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Abstract 

One of the prominent topics in complex network analysis is link prediction, which is a key component 

of network-based recommendation systems or finding missing connections. There are several different 

link prediction methods in the literature based on measuring the likelihood of the existence of a link 

between two nodes. These methods use different topological properties of the network. Although there 

are methods using different strategies, previous studies have focused only on method success but have 

not adequately examined the relationship between the performance of these methods and the 

topology of the network. The main motivation for this study is to reveal the role of different network 

topologies in link prediction. Thus, the choice of link prediction method can be customized according 

to the topological characteristics of the network. The two main contributions of the study are, firstly, 

comparing different link prediction methods with well-known performance measures in social, 

biological, and information networks with different topological properties in a large experimental 

setup; and second, examining the possible relationship between the performance of link prediction 

methods and the network topology. Based on the experimental results, the global methods are more 

successful than others, regardless of the network topology. In addition, it was concluded that the high 

eigenvector centralization in the network may affect the missing link prediction performance. 
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Öz 

Karmaşık ağ analizinde öne çıkan konulardan biri, ağ tabanlı öneri sistemlerinin veya eksik bağlantıların 

bulunmasının önemli bir bileşeni olan bağlantı tahminidir. Literatürde iki düğüm arasında bağlantı 

bulunma şansını ölçümlemeye dayanan birçok farklı bağlantı tahmini yöntemi vardır. Bu yöntemler ağın 

farklı topolojik özelliklerini kullanır. Çok farklı stratejiler kullanan yöntemler bulunmasına rağmen, 

önceki çalışmalar yalnızca yöntem başarısına odaklanmış ama bu yöntemlerin performansının ağın 

topolojisi ile ilişkisini yeteri kadar incelememiştir. Bu çalışmanın ana motivasyonu farklı ağ 

topolojilerininin bağlantı tahminindeki rolünü bir ortaya koymaktır. Böylece ağın topolojik özelliklerine 

göre bağlantı tahmin yöntemi seçimi özelleştirilebilir. Çalışmanın iki temel katkısı, ilk olarak, büyük bir 

deney düzeneğinde farklı topolojik özelliklere sahip sosyal, biyolojik ve bilgi ağlarında iyi bilinen 

performans ölçümleriyle farklı bağlantı tahmin yöntemlerini karşılaştırmak ve ikincisi, bağlantı tahmin 

yöntemlerinin performansı ile ağ topolojisi arasındaki olası ilişkinin incelenmesi olarak sıralanabilir. 

Sonuçlara göre, ağ topolojisine bakılmaksızın küresel yöntemlerin diğerlerinden daha başarılı olduğunu 

gördük. Ayrıca, ağda özvektör merkezileşmesinin yüksek olmasının eksik bağlantı tahmin performansını 

etkileyebileceği sonucuna ulaşıldı. 
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1. Introduction 

Link prediction is one of the most studied topics in 

complex network analysis. Finding missing links in a 

network allows one to solve many problems in 

various applications. For example, predicted links in 

a network of item connections can be used for 

making product recommendations (Kaya 2020, Li et 

al. 2014). Or, on a social network, link prediction 

allows for the formation of new friendships (Zareie 

and Sakellariou 2020, Liben‐Nowell and Kleinberg 

2007 ). Due to this popularity, numerous studies 

have been conducted on it.  

 

We can categorize the methods into three parts. 

First, traditional methods calculate a score for all 

possible links, i.e. pairs of nodes, that are not seen 

in the network, based on a strategy (Martínez et al. 

2016, Lü and Zhou 2011).  Afterwards, these scores 

are ranked from largest to smallest, and the desired 

number of links is selected in order to be predicted. 

