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ASYMPTOTICALLY I2-CESÀRO EQUIVALENCE OF DOUBLE

SEQUENCES OF SETS

UǦUR ULUSU, ERDİNÇ DÜNDAR, BÜNYAMİN AYDIN

Abstract. In this paper, we defined concept of asymptotically I2-Cesàro

equivalence and investigate the relationships between the concepts of asymp-

totically strongly I2-Cesàro equivalence, asymptotically strongly I2-lacunary
equivalence, asymptotically p-strongly I2-Cesàro equivalence and asymptoti-

cally I2-statistical equivalence of double sequences of sets.

1. INTRODUCTION

The concept of convergence of real number sequences has been extended to sta-
tistical convergence independently by Fast [8] and Schoenberg [23]. The idea of
I-convergence was introduced by Kostyrko et al. [12] as a generalization of statis-
tical convergence which is based on the structure of the ideal I of subset of the set
of natural numbers N. Das et al. [6] introduced the concept of I-convergence of
double sequences in a metric space and studied some properties of this convergence.

Freedman et al. [9] established the connection between the strongly Cesàro sum-
mable sequences space and the strongly lacunary summable sequences space. Con-
nor [4] gave the relationships between the concepts of statistical and strongly p-
Cesàro convergence of sequences.

There are different convergence notions for sequence of sets. One of them handled
in this paper is the concept of Wijsman convergence (see, [1, 3, 10, 14, 27, 32]). The
concepts of statistical convergence and lacunary statistical convergence of sequences
of sets were studied in [14, 27]. Also, new convergence notions, for sequences of
sets, which is called Wijsman I-convergence, Wijsman I-statistical convergence
and Wijsman I-Cesàro summability by using ideal were introduced in [10,11,30].

Nuray et al. [17] studied the concepts of Wijsman Cesàro summability and Wijs-
man lacunary convergence of double sequences of sets and investigate the rela-
tionship between them. Also, Nuray et al. [15] studied the concepts of Wijsman
I2, I∗2 -convergence and Wijsman I2, I∗2 -Cauchy double sequences of sets. Ulusu
et al. [26] studied I2-Cesàro summability of double sequences of sets. Dündar et
al. [7] investigated I2-lacunary statistical convergence of double sequences of sets.
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Marouf [13] peresented definitions for asymptotically equivalent and asymptotic
regular matrices. This concepts was investigated in [19–21].

The concept of asymptotically equivalence of real numbers sequences which is
defined by Marouf [13] has been extended by Ulusu and Nuray [28] to concepts of
Wijsman asymptotically equivalence of set sequences. Moreover, natural inclusion
theorems are presented. Kişi et al. [11] introduced the concepts of Wijsman asymp-
totically I-equivalence of sequences of sets. Ulusu [24] investigated asymptotically
I-Cesàro equivalence of sequences of sets.

2. Definitions and Notations

Now, we recall the basic definitions and concepts (See [?, 1, 2, 5–7, 12, 15–17, 22,
25,26,29,31]).

Let (X, ρ) be a metric space. For any point x ∈ X and any non-empty subset A
of X, we define the distance from x to A by

d(x,A) = inf
a∈A

ρ(x, a).

Throughout the paper we take (X, ρ) be a separable metric space and A,Akj be
non-empty closed subsets of X.

The double sequence {Akj} is Wijsman convergent to A if

P − lim
k,j→∞

d(x,Akj) = d(x,A) or lim
k,j→∞

d(x,Akj) = d(x,A)

for each x ∈ X and we write W2 − limAkj = A.
The double sequence {Akj} is Wijsman statistically convergent to A if for every

ε > 0 and for each x ∈ X,

lim
m,n→∞

1

mn

∣∣∣{k ≤ m, j ≤ n : |d(x,Akj)− d(x,A)| ≥ ε
}∣∣∣ = 0,

that is,

|d(x,Akj)− d(x,A)| < ε, a.a. (k, j)

and we write st2 − limW Ak = A.
Let X 6= ∅. A class I of subsets of X is said to be an ideal in X provided:

i) ∅ ∈ I, ii) A,B ∈ I implies A ∪B ∈ I, iii) A ∈ I, B ⊂ A implies B ∈ I.
I is called a non-trivial ideal if X 6∈ I.
A non-trivial ideal I in X is called admissible if {x} ∈ I for each x ∈ X.
Throughout the paper we take I2 as an admissible ideal in N× N.
A non-trivial ideal I2 of N×N is called strongly admissible if {i}×N and N×{i}

belong to I2 for each i ∈ N .
Let X 6= ∅. A non empty class F of subsets of X is said to be a filter in X

provided:
i) ∅ 6∈ F , ii) A,B ∈ F implies A ∩B ∈ F , iii) A ∈ F , A ⊂ B implies B ∈ F .

