1≤i≤k

∑) i,ni,., est_cost (P))

A more informed heuristic for plan cost
estimation has been defined in [2] and [3], which
improves the performance of MQO drastically.
The only difference is the use of mi, instead of
ni, which is the number of queries, among the
remaining (instead of all queries as in ni) set
of queries without an assigned plan, with an
alternative plan containing ti. By using mi now
it becomes possible to use the actual cost of the
partial global plan for cost estimation as the
admissibility [19] is guaranteed as proven in

4.2.Heuristic Function hs

Let

€

t sel=
1≤i≤k
U Pi, ji

 be the set of tasks in the

selected plans for queries Q1 through Qk.

est_cost(ti)=
i

i

m
ttreal)(cos_

, if ti Ϊtsel, and
zero otherwise.

hs(Sk)=

€

real _ cos t
tx ∈ tsel

∑ (tx)+

€

min(est_cost
k< i≤n
∑ (i,1P),.,est_cost(i,niP))

The DFBB optimization algorithm:
 S:= <null,null,null,…,null>;
 Q:= makeDEQueue(S); // a double ended
queue
 OptimalSolution:=
 chooseLowestCostPlanForEachQuery();
 While isNotEmpty(Q) Do
 S := delFront (Q);
 Qnum:= chooseQuery(S); // select a query not
 // assigned a plan yet
 For Pnum:=1 to
NumberOfPlansForQuery[Qnum]

 // assign plan to Query[Qnum]
 NewState := assignPlan (S, P[Qnum][Pnum]
);
If(estimatedCost(NewsState) >
 real_cost(OptimalSolution)) Continue;
 If(isASolution(NewState)) then
 Q:= removeStatesWithHigherEstimatedC
ost(Q,
 real_cost(NewState));
 OptimalSolution:= NewState;
 Else // add new state at head of queue
 Q:= addFront(Q, NewState);
 End If
 End For
 End While

4.3 Proof of Admissibility of hs

	
	 In ht, the first term corresponds to the plans
already selected and a lower bound is calculated
for cost. In hs, the real shared cost for plans is
used. Thus, the first term of hs is at least as large
as the first term of ht. The second term of hs uses
mi istead of ni and mi≤ni , so the second term of ht
is at least as large as the second term of ht. Hence,
hs≤ht, and hs is more informed than ht.

In order to show admissibility we note that
the first part of summation for hs gives real
shared cost of selected plans for Q1 through
Qk. The second part calculates a lower bound
for remaining queries by assuming maximum
possible sharing of all tasks in the queries Qk+1
through Qn. Therefore, it is guaranteed that sum
of these two values will not exceed the actual cost
of the best possible solution reachable from that
state in search, and thus hs is admissible like ht
while it is more informed than ht.

4.4	 Query Ordering Heuristics Defined in [1].

	 In order to reduce the estimation error in
heuristic function ht [1] defines and experimentally
evaluates six alternative query ordering heuristics
(1: original query order, 2: increasing number
of plans, 3: decreasing average query cost, 4:

Coşar/ AKÜ Fen Bilimleri Dergisi 2009-01 31-40

36

decreasing average estimated query cost, 5:
decreasing average query cost per number of
plans, 6: decreasing average estimated query cost
per number of plans) for determining the order of
alternative plan assignment for each query in the
MQO query set. This order is calculated before
MQO search begins and remains static throughout
the A* search. As a result of these experiments
it is reported that the third ordering heuristic,
which orders queries in decreasing average query

costs, gives the best performance. This result is
verified in [2]; therefore, in our experiments we
use this query ordering heuristic for comparison
of performance results.

4.5 Comparison of ht and hs

We explain ht and hs using their trace Figure 3
and Figure 4 for the problem instance defined in
Example 2.1. Initial upper bound is 85.

state estimated cost real cost action
<-,-> 70 - expand

<P1,1,-> 70 - expand
<P1,1,P2,2> 70 100 prune
<P1,1,P2,1> 75 90 prune
<P1,2,-> 75 - expand

<P1,2,P2,2> 75 100 prune
<P1,2,P2,1> 80 110 prune
<P1,1,P2,3> 80 125 prune
<P1,2,P2,3> 85 85 optimal

state estimated cost real cost action
<-,-> 70 - expand

<P1,1,-> 90 - prune
<P1,2,-> 85 - expand

<P1,2,P2,1> 90 - prune
<P1,2,P2,2> 90 - prune
<P1,2,P2,3> 85 85 optimal

Fig.3. Execution of A* with ht. Fig.4. Execution of A* with hs.

5. Comparison of dynamic query ordering
with static query ordering

As reported in [1] the number of states
expanded by A* for MQO problem is greatly
affected by the order in which queries are
considered for alternative plan selection. This
is because the accuracy of state cost estimation
greatly depends on the query order. By using a
static order determined at the beginning of search
we ignore the fact that, due to task sharing between
alternative plans, as the search progresses the
query order may need to be changed. For example,

the third query ordering heuristic uses decreasing
average query costs while the costs of remaining
queries for a given search states greatly changes
due to selected common tasks (which have now
effectively no cost) and the number of queries
that can possibly share a common task. Fig.5 and
Fig.6 pictorially show static and dynamic query
ordering n A* proceed during optimization.

