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Abstract 

In this study, the benefits of choosing a robust optimization function with super resolution are analyzed. 

For this purpose, the different optimizers are included in the simple Convolutional Neural Network 

(CNN) architecture SRNET, to reveal the performance of the each method. Findings of this research 

provides that Adam and Nadam optimizers are robust when compared to (Stochastic Gradient Descent) 

SGD, Adagrad, Adamax and RMSprop. After experimental simulations, we have achieved the 35.91 

(dB)/0.9960 and 35.97 (dB)/0.9961 accuracy rates on Set5 images from Adam and Nadam optimizers, 

respectively (9-1-5 network structure and filter sizes 128 and 64). These results show that selected 

optimization function for the CNN model plays an important role in increasing the accuracy rate in the 

super-resolution problem. 

 

Optimizasyon Yöntemlerinin Süper Çözünürlük Üzerine Katkı Analizi 

Anahtar kelimeler 

Süper-çözünürlük; 

Derin öğrenme; 

Evrişimsel sinir ağı; 

Optimize edici 

Öz 

Bu çalışmada, süper çözünürlükte sağlam bir optimizasyon fonksiyonu seçmenin yararları analiz 

edilmiştir. Bu amaçla her yöntemin performansını ortaya çıkarmak için farklı optimize ediciler, basit 

Evrişimsel Sinir Ağı (CNN) mimarisi SRNET' e dahil edilmiştir. Bu araştırmanın bulguları, Adam ve Nadam 

optimize edicilerin Stokastik Gradyan İnişi (SGD), Adagrad, Adamax ve RMSprop ile karşılaştırıldığında 

daha kararlı olduğunu göstermektedir. Deneysel simülasyonlardan sonra, Adam ve Nadam optimize 

edicilerinden Set5 görüntülerinde sırasıyla 35.91 (dB)/0.9960 ve 35.97 (dB)/0.9961 doğruluk oranlarına 

ulaştık (9-1-5 ağ yapısı ve filtre boyutları 128 ve 64). Bu sonuçlar, CNN modeli için seçilen optimizasyon 

fonksiyonunun süper çözünürlük probleminde doğruluk oranını arttırmada önemli bir rol oynadığını 

göstermektedir. 

© Afyon Kocatepe Üniversitesi 

 

1. Introduction 

lSuper-resolution (SR) reconstruction can be 

obtained from a set of low-resolution (LR) images, 

or it can be obtained from only a single image. LR 

images have such undesirable factors as aliasing, 

optical distortion, blurring, noise etc. Applications of 

the super-resolution technology include, but are not 

limited to medical imaging, military, satellite 

imaging, remote imaging and video surveillance. In 

literature, many methods have been proposed to 

make unsupervised, semi-supervised or supervised 

SR reconstruction. It can also be categorized the 

reconstruction of ill-posed SR problem as multi-

frame and single frame. The SR reconstruction 

research has developed very rapidly, after it was 

first addressed by (Tsai and Huang 1984). They 

proposed an unsupervised multi-frame method that 

performs reconstruction in the frequency domain. 

Single image super-resolution (SISR) intends to the 

generation of a high-resolution image from a single 

LR observation. Although it has a key role for many 

image processing systems, generating a solution for 

the SISR is very difficult due to the ill-posed inverse 

problem. Moreover, the reconstructed HR image 

should be visually pleasing and as realistic as 

possible in terms of the original. In recent years, the 

SISR problem has been extensively researched and 

notable and effective algorithms have been 

proposed. SISR methods can be classified into three 
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main groups as interpolation-based (Dong et al. 

2013), (Yang et al. 2010), (Zhu et al. 2016), 

reconstruction-based (Mandal et al. 2017), (Ren et 

al. 2017), (Yan et al. 2015) and learning-based 

algorithms. The learning-based methods consist of 

dictionary learning-based (Kaveh and Ezzatollah 

2017), (Gao et al. 2012), (Yang et al. 2008), (Yang 

and Wang 2013) and deep learning-based. 

