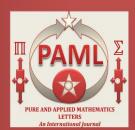
Р А М 1 December 2014

PURE AND APPLIED MATHEMATICS LETTERS

An International Journal

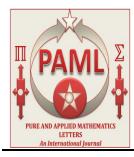
Wijsman *I*₂-convergence of double sequences of closed sets

by FATİH NURAY, ERDİNÇ DÜNDAR AND UĞUR ULUSU



HCTM Technical Campus

PAML December 2014



Contents lists available at HCTM, Technical Campus

Pure and Applied Mathematics Letters

Journal homepage: www.pamletters.org

ISSN 2349-4956

Wijsman I₂-convergence of double sequences of closed sets

FATİH NURAY, ERDİNÇ DÜNDAR AND UĞUR ULUSU

Department of mathematics, Faculty of science and literature, Afyon Kocatepe University, Afyonkarahisar, Turkey

Abstract

In this paper, we study the concepts of Wijsman \mathcal{I}_2 , \mathcal{I}_2^* -convergence and Wijsman \mathcal{I}_2 , \mathcal{I}_2^* -Cauchy double sequences of sets and investigate the relationships among them.

Keywords: Ideal convergence, Cauchy sequence, double sequence of sets, Wijsman convergence.

AMS subject classification: 40A05, 40A35.

Article Information:

Received 24.06.2014 **Revised** 04.08.2014

Accepted 5.08.2014

Manuscript No. PAML-2401062014

Communicated by Prof. V. K. Kaushik

1 Introduction

Throughout the paper \mathbb{N} denotes the set of all positive integers and \mathbb{R} the set of all real numbers. The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [10] and Schoenberg [23]. This concept was extended to the double sequences by Mursaleen and Edely [16]. Fridy and Orhan [12] have introduced the concepts of statistical limit superior and statistical limit inferior. Çakan and Altay [7] presented multidimensional analogues of the results presented by Fridy and Orhan [12].

Nuray and Ruckle [19] indepedently introduced the same with another name generalized statistical convergence. The idea of \mathcal{I} -convergence was introduced by Kostyrko, Šalát and Wilczyński [14] as a generalization of statistical convergence which is based on the structure of the ideal \mathcal{I} of subset of the set of natural numbers. Das, Kostyrko, Wilczyński and Malik [8] introduced the concept of \mathcal{I} -convergence of double sequences in a metric space and studied some properties of this convergence. A lot of development have been made in this area after the works of [9, 15, 17].

The concept of convergence of sequences of numbers has been extended by several authors to convergence of sequences of sets (see, [3, 4, 5, 18, 25, 26]). Nuray and Rhoades [18] extended the notion of convergence of set sequences to statistical convergence and gave some basic theorems. Ulusu and Nuray [24] defined the Wijsman lacunary statistical convergence of sequence of sets and considered its relation with Wiijsman statistical convergence, which was defined by Nuray and Rhoades. Nuray et al. [20] studied Wijsman statistical convergence, Hausdorff statistical convergence and Wijsman statistical Cauchy double sequences of sets and investigate the relationships between them. Kişi and Nuray [13] introduced a new convergence notion, for sequences of sets, which is called Wijsman J-convergence.

In this paper, we study the concepts of Wijsman \mathcal{J}_2 , \mathcal{J}_2^* -convergence and Wijsman \mathcal{J}_2 , \mathcal{J}_2^* -Cauchy double sequences of sets and investigate the relationships among them.