Methods that find scores, adamic adar, resource 

allocation, etc., are calculated with mathematical 

formulas using network topology. The score 

depends on the likelihood of a studied link. Those 

methods differ from each other according to the 

strategies they use. Second, as in the traditional 

methods, the scores of all missing links are 

calculated by using different methods. However, 

this time, instead of making a simple ranking, all of 

these scores are solved together with a machine-

learning model (De Sá and Prudêncio 2011, 

Malhotra and Goyal 2021). In other words, the link 

prediction problem is tackled by constructing a 

machine-learning model of different features of 

possible links. These methods differ in terms of both 

the supervised learning technique and the artificial 

learning algorithms they use. Finally, in recent 

works, graph embedding techniques are held (Wang 

et al. 2021, Rossi et al. 2021). In many studies, 

researchers develop new metrics or methods 

according to the needs of their application. Those 

methods use different topological elements in the 

network. Nevertheless, the comparison of the 

performance of link prediction methods has not 

been extensively studied in the literature. However, 

real-world networks have different topological 

structures. The link prediction method, which gives 

successful results in some types of networks, may 

not be successful in other types. Thus, there is a 

need for an exhaustive study to reveal the possible 

relation between link prediction methods with 

network structure. 

 

In this study, we test sixteen well–known link 

prediction methods on eleven real-world networks 

having different topologies and evaluate their 

performances. We separate the link prediction 

methods into three categories: local, global, and 

embedding. We did not focus on developing fine-

tuned algorithms but rather applied the methods 

roughly as their traditional ranking strategy. Our 

main goal is to reveal which type of method can be 

successful in networks with which topological 

properties. As a matter of fact, we do not only 

compare the success of the methods but also focus 

on finding the possible relationship between these 

successes and the topological properties of the 

networks.  

 

Our main contributions are first, comparing 

different link prediction methods with well-known 

performance metrics on both social, biological, and 

information networks having different 

characteristics in a large experimental setup; and 

second, examining the possible relationship 

between the performance of link prediction 

methods with the network topology. In the 

following, we first explain the details of link 

prediction methods, and then we explain the 

experimental setup and the results in detail. In this 

part, we also discuss the relationship between 

network topology and link prediction performance. 

Finally, we summarize the work by giving some 

future perspectives. 

 

2. Material and Method 

The link prediction experiments in this work are 

done with traditional semi-supervised learning 

techniques (Lü and Zhou 2011). First, a training 

network is assigned by removing an amount of 

randomly selected links from the original network. 

Then the link prediction metrics are calculated for all 



 Discovering Link Prediction Methods' Performances by Network Topology Relation, Orman 

 

 
780 

missing links in the training network, including the 

removed links and already unseen links from the 

original network. For each metric, the first links that 

receive the highest scores are assigned as predicted 

links. The predicted links are evaluated as true or 

false predictions by determining whether they are 

included in the original network. Finally, the 

performance of the link prediction methods is 

measured by their precision, or AUC scores (Lü and 

Zhou 2011).  In the next part, we explain the 

similarity/distance metrics that assess the likelihood 

of having a link between any pair of nodes u,v. We 

categorized those metrics according to their 

essential techniques, which are used for link 

prediction tasks.  

2.1 Link Prediction with Local Information 

The common strategy behind the link prediction 

methods we describe here is triadic closure principle 

(TCP) (Kovács et al. 2019). This principle favors the 

tendency of having links between two nodes if they 

have more common connections. TCP looks for 

completely local information related to the first-

level neighborhood of the compared nodes.  Let us 

denote that neighborhood 𝑁(𝑢), or (𝑁𝑢),  of a node 

𝑢 is the set of nodes directly connected to 𝑢, 

𝑁(𝑢) =  {𝑣 ∈ 𝑉|(𝑢, 𝑣)  ∈ 𝐿}  with 𝐿 is the set of 

links.  

Definition 1. (Newman 2001) Common Neighbors 

(CN) is the size of the set of common neighbors 

between any two nodes.  

𝑠(𝑢, 𝑣) = |𝑁𝑢 ∩ 𝑁𝑣|                                              (1) 

More generally, the higher the number of degrees, 

the more possible to have higher CN for the nodes. 

Thus, CN has a tendency of being high for any two 

hub nodes. 

Definition 2. (Adamic and Adar 2003) Adamic Adar 

(AA) counts the total number of neighbors of all 

common neighbors. However, it depresses the score 

by logarithmic function for demoting the scores of 

higher degree nodes. Shortly, it penalizes the scores 

for hub neighbors.  