Convolutional Neural Networks (CNNs) are used in a 

wide variety of signal and image processing subjects 

such as object and pattern recognition, 

segmentation and super- resolution. CNNs plays a 

major role for construction a deep learning-based 

SR model. Dong et al. (2015) proposed a Super-

Resolution Convolutional Neural Network (SRCNN) 

to make a nonlinear LR-to-HR mapping function. 

This CNN network model provided the basis for 

increasing network depth (Kim et al. 2016) or 

enhance recursive layers (Tai et al. 2017). In Kim et 

al. (2016), a very deep convolutional network have 

been used inspired by VGGnet used for ImageNet 

classification (Simonyan and Zisserman 2015). They 

also demonstrated that increasing network depth 

provides a significant improvement in accuracy. 

However, VDSR cause to heavy computation time 

and memory consumption due to the large number 

of convolution layers. SRResNet, Ledig et al. (2017) 

solved the time and memory consumption problem 

without changing the ResNet architecture (He et al. 

2016) too much. The high computational time cost 

prevents practical usage that needs real-time 

performance. To overcome this problem, a faster SR 

method is proposed in (Dong et al. 2016). This 

model used shallow network architecture, therefore 

it could not learn complex mappings accurately. Lai 

et al. (2018), developed a deep convolutional 

network within a Laplacian pyramid framework for 

fast and accurate image SR. In contrast to the 

previous works, in this study the features are 

extracted directly from the low-resolution input 

space instead of bicubic interpolation. An advanced 

SR algorithm is presented in Lim et al. (2017), which 

provides better results by removing unnecessary 

modules from the traditional ResNet architecture. 

They also expanded the model size in addition to the 

multi-scale stabilized training model to improve 

performance. On the other hand, more recently, 

Tiantong et al. (2019) developed a new CNN 

architecture to learn the SR mapping function in an 

image transformation domain, in particular for 

discrete cosine transform (DCT). CNNs have 

achieved impressive SR performance on video 

frames. Li et al. (2020) developed a different 

approach to combine motion compensation 

technique with CNN to estimate a high resolution 

video from LR counterpart. The deep unfolding 

architecture can be considered as a main 

component of a multimodal framework for image 

super-resolution. Marivani et al. (2020) proposed a 

multimodal deep learning method which combines 

sparse priorities and enables efficient integration of 

data from another image modality into the network 

architecture. 

In all deep learning-based SR methods, an 

optimization function should be used to increase 

the accuracy rate and improve the quality of the 

output result image. In this study, the performance 

of the frequently used optimization functions are 

compared including different architectures and 

image sets. The rest of this paper is organized as 

section 2 presents the utilized method and tools, 

section 3 shows the information about dataset and 

performance evaluation and finally a conclusion is 

touched at the last section.  

 

2. Method and Tools 

As the key motivation behind of this study, we have 

investigated the contributions of optimizers when it 

comes to update the weights of CNN. It is believed 

that different optimizers would produce the 

different sets of weights by avoiding the under-

fitting and over-fitting cases.  One can say that the 

gradient descent is searching a local minimum by 

moving in the direction of steepest descent, which 

is represented with Figure 1.  

However, minimizing a function with steepest 

descent method depends on the different external 

factors such as loss function and learning rate. These 

factors affect the cost of training and have a direct 

impact on SR performance. 

By considering such facts, we need to ensure that 

which optimizer is best by making a tradeoff 

between the performance and computational time. 
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We have made experiments with following 

optimizers. 

1. SGD (Rumelhart et al. 1986) 

2. RMSprop (Tieleman and Hinton 2012) 

3. Adam (Kingma and Ba 2014) 

4. Adagrad (Duchi et al. 2011) 

5. Adamax (Kingma and Ba 2014) 

6. Nadam (Dozat 2016) 

 

 
Figure 1. Gradient descent. 