Corresponding author: Erdinç DÜNDAR, E-mail addresses: erdincdundar@gmail.com, edundar@aku.edu.tr

2 Definitions and Notations

Now, we recall the basic definitions and concepts (See [1, 2, 3, 4, 5, 8, 9, 14, 18, 21, 25, 26]). For any point $x \in X$ and any nonempty subset A of X, we define the distance from x to A by

$$d(x,A) = \inf_{a \in A} \rho(x,a).$$

We let (X, ρ) be a metric space and A, A_k be any non-empty closed subsets of X that use following. We say that the sequence $\{A_k\}$ is Wijsman convergent to A if $\lim_{k\to\infty} d(x, A_k) = d(x, A)$, for each $x \in X$. In this case we write $W - \lim_k A_k = A$. We say that the sequence $\{A_k\}$ is Wijsman Cauchy sequence, if for $\varepsilon > 0$ and for each $x \in X$, there is a positive integer k_0 such that for all $m, n > k_0$, $|d(x, A_m) - d(x, A_n)| < \varepsilon$. A double sequence $x = (x_{kj})_{k,j \in \mathbb{N}}$ of real numbers is said to be convergent to $L \in \mathbb{R}$ in Pringsheim's sense if for any $\varepsilon > 0$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $|x_{kj} - L| < \varepsilon$, whenever $k, j > N_{\varepsilon}$. In this case we write $P - \lim_{k,j\to\infty} x_{kj} = L$ or $\lim_{k,j\to\infty} x_{kj} = L$.

Throughout the paper, we let A, A_{kj} be any non-empty closed subsets of X. The double sequence $\{A_{kj}\}$ is Wijsman convergent to A if

$$P - \lim_{k,j \to \infty} d(x, A_{kj}) = d(x, A) \quad or \quad \lim_{k,j \to \infty} d(x, A_{kj}) = d(x, A)$$

for each $x \in X$. In this case we write $W_2 - \lim A_{kj} = A$.

Let $X \neq \emptyset$. A class \mathcal{I} of subsets of X is said to be an ideal in X provided: (i) $\emptyset \in \mathcal{I}$, (ii) $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$, (iii) $A \in \mathcal{I}, B \subset A$ implies $B \in \mathcal{I}$. \mathcal{I} is called nontrivial ideal if $X \notin \mathcal{I}$. Let $X \neq \emptyset$. A non empty class \mathcal{F} of subsets of X is said to be a filter in X provided: (i) $\emptyset \notin \mathcal{F}$, (ii) $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$, (iii) $A \in \mathcal{F}, A \subset B$ implies $B \in \mathcal{F}$.

Lemma 2.1 [14] If \mathcal{I} is a nontrivial ideal in $X, X \neq \emptyset$, then the class $\mathcal{F}(\mathcal{I}) = \{M \subset X : (\exists A \in \mathcal{I})(M = X \setminus A)\}$ is a filter on X, called the filter associated with \mathcal{I} .

A nontrivial ideal \mathcal{J} in X is called admissible if $\{x\} \in \mathcal{J}$ for each $x \in X$. Throughout the paper we take \mathcal{J}_2 as a nontrivial admissible ideal in $\mathbb{N} \times \mathbb{N}$. A nontrivial ideal \mathcal{J}_2 of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to \mathcal{J}_2 for each $i \in N$. It is evident that a strongly admissible ideal is admissible also.

 $\mathcal{I}_2^0 = \{A \subset \mathbb{N} \times \mathbb{N} : (\exists m(A) \in \mathbb{N}) (i, j \ge m(A) \Rightarrow (i, j) \not\in A)\}$. Then \mathcal{I}_2^0 is a nontrivial strongly admissible ideal and clearly an ideal \mathcal{I}_2 is strongly admissible if and only if $\mathcal{I}_2^0 \subset \mathcal{I}_2$.

Let (X, ρ) be a metric space and $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})$ in X is said to be \mathcal{I}_2 -convergent to $L \in X$, if for any $\varepsilon > 0$ we have $A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn}, L) \ge \varepsilon\} \in \mathcal{I}_2$. In this case we say that x is \mathcal{I}_2 -convergent and we write $\mathcal{I}_2 - \lim_{m,n \to \infty} x_{mn} = L$.

Let (X, ρ) be a metric space and $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})$ of elements of X is said to be \mathcal{I}_2^* - convergent to $L \in X$ if and only if there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M_2 \in \mathcal{I}_2$) such that $\lim_{m,n\to\infty} x_{mn} = L$, for $(m,n) \in M_2$ and we write $\mathcal{I}_2^* - \lim_{m,n\to\infty} x_{mn} = L$.