If I is a non-trivial ideal in X, X 6= ∅, then the class

F(I) =
{
M ⊂ X : (∃A ∈ I)(M = X\A)

}
is a filter on X, called the filter associated with I.

The double sequence {Akj} is IW2
-convergent to A if for every ε > 0 and for

each x ∈ X, {
(k, j) ∈ N× N : |d(x,Akj)− d(x,A)| ≥ ε

}
∈ I2

and we write IW2
− limAkj = A.
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The double sequence {Akj} is Wijsman I2-Cesàro summable to A if for every
ε > 0 and for each x ∈ X,{

(m,n) ∈ N× N :
∣∣∣ 1

mn

m,n∑
k,j=1,1

d(x,Akj)− d(x,A)
∣∣∣ ≥ ε} ∈ I2

and we write Akj
C1(IW2

)
−→ A.

The double sequence {Akj} is Wijsman strongly I2-Cesàro summable to A if for
every ε > 0 and for each x ∈ X,{

(m,n) ∈ N× N :
1

mn

m,n∑
k,j=1,1

|d(x,Akj)− d(x,A)| ≥ ε

}
∈ I2

and we write Akj
C1[IW2

]
−→ A.

The double sequences {Akj} is Wijsman p-strongly I2-Cesàro summable to A if
for every ε > 0, for each p positive real number and for each x ∈ X,{

(m,n) ∈ N× N :
1

mn

m,n∑
k,j=1,1

|d(x,Akj)− d(x,A)|p ≥ ε

}
∈ I2

and we write Akj
Cp[IW2

]
−→ A.

The double sequence {Akj} is Wijsman I2-statistical convergent to A or S (IW2
)-

convergent to A if for every ε > 0, δ > 0 and for each x ∈ X,{
(m,n) ∈ N× N :

1

mn

∣∣∣{k ≤ m, j ≤ n : |d(x,Akj)− d(x,A)| ≥ ε
}∣∣∣ ≥ δ} ∈ I2

and we write Akj → A
(
S (IW2

)
)
.

The double sequence θ = {(kr, js)} is called double lacunary sequence if there
exist two increasing sequence of integers such that

k0 = 0, hr = kr − kr−1 →∞ as r →∞
and

j0 = 0, h̄u = ju − ju−1 →∞ as u→∞.
We use the following notations in the sequel:

kru = krju, hru = hrh̄u, Iru =
{

(k, j) : kr−1 < k ≤ kr and ju−1 < j ≤ ju
}
,

qr =
kr
kr−1

and qu =
ju
ju−1

.

The double sequence {Akj} is said to be Wijsman strongly I2-lacunary conver-
gent to A or Nθ [IW2

]-convergent to A if for every ε > 0 and for each x ∈ X,

A(ε, x) =

{
(r, u) ∈ N× N :

1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)| ≥ ε

}
∈ I2

and we write Akj → A
(
Nθ [IW2 ]

)
.

We define d(x;Akj , Bkj) as follows:

d(x;Akj , Bkj) =


d(x,Akj)

d(x,Bkj)
, x 6∈ Akj ∪Bkj

L , x ∈ Akj ∪Bkj .
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The double sequences {Akj} and {Bkj} are Wijsman asymptotically equivalent
of multiple L if for each x ∈ X,

lim
k,j→∞

d(x;Akj , Bkj) = L

and we write Akj
WL

2∼ Bkj and simply Wijsman asymptotically equivalent if L = 1.
The double sequences {Akj} and {Bkj} are Wijsman asymptotically I2-equivalent

of multiple L if for every ε > 0 and each x ∈ X{
(k, j) ∈ N× N : |d(x;Akj , Bkj)− L| ≥ ε

}
∈ I2

and we write Akj
ILW2∼ Bkj and simply Wijsman asymptotically I2-equivalent if

L = 1.
The double sequences {Akj} and {Bkj} are Wijsman asymptotically I2-statistical

equivalent of multiple L if for every ε > 0, δ > 0 and for each x ∈ X,{
(m,n) ∈ N× N :