 

For all experiments, the SRCNN architecture has 

been chosen (Dong et al. 2015). Comparison of 

optimizers are usually a trade-off between 

performance and speed. To demonstrate this, we 

train three networks for comparison, which are 9-1-

5, 9-3-5, and 9-5-5. Each network structures have 

been trained with respect to the three experiments: 

(i) first one is a shallow network with filter sizes 

n1=32 and n2=16, (ii) second one is larger network 

with filter sizes n1=64 and n2=32, (iii) third one is 

deeper network with filter sizes n1=128 and n2=64. 

Each convolutional layer uses a rectified linear unit 

(ReLU) as the activation function. 

The learning rate is fixed to 1e-4 for all optimizers. 

The loss function is selected as mean absolute error, 

namely L1 loss. The reason of why we used L1 loss, 

is explained in the thesis (Anagün 2018). In this 

study, the L1 loss function is faster than the other 

loss functions and gives effective results for solving 

the SR problem (Anagun et al. 2019). 

For all optimizers, the batch size is set to 64 and is 

chosen for training while the rest of them are 

selecting for testing. Moreover, the mini-batch size 

is selected as 16 and epoch size is set to 20. The total 

parameters of SRCNN is 216,961. The Figure 2 shows 

the overall components of the proposed system 

when searching the best optimizer in CNN model. 

The all implementations are carried out on Python 

Keras library with Tensorflow backend. 

 
Figure 2. The utilized system for super-resolution. 

 

We can note that the robustness of optimization 

function is more valuable than the required 

computation time. With a simple CNN structure, 

each optimizer produced the different weights for 

super-resolution. 

 

3. Performance Evaluation 
 

3.1. Datasets 

 

To evaluate the system performance, we have used 

a common dataset, namely T91 image set (Dong et 

al. 2015). It contains 91 color images. The 

experiments are realized by selecting patches with 

stride 10 and scales 2, 3 and 4.  The 30.347 samples 

reserved for training and 3.372 samples reserved for 

validation. We also compare the performances of 

optimizers on two standard benchmark datasets: 

Set5 (Bevilacqua et al. 2012) and Set14 (Zeyde et.al 

2010). 

 

3.2. Performance Analysis 

 

We use the source codes of optimization methods 

to evaluate the runtime on the same machine with 

2.5 GHz Intel i5 CPU (16GB RAM) and NVIDIA 

GeForce GTX 1050 with GPU (4GB Memory). For a 

benchmark evaluation, the performance of 

optimizers have been inspected in three ways; (i) 

subjective analysis, (ii) objective comparison and (iii) 

computation time analysis. The 10% of samples 

were chosen for validation and rest of them for 

training.  For objective results, the Peak-Signal to 

Noise Ratio (PSNR) and Structural Similarity Index 
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Measure (SSIM) values are taken as reference. The 

PSNR metric is shown in Equation 1. The RMSE 

refers to root mean square error between predicted 

and actual image. 

𝑃𝑆𝑁𝑅 = 20 ∗ log(255/𝑅𝑀𝑆𝐸) (1) 

The subjective evaluation of proposed method is 

shown in Figure 3. From the visual quality analysis, 

we can note that the RMSprop/Adam/Nadam 

optimizers are robust to edge and texture 

preserving in super resolution output. Some blur 

artifacts are available on the outputs of SGD 

method. Also, the SGD method is not better than 

Bicubic. The performance declination of SGD 

method is explained with potential capability of 

utilized dataset (T91). It means that the more 

number of different patches are needed to make 

training experiments with SGD optimizer. 

For the second evaluation, we have compared the 

overall PSNR/SSIM values by conducting 

experiments of Set5 and Set14 datasets. The results 

of the Set5 dataset according to the network 

structures are given in Table 1, Table 2 and Table 3, 

respectively. Experimental results of Set14 dataset 

are summarized in Table 4, Table 5 and Table 6. 