Let (X, ρ) be a metric space and $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})$ of elements of X is said to be \mathcal{I}_2 -Cauchy if for every $\varepsilon > 0$ there exist $s = s(\varepsilon), t = t(\varepsilon) \in \mathbb{N}$ such that $A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn}, x_{st}) \ge \varepsilon\} \in \mathcal{I}_2$.

Let (X, ρ) be a metric space and $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})$ in X is said to be \mathcal{I}_2^* -Cauchy sequence if there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $H = \mathbb{N} \times \mathbb{N} \setminus M_2 \in \mathcal{I}_2$) such that for every $\varepsilon > 0$ and for $(m, n), (s, t) \in M_2, m, n, s, t > k_0 = k_0(\varepsilon) \rho(x_{mn}, x_{st}) < \varepsilon$. In this case we write $\lim_{m,n,s,t\to\infty} \rho(x_{mn}, x_{st}) = 0$.

We say that an admissible ideal $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ satisfies the property (AP2) if for every countable family of mutually disjoint sets $\{A_1, A_2, ...\}$ belonging to \mathcal{I}_2 , there exists a countable family of sets $\{B_1, B_2, ...\}$ such that $A_j \Delta B_j \in \mathcal{I}_2^0$, i.e., $A_j \Delta B_j$ is included in the finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $B = \bigcup_{j=1}^{\infty} B_j \in \mathcal{I}_2$ (hence $B_j \in \mathcal{I}_2$ for each $j \in \mathbb{N}$).

Throughout the paper, we let $\mathcal{I} \subseteq 2^{\mathbb{N}}$ be an admissible ideal, (X, ρ) be a separable metric space and A, A_k be any non-empty closed subsets of X. We say that the sequence $\{A_k\}$ is Wijsman \mathcal{I} -convergent to A, if for each $\varepsilon > 0$ and for each $x \in X$ the set $A(x, \varepsilon) = \{k \in \mathbb{N} : |d(x, A_k) - d(x, A)| \ge \varepsilon\}$ belongs to \mathcal{I} . In this case we write $\mathcal{I}_W - \lim A_k = A$ or $A_k \to A(\mathcal{I}_W)$. We say that the sequence $\{A_k\}$ is Wijsman \mathcal{I}^* -convergent to A, if and only if there exists a set $M \in \mathcal{F}(\mathcal{I})$, $M = \{m = (m_i): m_i < m_{i+1}, i \in \mathbb{N}\} \subset \mathbb{N}$ such that for each $x \in X \lim_{k \to \infty} d(x, A_{m_k}) = d(x, A)$. In this case, we write $\mathcal{I}_W^* - \lim A_k = A$. We say that the sequence $\{A_k\}$ is Wijsman \mathcal{I} -cauchy sequence if for each ε and for each $x \in X$, there exists a number $N = N(\varepsilon)$ such that $\{n \in \mathbb{N} : |d(x, A_n) - d(x, A_N)| \ge \varepsilon\} \in \mathcal{I}$. We say that the sequence $\{A_k\}$ is Wijsman \mathcal{I}^* -cauchy sequence if there exists a set $M \in \mathcal{F}(\mathcal{I})$, $M = \{m = (m_i): m_i < m_{i+1}, i \in \mathbb{N}\} \subset \mathbb{N}$ such that the subsequence $\{A_k\}$ is Wijsman Cauchy in X that is, $\lim_{k,p\to\infty} |d(x, A_{m_k}) - d(x, A_{m_p})| = 0$. The double sequence $\{A_{kj}\}$ is Wijsman convergent to A if

$$P - \lim_{k,j \to \infty} d(x, A_{kj}) = d(x, A) \quad or \quad \lim_{k,j \to \infty} d(x, A_{kj}) = d(x, A)$$

for each $x \in X$. In this case we write $W_2 - \lim A_{kj} = A$.