The search heuristic defined in this work uses
several dynamic query ordering heuristics. For
each state, dynamically, new estimated costs are
calculated for each plan of queries that have not
been assigned a plan yet.

Fig.5. State expansion using static query ordering

Coşar/ AKÜ Fen Bilimleri Dergisi 2009-01 31-40

37

Fig.6. State expansion using dynamic query ordering.

5.1.	Dynamic Query Ordering Heuristics

	 In this work four alternative dynamic query
ordering heuristics have been defined and
experimentally evaluated. Each heuristic is tried
with selecting the query with the plan giving the
minimum and maximum values, as well as the
queries that have minimum and maximum values
of average of values for all plans of a query. The
results in Table 1 clearly show that the policy

of choosing the most costly queries for plan
assignment is the best solution.

DQO1: Current shared cost.

DQO2: Ratio of current shared plan cost to
unshared plan cost.

DQO3: Difference of current shared cost from
unshared plan cost.

DQO4: Estimated current plan cost(hs)

Table 1. Comparison of dynamic query ordering heuristics.

#of Qs 5 6 7 8 9 10 11 AVG. RANK

DQO1

Min 31 23 79 114 910 534 7796 9,46

Min+Avg 33 37 88 118 886 744 7055 11,00

Max 17 17 35 48 577 206 3336 3,38

Max+Avg 14 17 30 58 232 195 1631 1,46

DQO2

Min 28 25 87 122 960 512 5599 9,54

Min+Avg 29 33 82 125 910 590 3897 9,92

Max 20 16 41 49 502 226 4627 3,69

Max+Avg 14 17 32 36 222 197 1792 1,23

DQO3
Min 26 32 52 67 823 384 5880 7,92

Min+Avg 24 31 49 65 860 361 5501 6,85

Max 28 23 61 69 592 499 5774 7,38

Max+Avg 14 27 34 64 575 402 2711 4,08

DQO4

Min 28 23 59 69 593 504 5770 7,38

Min+Avg 14 27 32 64 689 436 2949 4,69

Max 25 36 52 67 732 389 4925 7,46

Max+Avg 25 30 50 69 748 361 4800 6,92

Coşar/ AKÜ Fen Bilimleri Dergisi 2009-01 31-40

38

6. Experimental Comparison of hs and ht

In order to compare the performances of
hs and ht in the presence of static and dynamic
query ordering several query sets were generated
randomly. The parameters used for this random
query-task-plan generation were as follows:

The number of queries: The size of query sets
was varied from 5 to 15 so that the performance
of heuristics could be observed as the MQO
problem got larger.

The number of plans per query: Each query
was assigned between a minimum of 3 to a
maximum of 5 plans, randomly.

The number of tasks per plan: This parameter
was used to control the amount of task sharing
between queries. The tasks of plan were selected
from a fixed set, so that as the number of tasks
per plan increased so did the possibility of having

a common task. This number was randomly
assigned between a minimum of three to a
maximum of 6. The total number of plans in
the query set was increased in proportion to the
number of queries in the query group.

The cost of a task: This parameter was also
varied randomly between a minimum of 10 to a
maximum of 100. Later, the task costs were fixed
at 1 to make the MQO even more difficult by
forcing the optimization algorithm to try every
shared task alternative.

Table 2 shows the number of states expanded
by hs and ht and also how dynamic query ordering
affects the performance. From these experiments
it became clear that the number of states expanded
by hs is much smaller than ht and execution time is
about 60 times faster for 15 queries, and increases
linearly with the size of MQO problem.

Table 2. Experimental comparison of hs and ht.

of
queries

of states
expanded

MQO
Time(sec)

ht hs ht hs

5 14 14 0.1 0.2
6 56 10 0.1 0.2
7 137 15 0.2 0.3
8 527 15 0.5 0.3
9 2,929 37 2.2 0.5
10 19,464 185 14.5 1.6
11 24,780 239 17.5 1.7
12 67,875 156 50.0 1.5
13 222,558 267 175.9 2.5
14 598,117 520 477.3 5.3
15 593,997 691 492.4 7.3

The experimental results given in Table 3 show
clearly that dynamic query ordering is much
better than static query ordering. Each result

given in Table 3 is an average of 20 repeated runs;
therefore the reliability of these experimental
results is high.

Table 3. Experimental comparison of static and dynamic query ordering.
of expanded states

of
Queries

A* with hs and
Static query ordering

A* with hs and
DQO1

15 179 51
16 289 178
17 228 142
18 286 132
19 119 58
20 1000 442

Coşar/ AKÜ Fen Bilimleri Dergisi 2009-01 31-40

39

In Table 4 we give a comparison of DQO1,
DQO2, and DQO3. DQO4 is eliminated because
the results in Table 1 show that DQO4 is the
worst algorithm. In fact, DQO4 was run on some

problem instances but its execution time was so
long that it was decided to be kept outside the
experiments reported in Table 4 which take the
most time.