Except for SGD, there is performance competition 

between all optimizers. When we review the top 

PSNR scores, it can be seen that Nadam and Adam 

optimizers are the best among the other methods. 

Although the PSNR value of RMSprop is lower than 

Adam and Nadam, but its SSIM value is considerably 

higher than the other optimizers. Comparing 

RMSprop and Adamax, we can note that both of 

them produced the similar performance. The 

structural similarity is not preserved for Adagrad 

and SGD.  

 

To examine the effectiveness of the optimization 

algorithms as a third experiment evaluation, we 

have compared the computation time of each 

optimization method in case of training for all 

networks. It can be said that the training time 

depends on the network depth. In addition, it can be 

seen that the Nadam method is worst one and SGD 

method is best one in terms of required average 

computation time for super-resolution. It means 

that converging the huge weights becomes very fast 

with SGD method. Aside from time advantage, the 

visual performance of SGD is not high when 

observing the results giving Table 7, Table 8 and 

Table 9. 

4. Conclusion 

Through this study, we have analyzed the 

contributions of different optimization functions on 

super-resolution. It is interesting about this 

experiment is that we have found the Adam 

optimizer is robust in terms of numerical values, 

especially for PSNR and SSIM. On the other side, the 

Adamax method is very fast when updating the 

weights of a CNN structure through 

backpropagation stages. Overall, these results 

suggest that the Adam and Nadam optimizers 

involve various functionality for super-resolution. In 

future work, to show the importance of optimizer 

selection different CNN deep models can be 

included in the proposed model. 
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Table 1. The average PSNR (dB) and SSIM values for all scales of 9-1-5 network structure on Set5 dataset 

  n1=32, n2=16 n1=64, n2=32 n1=128, n2=64 

Optimizer Name Scale PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM 

SGD 

2 32.42 0.9890 32.54 0.9895 32.31 0.9887 

3 30,48 0.9825 30.35 0.9823 30.21 0.9813 

4 28.76 0.9740 28.61 0.9733 28.64 0.9731 

RMSprop 

2 35.19 0.9952 35.17 0.9954 35.18 0.9957 

3 31.77 0.9887 31.90 0.9894 32.03 0.9900 

4 29.60 0.9805 29.72 0.9814 29.79 0.9823 

Adam 

2 35.31 0.9949 35.63 0.9956 35.91 0.9960 

3 31.88 0.9888 32.07 0.9896 32.26 0.9903 

4 29.70 0.9813 29.89 0.9823 30.07 0.9832 

 
Adagrad 

 

2 31.26 0.9854 32.17 0.9881 32.97 0.9904 

3 28.77 0.9722 30.54 0.9828 30.84 0.9839 

4 27.93 0.9665 28.54 0.9724 28.87 0.9745 

 
Adamax 

 

2 35.31 0.9950 35.39 0.9952 35.68 0.9957 

3 31.78 0.9889 31.79 0.9883 32.96 0.9897 

4 29.59 0.9801 29.79 0.9817 29.96 0.9826 

 
Nadam 

 

2 35.45 0.9952 35.64 0.9956 35.97 0.9961 

3 31.92 0.9889 32.06 0.9896 32.24 0.9902 

4 29.71 0.9810 29.87 0.9820 30.85 0.9831 

 

Table 2. The average PSNR (dB) and SSIM values for all scales of 9-3-5 network structure on Set5 dataset 
  n1=32, n2=16 n1=64, n2=32 n1=128, n2=64 