3 Main Results

Throughout the paper, we let (X, ρ) be a separable metric space, $\mathcal{I}_2 \subseteq 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal and A, A_{kj} be any non-empty closed subsets of X.

Definition 3.1 We say that a double sequence of sets $\{A_{kj}\}$ is \mathcal{I}_{W_2} -convergent to A, if for every $x \in X$ and for every $\varepsilon > 0$,

$$\{(k,j) \in \mathbb{N} \times \mathbb{N} : |d(x,A_{kj}) - d(x,A)| \ge \varepsilon\} \in \mathcal{I}_2$$

In this case we write $\mathcal{I}_{W_2} - \lim_{k,j \to \infty} d(x, A_{kj}) = d(x, A).$

Definition 3.2 We say that the double sequence of sets $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^*$ -convergent to A, if there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2$) such that for every $x \in X$

$$\lim_{\substack{k,j\to\infty\\(k,j)\in M_2}} d(x,A_{kj}) = d(x,A).$$

In this case we write $\mathcal{I}^*_{W_2} - \lim_{k,j \to \infty} d(x, A_{kj}) = d(x, A).$

Theorem 3.1 $\mathcal{I}_{W_2}^*$ -convergence implies \mathcal{I}_{W_2} -convergence for double sequence of sets.

Proof. Since $\mathcal{J}_{W_2}^* - \lim_{k,j\to\infty} d(x, A_{kj}) = d(x, A)$, so there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2$) such that for each $x \in X$

$$\lim_{\substack{k,j\to\infty\\(k,j)\in M_2}} d(x,A_{kj}) = d(x,A).$$

Let $\varepsilon > 0$. Then there exists $k_0 \in \mathbb{N}$ such that for each $x \in X$, $|d(x, A_{kj}) - d(x, A)| < \varepsilon$ for all $(k, j) \in M_2$ and $k, j \ge k_0$. Then for each $\varepsilon > 0$ and $x \in X$, we have

$$T(\varepsilon, x) = \{(k, j) \in \mathbb{N} \times \mathbb{N} : \left| d(x, A_{kj}) - d(x, A) \right| \ge \varepsilon \}$$

$$\subset H \cup (M_2 \cap ((\{1, 2, \dots, (k_0 - 1)\} \times \mathbb{N}) \cup (\mathbb{N} \times \{1, 2, \dots, (k_0 - 1)\})))$$

Since

$$H\cup (M_2\cap ((\{1,2,\ldots,(k_0-1)\}\times\mathbb{N})\cup(\mathbb{N}\times\{1,2,\ldots,(k_0-1)\})))\in\mathcal{I}_2,$$

so we have $T(\varepsilon, x) \in \mathcal{I}_2$. Hence, $\mathcal{I}_{W_2} - \lim_{k,j \to \infty} d(x, A_{kj}) = d(x, A)$.

Theorem 3.2 If the ideal \mathcal{I}_2 has the property (*AP2*), then \mathcal{I}_{W_2} -convergence implies $\mathcal{I}_{W_2}^*$ -convergence for double sequence of sets.

Proof. Suppose that \mathcal{I}_2 satisfies property (*AP2*). Let $\mathcal{I}_{W_2} - \lim_{k, i \to \infty} d(x, A_{kj}) = d(x, A)$. Then

$$T(\varepsilon, x) = T_{\varepsilon} = \{(k, j) \in \mathbb{N} \times \mathbb{N} : |d(x, A_{kj}) - d(x, A)| \ge \varepsilon\} \in \mathcal{I}_{2}$$
(1)

for each $\varepsilon > 0$ and for each $x \in X$. Put

$$T_1 = T(1, x) = \left\{ (k, j) \in \mathbb{N} \times \mathbb{N} \colon \left| d(x, A_{kj}) - d(x, A) \right| \ge 1 \right\}$$

and

$$T_k = T(k, x) = \left\{ (k, j) \in \mathbb{N} \times \mathbb{N} : \frac{1}{k} \le \left| d\left(x, A_{kj}\right) - d(x, A) \right| < \frac{1}{k-1} \right\}$$