𝑠(𝑢, 𝑣) = ∑
1

log2(|𝑁𝑖|)𝑖∈ 𝑁𝑢∩𝑁𝑣
                                    (2) 

Definition 3. (Zhou and Zhang 2009) Resource 

Allocation (RA) is almost the same with AA. It also 

counts the total number of neighbors of all common 

neighbors. However, differently from AA, it 

considers the degrees not their logarithms.  

𝑠(𝑢, 𝑣) = ∑
1

|𝑁𝑖|𝑖∈ 𝑁𝑢∩𝑁𝑣
                                             (3) 

Definition 4. (Jaccard  1912) Jaccard Coefficient (JC) 

originally developed for comparing two sets. It is the 

ratio of the number of common neighbors to the 

number of all neighbors of two nodes.  

𝑠(𝑢, 𝑣) =
|𝑁𝑢∩𝑁𝑣|

|𝑁𝑢∪𝑁𝑣|
                                                         (4) 

Definition 5. (Dice 1945, Sørensen 1948) 

Sørrenson/Dice Index (Dice) measures the common 

parts of the neighborhoods and normalizes it with 

the size of the neighborhoods of two studied nodes. 

If the neighborhoods have many nodes in common 

but also the common neighbors have many other 

links to the outside of the common neighborhood, 

Dice becomes lower than JC. It penalizes being a hub 

as well.   

𝑠(𝑢, 𝑣) =
2∙|𝑁𝑢∩𝑁𝑣|

|𝑁𝑢|+|𝑁𝑣|
                                                      (5) 

Definition 6. (Cannistraci et al. 2015) Cannistraci-

Alanis-Ravasi index (CAR) is the sum of the number 

of common neighbors of two nodes each having 

neighbors in common with those nodes.  

𝑠(𝑢, 𝑣) = ∑ 1 +
|𝑁𝑢∩𝑁𝑣∩𝑁𝑖|

2𝑖∈ 𝑁𝑢∩𝑁𝑣
                         (6) 

Definition 7. (Cannistraci et al. 2015) CAR-based 

Adamic and Adar (CAA), is a hybrid metric of the 

AA with CAR strategy. It merges two strategies of 

favoring clique-like neighborhoods with the 

penalization of being hub.  

𝑠(𝑢, 𝑣) = ∑
|𝑁𝑢∩𝑁𝑣∩𝑁𝑖|

log2(|𝑁𝑖|)𝑖∈ 𝑁𝑢∩𝑁𝑣
                                 (7) 

Definition 8. (Cannistraci et al. 2015) Another hybrid 

metric is CAR-based Resource Allocation (CRA). It 

merges the two strategies of CAR with RA, which are 

explained previously. 

𝑠(𝑢, 𝑣) = ∑
|𝑁𝑢∩𝑁𝑣∩𝑁𝑖|

|𝑁𝑖|𝑖∈ 𝑁𝑢∩𝑁𝑣
                                 (8) 
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2.2 Link Prediction with Global Information  

This category is dedicated to the link prediction 

methods, which do not use TCP, but they still use 

network-related topological properties. In local 

methods, the metrics completely focus on the 

common neighborhood, which was based on the 

TCP idea for link prediction. Here, we explain the 

metrics using other strategies related to network 

topology.  

Definition 9. (Newman 2001) Preferential 

Attachment (PA), is the multiplication of degrees of 

two nodes. PA promotes the nodes having higher 

degree. It assumes that the famous nodes should 

have more probability of connecting with each 

other.   

𝑠(𝑢, 𝑣) = |𝑁𝑢| ∙ |𝑁𝑣|                                              (9) 

Definition 10. (Cannistraci et al. 2015) CAR-based 

Preferential Attachment (CPA) merges the 

strategies of CAR and preferential attachment.  