Optimizer Name Scale PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM 

SGD 

2 33.01 0.9903 32.58 0.9895 32.64 0.9896 

3 30.62 0.9831 30.41 0.9825 30.43 0.9826 

4 28.76 0.9739 28.67 0.9737 28.71 0.9739 

RMSprop 

2 34.99 0.9952 35.50 0.9960 35.47 0.9957 

3 31.89 0.9893 32.22 0.9905 32.37 0.9912 

4 29.80 0.9826 29.97 0.9834 29.98 0.9837 

Adam 

2 35.72 0.9957 35.98 0.9961 36.35 0.9965 

3 32.05 0.9896 32.29 0.9904 32.46 0.9909 

4 29.93 0.9824 30.08 0.9833 30.18 0.9838 

 
Adagrad 

 

2 31.36 0.9863 33.36 0.9913 33.97 0.9925 

3 30.26 0.9815 30.95 0.9844 31.17 0.9853 

4 28.63 0.9727 29.19 0.9767 29.27 0.9773 

 
Adamax 

 

2 35.62 0.9956 35.84 0.9959 36.00 0.9961 

3 31.88 0.9889 32.09 0.9897 32.30 0.9904 

4 29.87 0.9820 29.99 0.9827 30.14 0.9835 

 
Nadam 

 

2 35.78 0.9958 36.00 0.9961 36.29 0.9965 

3 32.13 0.9899 32.29 0.9904 32.48 0.9910 

4 29.82 0.9817 30.10 0.9833 30.27 0.9842 

 

Table 3. The average PSNR (dB) and SSIM values for all scales of 9-5-5 network structure on Set5 dataset 
  n1=32, n2=16 n1=64, n2=32 n1=128, n2=64 

Optimizer Name Scale PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM 

SGD 

2 32.56 0.9895 32.28 0.9886 33.02 0.9905 

3 30.50 0.9828 30.41 0.9822 30.65 0.9832 

4 28.79 0.9743 28.74 0.9737 28.89 0.9747 

RMSprop 

2 35.13 0.9957 35.40 0.9960 36.00 0.9965 

3 31.92 0.9897 32.23 0.9908 32.46 0.9916 

4 29.90 0.9829 29.97 0.9839 30.02 0.9842 

Adam 

2 35.94 0.9961 36.23 0.9964 36.53 0.9967 

3 32.18 0.9901 32.43 0.9908 32.61 0.9914 

4 29.98 0.9827 30.18 0.9839 30.30 0.9845 

 
Adagrad 

 

2 33.39 0.9914 33.71 0.9920 34.83 0.9941 

3 30.96 0.9842 31.20 0.9854 31.39 0.9864 

4 29.01 0.9752 29.36 0.9780 29.61 0.9798 

 
Adamax 

 

2 35.67 0.9956 35.81 0.9958 36.12 0.9963 

3 31.79 0.9884 32.28 0.9902 32.45 0.9908 

4 29.87 0.9820 30.08 0.9832 30.23 0.9840 

 
Nadam 

 

2 35.71 0.9957 36.04 0.9962 36.51 0.9966 

3 32.28 0.9903 32.47 0.9909 32.66 0.9914 

4 30.03 0.9827 30.27 0.9843 30.36 0.9847 
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Table 4. The average PSNR (dB) and SSIM values for all scales of 9-1-5 network structure on Set14 dataset 
  n1=32, n2=16 n1=64, n2=32 n1=128, n2=64 

Optimizer Name Scale PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM 

SGD 

2 29.07 0.9752 29.18 0.9757 28.95 0.9745 

3 27.48 0.9649 27.39 0.9642 27.28 0.9633 

4 26.16 0.9531 26.06 0.9522 26.08 0.9524 

RMSprop 

2 31.45 0.9854 31.49 0.9856 31.51 0.9859 

3 28.58 0.9721 28.64 0.9727 28.76 0.9731 

4 26.81 0.9592 26.89 0.9597 26.95 0.9604 

Adam 

2 31.45 0.9853 31.72 0.9858 31.92 0.9863 

3 28.63 0.9722 28.75 0.9729 28.88 0.9735 

4 26.87 0.9599 27.02 0.9608 27.13 0.9618 

 
Adagrad 

 