1

mn

∣∣∣{k ≤ m, j ≤ n : |d(x;Akj , Bkj)− L| ≥ ε
}∣∣∣ ≥ δ} ∈ I2

and we write Akj
S(ILW2

)
∼ Bkj and simply Wijsman asymptotically I2-statistical

equivalent if L = 1.
Let θ be a double lacunary sequence. The double sequences {Akj} and {Bkj}

are said to be Wijsman asymptotically strongly I2-lacunary equivalent of multiple
L if for every ε > 0 and for each x ∈ X,{

(r, u) ∈ N× N :
1

hrhu

∑
(k,j)∈Iru

|d(x;Akj , Bkj)− L| ≥ ε

}
∈ I2

and we write Akj
Nθ[ILW2

]
∼ Bkj and simply Wijsman asymptotically strongly I2-

lacunary equivalent if L = 1.
X ⊂ R, f, g : X → R functions and a point a ∈ X ′ are given. If f(x) = α(x)g(x)

for ∀x ∈
o

U δ(a) ∩ X, then for x ∈ X we write f = O(g) as x → a, where for any

δ > 0, α : X → R is bounded function on
o

U δ(a) ∩X. In this case, if there exists a

c ≥ 0 such that |f(x)| ≤ c|g(x)| for ∀x ∈
o

U δ(a) ∩X, then for x ∈ X, f = O(g) as
x→ a.

3. Main Results

In this section, we defined concepts of asymptotically I2-Cesàro equivalence,
asymptotically strongly I2-Cesàro equivalence and asymptotically p-strongly I2-
Cesàro equivalence of double sequences of sets. Also, we investigate the relationship
between the concepts of asymptotically strongly I2-Cesàro equivalence, asymptot-
ically strongly I2-lacunary equivalence, asymptotically p-strongly I2-Cesàro equi-
valence and asymptotically I2-statistical equivalence of double sequences of sets.

Definition 3.1. The double sequence {Akj} and {Bkj} are asymptotically I2-
Cesàro equivalence of multiple L if for every ε > 0 and for each x ∈ X,{

(m,n) ∈ N× N :
∣∣∣ 1

mn

m,n∑
k,j=1,1

d(x;Akj , Bkj)− L
∣∣∣ ≥ ε} ∈ I2.
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In this case, we write Akj
CL1 (IW2

)
∼ Bkj and simply asymptotically I2-Cesàro equi-

valent if L = 1.

Definition 3.2. The double sequence {Akj} and {Bkj} are asymptotically strongly
I2-Cesàro equivalence of multiple L if for every ε > 0 and for each x ∈ X,{

(m,n) ∈ N× N :
1

mn

m,n∑
k,j=1,1

|d(x;Akj , Bkj)− L| ≥ ε

}
∈ I2.

In this case, we write Akj
CL1 [IW2

]
∼ Bkj and simply asymptotically strongly I2-Cesàro

equivalent if L = 1.

Theorem 3.3. Let θ be a double lacunary sequence. If lim infr qr > 1, lim infu qu >
1, then

Akj
CL1 [IW2

]
∼ Bkj ⇒ Akj

NLθ [IW2 ]
∼ Bkj .

Proof. Let lim infr qr > 1 and lim infu qu > 1. Then, there exist λ, µ > 0 such that
qr ≥ 1 + λ and qu ≥ 1 + µ for all r, u ≥ 1, which implies that

krju

hrhu
≤ (1 + λ)(1 + µ)

λµ
and

kr−1ju−1

hrhu
≤ 1

λµ
.

Let ε > 0 and for each x ∈ X we define the set

S =

{
(kr, ju) ∈ N× N :

1

krju

kr,ju∑
i,s=1,1

|d(x;Ais, Bis)− L| < ε

}
.

We can easily say that S ∈ F(I2), which is a filter of the ideal I2, so we have

1

hrhu

∑
(i,s)∈Iru

|d(x;Ais, Bis)− L|

=
1

hrhu

kr,ju∑
i,s=1,1

|d(x;Ais, Bis)− L|

− 1

hrhu

kr−1,ju−1∑
i,s=1,1

|d(x;Ais, Bis)− L|

=
krju

hrhu

(
1

krju

kr,ju∑
i,s=1,1

|d(x;Ais, Bis)− L|
)

−kr−1ju−1

hrhu

(
1

kr−1ju−1

kr−1,ju−1∑
i,s=1,1

|d(x;Ais, Bis)− L|
)

≤
(

(1 + λ)(1 + µ)

λµ

)
ε−

(
1

λµ

)
ε′
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for every ε′ > 0, for each x ∈ X and (kr, ju) ∈ S. Choose η =
(

(1+λ)(1+µ)
λµ

)
ε +(

1
λµ

)
ε′. Therefore,{

(r, u) ∈ N× N :
1

hrhu

∑
(k,j)∈Iru

|d(x;Akj , Bkj)− L| < η

}
∈ F(I2)

and it completes the proof. �

Theorem 3.4. Let θ be a double lacunary sequence. If lim supr qr <∞, lim supu qu <
∞, then

Akj
NLθ [IW2 ]
∼ Bkj ⇒ Akj

CL1 [IW2
]

∼ Bkj .