𝑠(𝑢, 𝑣) = 𝑒𝑢 ⋅ 𝑒𝑣 + 𝑒𝑢 ⋅ 𝐶𝐴𝑅(𝑢, 𝑣) + 𝑒𝑣 ⋅

𝐶𝐴𝑅(𝑢, 𝑣) + 𝐶𝐴𝑅(𝑢, 𝑣)2                                        (10) 

  

With 𝑒𝑢 =  |𝑁𝑢 ∖ (𝑁𝑢⋂𝑁𝑣)| and 𝑒𝑣 =  |𝑁𝑣 ∖

(𝑁𝑢⋂𝑁𝑣)| is the number of the neighbors of 𝑢 that 

are not common neighbors of 𝑢 and 𝑣, and 

𝐶𝐴𝑅(𝑢, 𝑣) is the 𝐶𝐴𝑅 score between nodes 𝑢 and 

𝑣.  

Definition 11. (Kovács et al. 2019) L3 link predictor 

(L3), considers network paths of length three.   

𝑠(𝑢, 𝑣) = ∑
𝑎𝑢𝑖⋅𝑎𝑖𝑗⋅𝑎𝑗𝑣

√𝑘𝑖⋅𝑘𝑗
𝑖,𝑗                               (11) 

Here, 𝑎𝑢𝑖  is 1 if there is a link between the nodes 𝑢 

and 𝑖. And 𝑘𝑖  is the degree of node 𝑖.  Since the third 

level neighbors numbers are exponentially larger 

than the second level ones, the metric applies a 

degree normalization strategy. It also avoids the 

biased high scores coming from the hub nodes, 

which are naturally building shortcuts, and increases 

the number of third level neighbors for entire 

nodes.  

Definition 12. (Clauset et al. 2008) Hierarchical 

Random Graph model (HRG), is originally a method 

of producing general hierarchical structure of a 

given network. Differently from producing an 

overfitted one single dendrogram, which only 

explains the hierarchical structure of the studied 

state of the network, HRG uses MCMC sampling 

of hierarchical models around the optimum one and 

produces the likelihoods for each member from the 

sample.  In fact, those members are the 

dendrogram with associated probabilities. The 

model decomposition is then used for link 

prediction. For any node pairs, their prediction score 

is the average probability of connection within these 

dendrograms.  

Definition 13. (Lü et al. 2008) Structural 

perturbation method (SPM) focuses on perturbing 

the adjacency matrix and observing the change of 

eigenvalues provided the fixed eigenvectors. This 

technique is similar to the first-order perturbation in 

quantum mechanics.  It produces the scores, which 

are similar to previously explained similarities, for all 

links based on the perturbation of removal links 

from the adjacency matrix of the original network.  

2.3. Link Prediction with Embedding 

Beyond the usage of TCP principle or network 

structural information, there are other techniques 

of link prediction, which transform the network into 

the lower dimensional Euclidean space. Such a 

transformation is called graph embedding. There 

are several different techniques of graph 

embedding. Here we focus on the ones, which are 

used for link predictions.  

Definition 14. (Tenenbaum et al. 2000, Kuchaiev et 

al. 2009) Isometric mapping (ISOMAP) uses one of 

the traditional graph embedding techniques. The 

studied network, 𝐺 = (𝑉, 𝐿), is first transformed to 

a distance matrix 𝐷 of its nodes in which each 

member 𝑑𝑢𝑣  of  𝐷 is the shortest distance between 

the nodes 𝑢 and 𝑣 from 𝑉. Then 𝐷 is transformed to 

a lower dimensional matrix 𝐿 ∈ ℝ𝑙 with 

Multidimensional scaling based on non-lineaire 

embedding method, MDS. Here 𝑙 is the new 

dimension that 𝐺 is transformed to.  MDS tries to 
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keep original distance 𝑑𝑢𝑣  between the node pairs 

and generates new vectors 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 for each 

node whose lengths are 𝑙. 𝑥1, 𝑥2 , ⋯ , 𝑥𝑛 is found as a 

minimizer of some cost 

function 𝑚𝑖𝑛𝑥1,𝑥2,⋯,𝑥𝑛
∑ (𝑑𝑢𝑣 − ‖𝑥𝑢 − 𝑥𝑣‖)2

𝑢,𝑣 . 

Once MDS generates new lower dimensional 

vectors for each node, then ISOMAP calculates basic 

euclidean distance between the nodes as their 

dissimilarities.  

