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Abstract 

In this study, we have established upper and lower bounds for the Euclidean and the Spectral norms of 

Quaternion Cauchy-Toeplitz (T ) and Quaternion Cauchy-Hankel ( H ) matrices respectively. Besides, 

by assuming complex matrix  jAATn 21   , we have defined the matrix  
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and similarly, by assuming complex matrix jBBHn 21  , we have also defined another matrix  
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Hn . Then we have obtained the bounds of the spectral norms for these matrices. 

 

Quaternion Cauchy-Toeplitz and Quaternion Cauchy-Hankel 
Matrislerinin Euclidean ve Spektral Normları Üzerine 

Anahtar Kelimeler 
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Özet 

Bu çalışmada, sırasıyla Quaternion Cauchy-Toeplitz (T ), Quaternion Cauchy-Hankel ( H ) Matrislerinin 

Spektral ve Euclidean normlar için alt ve üst sınarlar elde ettik. Ayrıca,  jAATn 21   , kompleks 

matrisi yardımıyla 
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Tn  matrisini ve benzer şekilde jBBHn 21  , kompleks 

matrisi yardımıyla 
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BB
Hn  matrisini tanımlayıp bu matrislerin spektral normlar için 

sınırlar elde ettik. 
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1. Introduction and Preliminaries 

In quantum physic, the family of quaternions plays 
an important role. But in mathematics they 
generally play a role in algebraic systems, skew 
fields or noncommutative division algebras, 
matrices in commutative rings take attention but, 
matrices with quaternion entries has not been 
investigated very much yet. But in recent times 
quaternions are in order of day. 
The main obstacles in the study of quaternion 

matrices, as expected come from the 

noncommutative multiplication of quaternions. 

One will find that working on a quaternion matrix 

problem is often equivalent to dealing with a pair 

of complex matrices [Zhang(1997), Lee(1949)]. 

Recently, the studies concern with matrix norms, 

has been given by several authors, see for instance 

[Moenck(1977),Mathias(1990),Visick(2000),Zielke 

(1988),Horn and Johnson(1991), Bozkurt(1996), 

Solak and Bozkurt(2003),Türkmen and Bozkurt 

(2002)] and references cited therein. In this paper, 

we have obtained some a lower and an upper 

bounds for the Euclidean and spectral of 

Quaternion Cauchy-Toeplitz and Quaternion 

Cauchy-Hankel Matrices. Now, we need the 

following definitions and preliminaries. 

Definition1. Let C and R denote the fields of the 
complex and real numbers respectively. Let Q be a 

Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi 
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four-dimensional vector space over R with an 

ordered basis, denoted by jie ,,  and k . A real 

quaternion, simply called quaternion, is a vector 

kjie 3210 xxxxx  Q 

with real coefficients 210 ,, xxx  and 3x  . 

Besides the addition and the scalar multiplication 
of the vector space Q over R, the product of any 

two quaternions jie ,,  and k  are defined by the 

requirement that e  act as a identity and by the 
table 

1222  kji  

 

.,, jikkiikjjkkjiij   

Let nmM  (Q), simply nM (Q) when nm  , denote 

the collection of all nm  matrices with 
quaternion entries. 

Definition 2.  Let  j21 AAA nM (Q), where  

21, AA  are nn  complex matrices. We shall call 

the nn 22   complex matrix 

,
12

21
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AA
 

uniquely determined by A , the complex adjoint 
matrix or adjoint of the quaternion matrix A  
[Lee(1949)]. 
Now we give some preliminaries related to our 

study. Let A  be any nn  matrix. The p  norms 

of the matrix A  are defined as 
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The well-known Euclidean norm of matrix A  is 
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and also the spectral norm of matrix A  is 
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where A  is nm  and HA  is the conjugate 
transpose of the matrix A . The following 
inequality holds: 

EE
AAA

n


2

1
)1.1(  

[Zielke (1988)]. A function   is called a psi (or 
digamma) function if  

})({ln)()2.1( x
dx

d
x   

where 

.)( 1

0

dttex xt

x



  