Proof. Let lim supr qr <∞ and lim supu qu <∞. Then, there exist M,N > 0 such

that qr < M and qu < N for all r, u ≥ 1. Let Akj
NLθ [IW2 ]
∼ Bkj and for ε1, ε2 > 0

define the sets T and R such that

T =

{
(r, u) ∈ N× N :

1

hrhu

∑
(k,j)∈Iru

|d(x;Akj , Bkj)− L| < ε1

}

and

R =

{
(m,n) ∈ N× N :

1

mn

m,n∑
k,j=1,1

|d(x;Akj , Bkj)− L)| < ε2

}
,

for each x ∈ X. Let

atv =
1

hthv

∑
(i,s)∈Itv

|d(x;Ais, Bis)− L| < ε1,

for each x ∈ X and for all (t, v) ∈ T . It is obvious that T ∈ F(I2).
Choose m,n is any integer with kr−1 < m < kr and ju−1 < n < ju, where

(r, u) ∈ T . Then, for each x ∈ X we have

1
mn

m,n∑
k,j=1,1

|d(x;Akj , Bkj)− L| ≤ 1
kr−1ju−1

kr,ju∑
k,j=1,1

|d(x;Akj , Bkj)− L|

= 1
kr−1ju−1

( ∑
(k,j)∈I11

|d(x;Akj , Bkj)− L|

+
∑

(k,j)∈I12
|d(x;Akj , Bkj)− L|

+
∑

(k,j)∈I21
|d(x;Akj , Bkj)− L|

+
∑

(k,j)∈I22
|d(x;Akj , Bkj)− L|

+ · · ·+
∑

(k,j)∈Iru
|d(x;Akj , Bkj)− L|

)
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= k1j1
kr−1ju−1

(
1

h1h1

∑
(k,j)∈I11

|d(x;Akj , Bkj)− L|
)

+k1(j2−j1)
kr−1ju−1

(
1

h1h2

∑
(k,j)∈I12

|d(x;Akj , Bkj)− L|
)

+ (k2−k1)j1
kr−1ju−1

(
1

h1h2

∑
(k,j)∈I21

|d(x;Akj , Bkj)− L|
)

+ (k2−k1)(j2−j1)
kr−1ju−1

(
1

h1h2

∑
(k,j)∈I22

|d(x;Akj , Bkj)− L|
)

+...+ (kr−kr−1)(ju−ju−1)
kr−1ju−1

(
1

hrhu

∑
(k,j)∈Iru

|d(x;Akj , Bkj)− L|
)

= k1j1
kr−1ju−1

a11 + k1(j2−j1)
kr−1ju−1

a12 + (k2−k1)j1
kr−1ju−1

a21

+ (k2−k1)(j2−j1)
kr−1ju−1

a22 + ...+ (kr−kr−1)(ju−ju−1)
kr−1ju−1

aru

≤
(

sup
(t,v)∈T

atv

)
krju

kr−1ju−1

< ε1 ·M ·N.
Choose ε2 = ε1

M ·N and in view of the fact that⋃
(r,u)∈T

{
(m,n) : kr−1 < m < kr, ju−1 < n < ju

}
⊂ R,

where T ∈ F(I2), it follows from our assumption on θ that the set R also belongs
to F(I2) and this completes the proof of the theorem. �

We have the following Theorem by Theorem 3.3 and Theorem 3.4.

Theorem 3.5. Let θ be a double lacunary sequence. If 1 < lim infr qr < lim supr qr <
∞ and 1 < lim infu qu < lim supu qu <∞, then

Akj
CL1 [IW2

]
∼ Bkj ⇔ Akj

NLθ [IW2 ]
∼ Bkj .

Definition 3.6. The double sequences {Akj} and {Bkj} are asymptotically p-
strongly I2-Cesàro equivalence of multiple L if for every ε > 0, for each p positive
real number and for each x ∈ X,{

(m,n) ∈ N× N :
1

mn

m,n∑
k,j=1,1

|d(x;Akj , Bkj)− L|p ≥ ε

}
∈ I2.