Definition 15. (Belkin and Niyogi 2001) Laplacian 

Eigenmaps (LEIG) uses a minimization function that 

can be solved by the generalized eigenvalue 

problem. Hence, it first generates the laplacian 

matrix of the original network, and then spectral 

decomposition of the corresponding laplacian 

matrix is computed. LEIG finds 𝑙 eigenvalues and 

eigenvector with 𝑙 is the number of new dimensions. 

After embedding, the link prediction is again done 

by regarding euclidean distance of the node pairs.  

Definition 16. (Cannistraci et al. 2013) Centered and 

non-centered Minimum Curvilinear Embedding 

(MCE) and (ncMCE) respectively, are two network 

embedding techniques using the distances in the 

minimum spanning tree of studied networks. Both 

methods first generate the minimum spanning tree, 

MST of corresponding 𝐺, and then computes the 

distances of every pair of nodes in the MST. These 

distances unders the form of distance matrix are 

called the kernel. In the algorithm if centering is not 

chosen, the ncMCE performs an economy size 

singular value decomposition of the distance matrix. 

Otherwise, an algebraic operation is performed for 

kernel centering at first and then the decomposition 

is done. Finally the new lower dimensional space of 

𝐺 is produced by the transpose of the product of 

computed singular values with right singular vectors 

with the algebraic corrections.  

3. Experiments and Results 

 

3.1. Datasets and their Topological Properties 

 

We used eleven famous networks in our 

experiments, which are taken from (Rossi and 

Ahmed 2015;, Kunegis 2013). Some of them are 

directly social or anthropological networks 

representing the relation between a group of 

humans while some others are biological or 

transport. Table 1 shows their names and 

topological properties. Details of these topological 

properties can be obtained from (Watts and 

Strogatz 1998, Albert and Barabási 2002, Newman 

2003). We evaluate the node number, a.k.a. 

network size (n), the link number (m), the average 

path length (l), the transitivity (T), the average (⟨k⟩), 

minimum (min (k)) and maximum (max (k)) degrees, 

the diameter (diam), the radius (rad), the density (δ) 

, the degree of centralization (DC),  the betweenness 

centralization (BC), the closeness centralization (CC) 

and the eigenvector centralization (EC) metrics.  

Some have high link density, while others have high 

transitivity. Some of them have nodes with high EC, 

that is, they are popular in the network.  .  None of 

the topological properties listed in this table 

individually describe the network, but a few do give 

us an idea of its structure. For example, the Tribes 

network has a structure of local clusters with low EC 

and high T. It probably has no central or hierarchical 

formation. However, gene-fusion or C-Elegans 

networks, on the contrary, have more recursive and 

centralized dynamics, with high ECs and relatively 

low Ts. We will examine the effects of these possible 

topological differences on connection estimation in 

the next sections. Briefy, Table 1 shows us that our 

experiments are performed on a large set with a 

wide variety of properties since the networks show 

different characteristics. 

 

3.2. Link Prediction Results 

First, we examine the results of link prediction 

metrics in our preliminary experiments. In these 

experiments, 20% of the links in each network were 

randomly selected and removed by using the cross-

validation method. The score of each link prediction 

metric is then calculated for every possible node 

pair, as a missing link. The missing links that receive 

the highest scores are output as estimated links. 

Afterwards, estimated links were compared with 

the previously extracted links. The number of links 

to be predicted is too small when compared to the 

total number of possible links in the network. It is to 

find out about rarely occurring events. One of the 
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most suitable performance metrics for these cases 

is the precision score and AUC (Lü and Zhou 2011). 

The precision and AUC scores are shown in Table 2 

and Table 3.  

In general, precision scores are low. This is an 

expected result in rank-based link prediction. Many 

nodes in the network may have a similar topological 

position. Their link prediction scores may be the 

same, or too close. As a result, many correct links 

can be ignored because the ranking is done and only 

a certain number of links can be selected. Therefore, 

precision results are good to compare the metrics 

without focusing on the values. Accordingly, not a 

single metric or a family of metrics stands out.  

Metrics with different strategies such as RA, CAA, 

PA, HRG, and SPM yield different results in different 

networks. 