2 28.21 0.9703 28.86 0.9740 29.50 0.9774 

3 26.26 0.9534 27.55 0.9654 27.77 0.9670 

4 25.57 0.9463 25.99 0.9513 26.24 0.9539 

 
Adamax 

 

2 31.46 0.9851 31.55 0.9854 31.77 0.9859 

3 28.54 0.9719 28.56 0.9720 28.79 0.9730 

4 26.79 0.9592 26.93 0.9602 27.04 0.9611 

 
Nadam 

 

2 31.58 0.9855 31.72 0.9858 31.96 0.9864 

3 28.62 0.9722 28.76 0.9729 28.87 0.9734 

4 26.86 0.9597 26.99 0.9605 27.13 0.9617 

 

Table 5. The average PSNR (dB) and SSIM values for all scales of 9-3-5 network structure on Set14 dataset 
  n1=32, n2=16 n1=64, n2=32 n1=128, n2=64 

Optimizer Name Scale PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM 

SGD 

2 29.54 0.9775 29.24 0.9761 29.23 0.9759 

3 27.60 0.9657 27.47 0.9648 27.44 0.9645 

4 26.17 0.9533 26.10 0.9526 26.12 0.9528 

RMSprop 

2 31.35 0.9851 31.73 0.9863 31.70 0.9858 

3 28.67 0.9724 28.89 0.9734 28.94 0.9740 

4 26.93 0.9613 27.05 0.9614 27.11 0.9617 

Adam 

2 31.78 0.9859 31.95 0.9863 32.18 0.9868 

3 28.74 0.9728 28.91 0.9735 29.01 0.9740 

4 27.04 0.9609 27.15 0.9618 27.23 0.9623 

 
Adagrad 

 

2 28.20 0.9700 29.87 0.9792 30.34 0.9812 

3 27.31 0.9636 27.85 0.9675 28.04 0.9688 

4 26.07 0.9522 26.47 0.9562 26.53 0.9567 

 
Adamax 

 

2 31.75 0.9858 31.87 0.9862 31.97 0.9864 

3 28.61 0.9723 28.77 0.9730 28.91 0.9736 

4 26.97 0.9605 27.05 0.9610 27.15 0.9617 

 
Nadam 

 

2 31.84 0.9861 32.00 0.9864 32.16 0.9867 

3 28.78 0.9731 28.90 0.9735 29.07 0.9744 

4 26.94 0.9603 27.14 0.9616 27.32 0.9628 

 

Table 6. The average PSNR (dB) and SSIM values for all scales of 9-5-5 network structure on Set14 dataset 
  n1=32, n2=16 n1=64, n2=32 n1=128, n2=64 

Optimizer Name Scale PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM 

SGD 

2 29.18 0.9758 28.95 0.9745 29.52 0.9775 

3 27.50 0.9650 27.43 0.9644 27.58 0.9656 

4 26.17 0.9531 26.13 0.9528 26.22 0.9535 

RMSprop 

2 31.50 0.9858 31.64 0.9861 31.98 0.9868 

3 28.64 0.9723 28.86 0.9738 28.97 0.9745 

4 27.03 0.9611 27.08 0.9617 27.16 0.9622 

Adam 

2 31.96 0.9863 32.12 0.9867 32.29 0.9871 

3 28.81 0.9731 29.00 0.9738 29.10 0.9743 

4 27.06 0.9611 27.21 0.9622 27.33 0.9630 

 
Adagrad 

 

2 29.83 0.9789 30.15 0.9804 31.06 0.9839 

3 27.87 0.9677 28.05 0.9688 28.20 0.9699 

4 26.32 0.9546 26.58 0.9571 26.77 0.9589 

 
Adamax 

 

2 31.72 0.9857 31.87 0.9861 32.07 0.9866 

3 28.54 0.9718 28.88 0.9734 29.02 0.9740 

4 26.97 0.9605 27.13 0.9615 27.23 0.9624 

 
Nadam 

 