In this case, we write Akj
CLp [IW2 ]
∼ Bkj and simply asymptotically p-strongly I2-

Cesàro equivalent if L = 1.

Theorem 3.7. If the sequences {Akj} and {Bkj} are asymptotically p-strongly
I2-Cesàro equivalence of multiple L, then {Akj} and {Bkj} are asymptotically I2-
statistical equivalence of multiple L.
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Proof. Let Akj
CLp [IW2 ]
∼ Bkj and ε > 0 given. Then, for each x ∈ X we have

m,n∑
k,j=1,1

|d(x;Akj , Bkj)− L|p ≥
m,n∑

k,j=1,1

|d(x;Akj,Bkj)−L|≥ε

|d(x;Akj , Bkj)− L|p

≥ εp ·
∣∣∣{k ≤ m, j ≤ n : |d(x;Akj , Bkj)− L| ≥ ε

}∣∣∣
and so

1

εpmn

m,n∑
k,j=1,1

|d(x;Akj , Bkj)−L|p ≥
1

mn

∣∣∣{k ≤ m, j ≤ n : |d(x;Akj , Bkj)−L| ≥ ε
}∣∣∣.

So for a given δ > 0 and for each x ∈ X{
(m,n) ∈ N× N :

1

mn

∣∣∣{k ≤ m, j ≤ n : |d(x;Akj , Bkj)− L| ≥ ε
}∣∣∣ ≥ δ}

⊆

{
(m,n) ∈ N× N :

1

mn

m,n∑
k,j=1,1

|d(x;Akj , Bkj)− L|p ≥ εp · δ

}
∈ I2.

Therefore, Akj
S(IW2

)
∼ Bkj . �

Theorem 3.8. Let d(x,Akj) = O
(
d(x,Bkj)

)
. If {Akj} and {Bkj} are asymptoti-

cally I2-statistical equivalence of multiple L, then {Akj} and {Bkj} are asymptoti-
cally p-strongly I2-Cesàro equivalence of multiple L.

Proof. Suppose that d(x,Akj) = O
(
d(x,Bkj)

)
and Akj

S(IW2
)

∼ Bkj . Then, there is
an M > 0 such that

|d(x;Akj , Bkj)− L| ≤M,

for all k, j and for each x ∈ X. Given ε > 0 and for each x ∈ X, we have

1

mn

m,n∑
k,j=1,1

|d(x;Akj , Bkj)− L|p

=
1

mn

m,n∑
k,j=1,1

|d(x;Akj,Bkj)−L|≥ε

|d(x;Akj , Bkj)− L|p

+
1

mn

m,n∑
k,j=1,1

|d(x;Akj,Bkj)−L|<ε

|d(x;Akj , Bkj)− L|p

≤ 1

mn
Mp ·

∣∣∣{k ≤ m, j ≤ n : |d(x;Akj , Bkj)− L| ≥ ε
}∣∣∣

+
1

mn
εp ·

∣∣∣{k ≤ m, j ≤ n : |d(x;Akj , Bkj)− L| < ε
}∣∣∣

≤ Mp

mn
·
∣∣∣{k ≤ m, j ≤ n : |d(x;Akj , Bkj)− L| ≥ ε

}∣∣∣+ εp.
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Then, for any δ > 0 and for each x ∈ X,{
(m,n) ∈ N× N :

1

mn

m,n∑
k,j=1,1

|d(x;Akj , Bkj)− L|p ≥ δ
}

⊆
{

(m,n) ∈ N× N :
1

mn

∣∣∣{k ≤ m, j ≤ n : |d(x;Akj , Bkj)− L| ≥ ε
}∣∣∣ ≥ δp

Mp

}
∈ I2.

Therefore, Akj
CLp [IW2 ]
∼ Bkj . �
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[11] Kişi, Ö., Savaş, E. and Nuray, F., On asymptotically I-lacunary statistical equivalence of

sequences of sets, (submitted for publication).
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(Submitted for publication).

[27] Ulusu, U. and Nuray, F., Lacunary statistical convergence of sequence of sets, Progress in

Applied Mathematics 4(2) (2012), 99–109.
[28] Ulusu, U. and Nuray, F., On asymptotically lacunary statistical equivalent set sequences,

Journal of Mathematics 2013 (2013), Article ID 310438, 5 pages. doi:10.1155/2013/310438.

[29] Ulusu, U. and Nuray, F., On strongly lacunary summability of sequences of sets, J. Appl.
Math. Bioinform. 3(3) (2013), 75–88.
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