for $k \ge 2$ and $k \in \mathbb{N}$. Obviously, $T_i \cap T_j = \emptyset$ for $i \ne j$ and $T_i \in \mathcal{I}_2$ for each $i \in \mathbb{N}$. By property (*AP2*) there exits a sequence of sets $\{V_k\}_{k\in\mathbb{N}}$ such that $T_j \Delta V_j$ is included in finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each j and $V = \bigcup_{j=1}^{\infty} V_j \in \mathcal{I}_2$. We shall prove that for $M_2 = \mathbb{N} \times \mathbb{N} \setminus V$ we have

$$\lim_{\substack{k,j\to\infty\\(k,j)\in M_2}} d(x,A_{kj}) = d(x,A)$$

Let $\eta > 0$ be given. Choose $k \in \mathbb{N}$ such that $\frac{1}{k} < \eta$. Then

$$\{(k,j) \in \mathbb{N} \times \mathbb{N}: |d(x,A_{kj}) - d(x,A)| \ge \eta\} \subset \bigcup_{j=1}^{\kappa} T_j$$

Since, $T_j \Delta V_j$, j = 1, 2, ... are included in finite union of rows and columns, there exists $n_0 \in \mathbb{N}$ such that

$$\left(\bigcup_{j=1}^{k} T_{j}\right) \cap \{(k,j): k \ge n_{0} \land j \ge n_{0}\} = \left(\bigcup_{j=1}^{k} V_{j}\right) \cap \{(k,j): k \ge n_{0} \land j \ge n_{0}\}.$$
(2)

If $k, j > n_0$ and $(k, j) \notin V$, then $(k, j) \notin \bigcup_{j=1}^k V_j$ and $(k, j) \notin \bigcup_{j=1}^k T_j$. This implies that $|d(x, A_{kj}) - d(x, A)| < \frac{1}{k} < \eta$. Hence, we have

$$\lim_{\substack{k,j\to\infty\\(k,j)\in M_2}} d(x,A_{kj}) = d(x,A).$$

Definition 3.3 We say that the double sequence $\{A_{kj}\}$ is Wijsman Cauchy, if for each $\varepsilon > 0$ and for each $x \in X$, there is positive integers (p,q) such that for all (m,n) > (p,q) we have

$$|d(x,A_{kj})-d(x,A_{mn})|<\varepsilon.$$

Definition 3.4 We say that the double set sequence $\{A_{kj}\}$ is \mathcal{I}_2 -Cauchy sequence in Pringsheim's sense if for every $x \in X$ and for every $\varepsilon > 0$, there exists (p, q) in $\mathbb{N} \times \mathbb{N}$ such that

$$\{(k,j)\in\mathbb{N}\times\mathbb{N}: |d(x,A_{kj})-d(x,A_{pq})|\geq\varepsilon\}\in\mathcal{I}_2.$$

Theorem 3.3 A double sequence of sets $\{A_{kj}\}$ if \mathcal{I}_{W_2} -convergent then it is \mathcal{I}_{W_2} -Cauchy.

Proof. Let $\mathcal{I}_{W_2} - \lim A_{kj} = A$. Then for each $\varepsilon > 0$ and for each $x \in X$, we have

$$A(x,\varepsilon) = \{(k,j) \in \mathbb{N} \times \mathbb{N} : |d(x,A_{kj}) - d(x,A)| \ge \varepsilon\} \in \mathcal{I}_2.$$

Since \mathcal{I}_2 is a strongly admissible ideal, there exists an $p, q \in \mathbb{N}$ such that $(p, q) \notin A(x, \varepsilon)$. Let

$$B(x,\varepsilon) = \{(k,j) \in \mathbb{N} \times \mathbb{N} \colon |d(x,A_{kj}) - d(x,A_{pq})| \ge 2\varepsilon\}.$$

Taking into account the inequality

$$|d(x, A_{kj}) - d(x, A_{pq})| \le |d(x, A_{kj}) - d(x, A)| + |d(x, A_{pq}) - d(x, A)|;$$

we observe that if $(k, j) \in B(x, \varepsilon)$ then $|d(x, A_{kj}) - d(x, A)| + |d(x, A_{pq}) - d(x, A)| \ge 2\varepsilon$.