The AUC, on the other hand, does not take true 

positives or false Negatives into account. Instead, it 

measures the performance based on the scores the 

candidate links get. AUC results can have high 

values, as can be seen in Table 3. Accordingly, RA 

and HRG stand out compared to other metrics. In 

many networks, these two metrics allow for more 

successful link prediction. In contrast, embedding 

methods using the spectral properties of the 

networks, especially LEIG and MCE, give the lowest 

scores in most of the studied networks. 

Evaluating both precision and AUC scores together, 

we find that first, different methods perform 

differently in the same network, and second, the 

same method performs differently in different 

networks. The first finding may be due to the fact 

that the methods have different link prediction 

strategies. However, the fact that the same method 

gives different results in different networks may be 

due to the possible topological difference between 

the networks. If these networks were composed of 

regular lattice graphs, there would be no structural 

difference between them. There would only be a 

difference in the number of nodes and links. In 

lattice, since all nodes will be equivalent in terms of 

their positions in the network, it was expected that 

the link prediction performances made in different 

networks would be equal. However, the networks 

we work with have different centrality measures, 

different mean degrees, different transitivity, etc., 

which means the nodes have different structural 

positions. It seems the performance of a method is 

affected by such a difference. We examine this fact 

in detail in the next sections. 

 

Table 1. The topological properties of the networks 

Network name 𝒏 𝒎 𝒍 𝑻 ⟨𝑘⟩ 𝒎𝒊𝒏(𝒌) 𝒎𝒂𝒙(𝒌) 𝒅𝒊𝒂𝒎 𝒓𝒂𝒅 𝜹 𝑫𝑪 𝑩𝑪 𝑪𝑪 𝑬𝑪 

Adjnoun 112 425 2.54 0.16 7.59 1 49 5 3 0.068 0.37 0.23 0.43 0.84 

C Elegans  453 2025 2.66 0.12 8.94 1 237 7 4 0.020 0.50 0.48 0.54 0.92 

Contact 274 2124 2.42 0.57 15.50 1 101 4 2 0.057 0.31 0.14 0.38 0.78 

Dolphins 62 159 3.36 0.31 5.13 1 12 8 5 0.084 0.11 0.21 0.23 0.74 

Gene fusion 292 279 3.90 0.00 1.91 1 34 9 3 0.007 0.11 0.08 0.46 0.97 

Jazz 198 2742 2.24 0.52 27.70 1 100 6 4 0.141 0.37 0.15 0.38 0.74 

Karate 34 78 2.41 0.26 4.59 1 17 5 3 0.139 0.38 0.41 0.30 0.65 

Les Miserable 77 254 2.64 0.50 6.60 1 36 5 3 0.087 0.39 0.56 0.52 0.77 

Moreno  242 923 2.47 0.25 7.63 2 28 5 3 0.032 0.08 0.02 0.22 0.95 

Tribes 16 58 1.54 0.53 7.25 3 10 3 2 0.483 0.18 0.04 0.21 0.31 

US-Air 332 2126 2.74 0.40 12.81 1 139 6 3 0.039 0.38 0.20 0.46 0.86 

 

Table 2. The link prediction methods' precision results 

 Local Information Global Information Graph Embedding 

Network name CN AA RA JC DICE CAR CAA CRA PA CPA L3 HRG SPM ISOMAP LEIG MCE 

Adjnoun 0.05 0.03 0.05 0.02 0.02 0.03 0.03 0.03 0.06 0.04 0.05 0.02 0.06 0.01 0.02 0.01 

C Elegans  0.05 0.04 0.10 0.03 0.06 0.03 0.04 0.06 0.02 0.02 0.00 0.01 0.04 0.00 0.00 0.00 

Contact 0.22 0.23 0.71 0.06 0.07 0.63 0.67 0.64 0.30 0.64 0.35 0.31 0.17 0.01 0.01 0.01 

Dolphins 0.11 0.11 0.03 0.06 0.07 0.08 0.04 0.02 0.01 0.05 0.03 0.24 0.20 0.02 0.04 0.01 