The n  th derivatives of a   function is called a 
polygamma function 
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If 0n  then  )(ln)(),0( xxx
dx

d  . On 

the other hand, if 0a , b  is any number and n  
is positive integer, then  

0),(lim)4.1( 
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n

 

[Moenck(1977)]. Throughout the paper Z   and 

R   will represent the sets of positive integers and 
positive real numbers, respectively. 
Let A  and B  be nn  matrices. The Hadamard 
product of A  and B  is defined by  

].[)5.1( ijijbaBA   

If   is any norm on nn  matrices, then  

BABA )6.1(  

[Visick(2000)]. 

Define the maximum column length norm )(jc  

and the maximum row length norm )(ir  of any 

matrix A  by  
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respectively [Horn and Johnson(1991)]. Let A , B  

and C  be nm  matrices. If CBA   then 

)()()9.1(
2

CcBrA ji  

[Mathias(1990)]. 
 

2. Matrices of Quaternion Cauchy-Toeplitz 
and Quaternion Cauchy-Hankel 
 

Definition 3. The matrices in x  quaternion from 

Definition 1, for  mlt ,,2 Z   and  

np ,,2,1  , nr ,,2,1   and  
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is called Quaternion Cauchy-Toeplitz matrix.  
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is called Quaternion Cauchy-Hankel matrix. 
In this section we are going to find an upper and 
lower bounds for the Euclidean norm and the 
spectral norms of Quaternion Cauchy-Toeplitz and 

Quaternion Cauchy-Hankel matrices in (2.1) and 
(2.2). 
 
2.1. Euclidean and Spectral Norms of Quaternion 
Cauchy-Toeplitz and Quaternion Cauchy-Hankel 
Matrices 
 

Theorem 1.  For Euclidean norm of T  Quaternion 
Cauchy-Toeplitz matrix which is defined in (2.1), 

)csccsc(csc)3.2( 222

mltE
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is valid upper bound, where   mlt ,,2 Z 
. 

Proof. From Euclidean norm the following 
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is obtained. If we divide both of sides by n  and if we take upper bound of right hand side to infinity, we 
obtain 
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if we take  

mltE
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n
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1

  

then we obtain 

 
mltE

nT  222 csccsccsc   

which is an upper bound for Euclidean norm of Quaternion Cauchy-Toeplitz matrix. 
Corollary 1. For spectral norm of T  Quaternion Cauchy-Toeplitz matrices defined in (2.1), 

2

222 csccsccsc)4.2( T
mlt
   

is valid lower bound, where  mlt ,,2 Z 
. 

Proof. Following relation, for spectral norm of T  matrix will be  
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Now for in definition (2.1) of spectral norm of T  Quaternion Cauchy-Toeplitz matrix, we have obtained 
upper bound to give as a theorem before lets give some definition end concepts. 

Definition 4.    nniJ  1   ),,2,1( ni   let it be a square J  matrix with all entries  1. 

Now,  n
rp

rp
t
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1 1




 i
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 i
 write j21 AATn  . From Definition 2, 
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is being occured as complex matrix in  nn 22   . From definition (2.5) lets give the following theorem. 

Theorem 2. Let 2 mlt  in (2.5). Then the upper bound for the spectral norm of Quaternion Cauchy-
Toeplitz matrix is 
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Proof. Consider  nn 22   complex matrix in (2.5), with  
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in this case, we write nn 22   matrix as. 
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Then, the Hadamard Product (1.5) of 
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is being obtained as upper bound. 

Theorem 3. Let  mlt ,,2 Z   hold in (2.2). Then for the Euclidean norm of Quaternion Cauchy-Hankel 

matrix H , we have  
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is clear. If we calculate right hand of this equality, then 
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From (1.7) and (1.8), we obtain 
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is obtained as upper bound which is desired. 

 

3. Numerical Results  

In this section, have compared our findings with 
the known bounds of the norms of matrices in the 
illustrative examples below. We have found 
between in theorems we have given real norms of 
matrices in second section. 
 
Example 1. For Emlt  ,2  comparative 
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