On the other hand, since $(k, j) \notin A(x, \varepsilon)$ we have $|d(x, A_{pq}) - d(x, A)| < \varepsilon$.

Here we conclude that

$$\left|d(x,A_{kj})-d(x,A)\right|\geq\varepsilon,$$

hence $(k, j) \in A(x, \varepsilon)$. Observe that

$$B(x,\varepsilon) \subset A(x,\varepsilon) \in \mathcal{I}_2$$

for each $\varepsilon > 0$ and for each $x \in X$. This gives that $B(x, \varepsilon) \in \mathcal{I}_2$ that is $\{A_{kj}\}$ is Wijsman \mathcal{I}_2 -Cauchy double sequence.

Definition 3.5 We say that the double sequence of sets $\{A_{kj}\}$ is $\mathcal{J}^*_{W_2}$ -Cauchy, if there exists a set $M_2 \in \mathcal{F}(\mathcal{J}_2)$ (*i.e.*, $\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{J}_2$) such that for every $x \in X$ and $(k, j), (p, q) \in M_2$

$$\lim_{k,j,p,q\to\infty} |d(x,A_{kj}) - d(x,A_{pq})| = 0$$

Theorem 3.4 A double sequence of sets $\{A_{kj}\}$ if $\mathcal{J}_{W_2}^*$ -Cauchy then it is \mathcal{J}_{W_2} -Cauchy.

Proof. Let $\{A_{kj}\}$ is Wijsman $\mathcal{I}_{W_2}^*$ -Cauchy sequence then by the definition, there exits a set $M_2 \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2$) such that for each $\varepsilon > 0$ and for each $x \in X$,

$$\left|d(x,A_{kj})-d(x,A_{pq})\right|<\varepsilon$$

for all $(k, j), (p, q) \in M_2, k, j, p, q > N = N(x, \varepsilon)$ and $N \in \mathbb{N}$. Then, for each $\varepsilon > 0$ and $x \in X$, we have

$$A(\varepsilon, x) = \{(k, j) \in \mathbb{N} \times \mathbb{N} : |d(x, A_{kj}) - d(x, A_{pq})| \ge \varepsilon\}$$

$$\subset H \cup (M_2 \cap ((\{1, 2, \dots, (N-1)\} \times \mathbb{N}) \cup (\mathbb{N} \times \{1, 2, \dots, (N-1)\})))$$

Since

$$H \cup (M_2 \cap ((\{1,2,\ldots,(N-1)\} \times \mathbb{N}) \cup (\mathbb{N} \times \{1,2,\ldots,(N-1)\}))) \in \mathcal{I}_{2,N}$$

so we have $A(\varepsilon, x) \in \mathcal{I}_2$. Hence, $\{A_{kj}\}$ is \mathcal{I}_{W_2} -Cauchy double sequence.

Theorem 3.5 A double sequence of sets $\{A_{kj}\}$ if $\mathcal{I}^*_{W_2}$ -convergent, then it is \mathcal{I}_{W_2} -Cauchy.

Proof. Let $\mathcal{I}_{W_2}^* - \lim_{k,j \to \infty} d(x, A_{kj}) = d(x, A)$, so there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2$) such that for each $x \in X$

$$\lim_{\substack{k,j\to\infty\\(k,j)\in M_2}} d(x,A_{kj}) = d(x,A)$$

Let $\varepsilon > 0$. Then there exists $k_0 \in \mathbb{N}$ such that for each $x \in X$,

$$|d(x,A_{kj}) - d(x,A)| < \frac{\varepsilon}{2},$$

for all $(k, j) \in M_2$ and $k, j \ge k_0$. Then for each $\varepsilon > 0$ and $x \in X$, we have

$$|d(x, A_{kj}) - d(x, A_{pq})| < |d(x, A_{kj}) - d(x, A)| + |d(x, A_{pq}) - d(x, A)|$$
$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Therefore, for each $x \in X$ and $(k, j), (p, q) \in M_2$ we have

$$\lim_{k,j,p,q\to\infty}|d(x,A_{kj})-d(x,A_{pq})|=0$$

Hence, $\{A_{ki}\}$ is $\mathcal{I}_{W_2}^*$ -Cauchy double sequence and so by Theorem 3.4 $\{A_{ki}\}$ is \mathcal{I}_{W_2} -Cauchy double sequence.