2 31.79 0.9859 32.04 0.9865 32.30 0.9870 

3 28.89 0.9734 29.04 0.9739 29.13 0.9744 

4 27.09 0.9612 27.29 0.9626 27.35 0.9630 
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Table 7. Computational time analyses of 9-1-5 network structure on train dataset 
  n1=32, n2=16 n1=64, n2=32 n1=128, n2=64  

Optimizer Name Scale Time (s) Time (s) Time (s) Average Time (s) 

SGD 

2 145.90 230.02 401.69  
259.01 

 
3 150.08 229.76 397.82 

4 151.82 228.19 395.84 

RMSprop 

2 148.92 231.85 401.93  
260.90 

 
3 152.79 227.58 402.42 

4 155.79 227.60 399.24 

Adam 

2 149.86 231.59 403.26  
262.22 

 
3 156.93 228.20 401.80 

4 157.66 230.37 400.27 

 
Adagrad 

 

2 150.76 230.96 397.86  
262.41 

 
3 155.63 227.81 407.12 

4 157.81 230.12 403.58 

 
Adamax 

 

2 153.94 229.11 397.48  
263.01 

 
3 153.62 229.51 407.28 

4 159.20 229.26 407.72 

 
Nadam 

 

2 154.33 232.70 407.87  
266.81 

 
3 155.07 233.79 412.10 

4 163.35 233.28 408.82 

 

Table 8. Computational time analyses of 9-3-5 network structure on train dataset 
  n1=32, n2=16 n1=64, n2=32 n1=128, n2=64  

Optimizer Name Scale Time (s) Time (s) Time (s) Average Time (s) 

SGD 

2 176.99 294.05 586.00  
351,56 

 
3 182.59 295.97 583.27 

4 183.38 287.34 574.47 

RMSprop 

2 177.64 294.53 584.75  
352,35 

 
3 184.22 295.20 583.53 

4 184.81 290.65 575.85 

Adam 

2 179.43 293.12 586.75  
353,38 

 
3 186.27 296.13 583.23 

4 186.66 292.70 576.15 

 
Adagrad 

 

2 181.49 293.69 588.56  
354,17 

 
3 186.23 298.55 587.32 

4 187.40 290.83 573.44 

 
Adamax 

 

2 180.30 296.39 586.33  
352,89 

 
3 185.16 295.12 584.79 

4 185.86 289.88 572.14 

 
Nadam 

 

2 185.79 299.52 594.23  
358,60 

 
3 189.40 302.69 587.99 

4 195.34 294.89 577.55 

 

Table 9. Computational time analyses of 9-5-5 network structure on train dataset 
  n1=32, n2=16 n1=64, n2=32 n1=128, n2=64  

Optimizer Name Scale Time (s) Time (s) Time (s) Average Time (s) 

SGD 

2 243.04 383.45 656.42  
425.25 

 
3 221.25 390.04 667.86 

4 223.58 388.23 653.40 

RMSprop 

2 219.46 387.74 666.06  
425.78 

 
3 221.76 390.07 666.41 

4 227.44 392.73 660.34 

Adam 

2 225.17 391.21 668.70  
428.76 

 
3 225.90 392.56 668.12 

4 227.93 398.00 661.24 

 
Adagrad 

 

2 219.66 387.49 670.07  
427.34 

 
3 226.43 393.28 662.14 

4 226.07 393.65 667.25 

 
Adamax 

 

2 219.94 389.31 669.22  
428.75 

 
3 226.61 396.66 663.42 

4 229.79 398.00 665.81 

 
Nadam 

 

2 224.41 394.87 673.96  
432.43 

 
3 229.23 396.51 666.68 

4 232.72 402.01 671.44 
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Figure 3. Visual results of 9-5-5 (n1=128, n2=64) for scale 3 on Set5. 
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