Table 4. Experimental comparison of static and dynamic query ordering.
of expanded states

of
queries

A* with hs and
Static query ordering

A* with hs and
Dynamic query ordering

DQO1 DQO2 DQO3
5 66 30 23 22
6 22 40 49 18
7 59 60 51 29
8 1126 328 358 128
9 1045 1591 2382 380

10 1954 1025 983 396
11 2420 16999 3021

7. Conclusions And Future Research Directions

DQO3 is clearly the best optimal algorithm and
it should be preferred when an optimal solution
must be found in the shortest possible time. Our
experimental results clearly show that MQO
execution times have been reduced to acceptable
levels for use in on-line query processing
environments. It needs to be investigated what
would be an acceptable query grouping size
where the overhead of MQO could be overcome
by its savings and without noticeably delaying
processing of queries while forming them into
query groups. For critical applications where
even a minimal overhead for MQO cannot be
tolerated, approximate algorithms could be
employed provided that they have acceptable
performance in terms of multi-plan quality. For
materialized view selection and maintenance
environments it remains to be seen how feasible
it is to apply current algorithms to optimization
problems where hundreds of relations and queries
are involved, and it could be necessary to develop
new approximate algorithms in order to be able to
handle such large problems.

References

1.	 T. Sellis. “Multiple query optimization,” ACM
Transactions on Database Systems, 13(1), pp. 23-
52 (1988).

2.	 K. Shim, T. Sellis, D. Nau. “Improvements
on a heuristic algorithm for multiple-query
optimization,” pp. 1-26 (1994).

3.	 A. Cosar, J. Srivastava, S. Shekhar. “On the
multiple pattern multiple object (mpmo) match
problem,” Int. Conf. On Man. of Data, India
(1991).

4.	 F. Polat, A. Coşar, R.Alhajj. “Semantic
information-based alternative plan generation
for multiple query optimization,” Information
Sciences, vol. 137, pp. 103-133 (2001).

5.	 E.F. Codd, “Relational completeness of data base
sublanguages,” in R.J. Rustin(ed.), Data Base
Systems. Prentice-Hall (1972).

6.	 U.S. Chakravarthy and A. Rosenthal. “Anatomy
of a modular multiple query optimizer,” In Proc.
Of the VLDB Conf., pp. 230-239 (1988).

7.	 S. Chakravarthy, “Divide and conquer: A basis
for augmenting a conventional query optimizer
with multiple query-processing capabilities,” in
Proc. 7th Int. Conf. Data Eng., Kobe, Japan, , pp.
482-490 (1991).

8.	 A. Cosar. Design and experimental evaluation of
a multiple query optimizer. PhD. Thesis, CS Dept,
Univ. of Minnesota, Minneapolis (1996).

9.	 P. Roy, S. Seshadri, S.Sudarshan, S. Bhobe.
“Efficient and extensible algorithms for multi-
query optimization,” SIGMOD Conference, pp.
249-260 (2000).

Coşar/ AKÜ Fen Bilimleri Dergisi 2009-01 31-40

40

10.	 H. Mistry, P. Roy, S. Sudarshan, K. Ramamritham.
“Materialized view selection and maintenance
using multi-query optimization,” SIGMOD
Conference (2001).

11.	 A.Y.Halevy. “Answering queries using views: A
survey,” VLDB journal, vol.10(4), pp.270-294
(2001).

12.	 C. Liu, A. Ursu. “A framework for global
optimization of aggregate queries,” Conference on
Information and Knowledge Management(CIKM),
pp.262-269 (1997).

13.	 U. Herzog, J. Schlosser, “Global optimization and
parallelization of integrity constraint checks,” Int.
Conf. on Man. of Data, pp.186-205 (1995).

14.	 N Trigoni, Y. Yao, J. Gehrke, R. Rajaraman, and
A. Demers. “Multi-query optimization for sensor
networks, Multi-query optimization for sensor
networks,” in DCOSS (2005).

15.	 I.H. Toroslu, A Cosar. “Dynamic programming
solution for multiple query optimization problem,”
Information Processing Letters (2004).

16.	 M.A. Bayir, I. H. Toroslu, and A. Cosar. “Genetic
Algorithms for the multiple Query Optimization
problem,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and
Reviews, vol 37, no.1 (2007).

17.	 M. Astrahan et al., “System R: A relational
approach to database management,” ACM Trans.
Database Syst., vol. 1, no. 2, pp. 97–137 (1976).

18.	 R. Elmasri, S.B. Navathe. Fundamentals of
Database Systems, 3ed. (1999).

19.	 J. Pearl. Heuristics. Reading, MA: Addison-
Wesley (1984).