References

- [1] B. Altay, F. Başar, Some new spaces of double sequences, J. Math. Anal. Appl., 309 (1) (2005), pp. 70–90.
- [2] J.-P. Aubin, and H. Frankowska, Set-valued analysis, Birkhauser, Boston, (1990).
- [3] M. Baronti, and P. Papini, Convergence of sequences of sets, In: Methods of functional analysis in approximation theory, ISNM 76, Birkhauser-Verlag, Basel, (1986), pp. 133-155.
- [4] G. Beer, On convergence of closed sets in a metric space and distance functions, Bull. Aust. Math. Soc., 31 (1985), pp. 421–432.
- [5] G. Beer, Wijsman convergence: A survey, Set-Valued Var. Anal. 2 (1994), pp. 77–94.
- [6] J.S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis, 8 (1988), pp. 46–63.
- [7] C. Çakan, B. Altay, Statistically boundedness and statistical core of double sequences, J. Math. Anal. Appl. 317 (2006), pp. 690–697.
- [8] P. Das, P. Kostyrko, W. Wilczyński, P. Malik, I and I*-convergence of double sequences, Math. Slovaca, 58 (5) (2008), pp. 605–620.
- [9] E. Dündar, B. Altay, J₂-convergence and J₂-Cauchy of double sequences, Acta Mathematica Scientia 34B(2) (2014), pp. 343–353.
- [10] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), pp. 241–244.
- [11] A.R. Freedman, J.J. Sember, M. Raphael, Some Cesàro type summability spaces, Proc. London Math. Soc., 37 (1978), pp. 508–520.
- [12] J. A. Fridy, C. Orhan, Statistical limit superior and inferior, Proc. Amer. Math. Soc., 125 (1997), pp. 3625–3631.
- [13] Kişi, Ö. and Nuray, F. A new convergence for sequences of sets, Abstr. Appl. Anal., (2013), Article ID 852796, 6 pages.
- [14] P. Kostyrko, T. Šalát and W. Wilczyński, I-convergence, Real Anal. Exchange, 26 (2) (2000), pp. 669-686.
- [15] V. Kumar, On I and I^* -convergence of double sequences, Math. Commun., 12 (2007), pp. 171–181.
- [16] Mursaleen, O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003), pp. 223–231.
- [17] A. Nabiev, S. Pehlivan, M. Gürdal, On I-Cauchy sequence, Taiwanese J. Math., 11 (2) (2007), pp. 569–576.
- [18] F. Nuray, B. E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math., 49 (2012), pp. 87–99.
- [19] F. Nuray, W.H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl., 245 (2000), pp. 513–527.
- [20] F. Nuray, E. Dündar, U. Ulusu, Wijsman statistical convergence of double sequences of sets, (communicated).
- [21] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53 (1900), pp. 289–321.
- [22] R.T. Rockafellar and R.J-B Wets, Variational Analysis, Grundlehren der Mathematischen Wissenschaften 317, Springer-Verlag 2009.
- [23] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), pp. 361–375.
- [24] U. Ulusu, F. Nuray, Lacunary statistical convergence of sequence of sets, Progress in Applied Mathematics, 4(2) (2012), pp. 99–109.
- [25] R. A. Wijsman, Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc., 70 (1964), pp. 186– 188.
- [26] R. A. Wijsman, Convergence of Sequences of Convex sets, Cones and Functions II, Trans. Amer. Math. Soc., 123 (1) (1966), pp. 32–45.