Gene fusion 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

Jazz 0.41 0.43 0.45 0.39 0.37 0.36 0.50 0.48 0.06 0.35 0.01 0.17 0.59 0.02 0.01 0.03 
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Karate 0.10 0.02 0.12 0.01 0.02 0.08 0.01 0.37 0.06 0.25 0.06 0.06 0.13 0.02 0.08 0.01 

Les Miserable 0.52 0.48 0.64 0.16 0.15 0.58 0.52 0.66 0.07 0.43 0.55 0.34 0.62 0.04 0.15 0.03 

Moreno  0.08 0.09 0.09 0.07 0.07 0.09 0.07 0.07 0.01 0.02 0.01 0.07 0.08 0.02 0.01 0.04 

Tribes 0.06 0.06 0.08 0.20 0.60 0.08 0.04 0.09 0.04 0.11 0.09 0.06 0.08 0.37 0.06 0.04 

US-Air 0.08 0.08 0.15 0.03 0.04 0.13 0.16 0.09 0.05 0.32 0.14 0.38 0.12 0.03 0.03 0.02 

 

Table 3. The link prediction methods' AUC results 

 Local Information Global Information Graph Embedding 

Network name CN AA RA JC DICE CAR CAA CRA PA CPA L3 HRG SPM ISOMAP LEIG MCE 

Adjnoun 0.71 0.65 0.69 0.66 0.67 0.70 0.68 0.60 0.73 0.73 0.75 0.72 0.63 0.56 0.67 0.51 

C Elegans  0.91 0.93 0.96 0.80 0.78 0.88 0.88 0.88 0.77 0.75 0.51 0.85 0.84 0.66 0.50 0.65 

Contact 0.95 0.95 0.97 0.92 0.92 0.96 0.96 0.96 0.97 0.96 0.95 0.95 0.83 0.66 0.53 0.63 

Dolphins 0.87 0.89 0.73 0.75 0.82 0.84 0.75 0.73 0.75 0.75 0.86 0.90 0.78 0.83 0.88 0.70 

Gene fusion 0.53 0.69 0.65 0.62 0.80 0.76 0.83 0.81 0.96 0.92 0.72 0.97 0.75 0.91 0.53 0.88 

Jazz 0.96 0.97 0.98 0.96 0.97 0.96 0.96 0.97 0.80 0.94 0.50 0.88 0.98 0.78 0.51 0.76 

Karate 0.86 0.60 0.92 0.57 0.73 0.49 0.48 0.77 0.51 0.29 0.91 0.74 0.85 0.72 0.43 0.58 

Les Miserable 0.95 0.97 0.98 0.95 0.94 0.96 0.95 0.96 0.85 0.77 0.94 0.95 0.96 0.82 0.91 0.71 

Moreno  0.89 0.89 0.90 0.91 0.90 0.81 0.77 0.77 0.61 0.54 0.63 0.92 0.84 0.87 0.54 0.91 
Tribes 0.51 0.56 0.62 0.75 0.87 0.63 0.21 0.60 0.34 0.54 0.68 0.41 0.63 0.84 0.49 0.32 

US-Air 0.65 0.73 0.71 0.69 0.69 0.45 0.45 0.37 0.75 0.85 0.84 0.93 0.88 0.71 0.52 0.50 

 

3.3. Link Prediction Methods’ Sensitivity 

 

In our second experiment, for the train set, we 

removed from 10% to 90% of the links in the 

network, respectively, with 10% increments. We run 

all the methods in each link extraction and observe 

the performances. Related plots can be seen in 

Figure 1 and Figure 2. In these figures, the x-axis 

shows the link ratio extracted from the trained 

network, and the y-axis shows the value of the 

performance metric. According to precision results, 

all metrics, without exception, yield more successful 

results as the link ratio in the test set increases. This 

is due to the precision metric itself.  The true 

positives increase as the number of links that need 

to be estimated increases. When more links need to 

be predicted, multiple links showing the same score 

can now be included in the true positive set. 

Therefore, an increase in precision results is an 

expected result. Here, in order to evaluate the true 

success of the methods, it is necessary to focus on 

the curve of the increase. A simple linear increment 

is due to the precision properties. A good method is 

expected to give a result that is as stable or as close 

to no slope as possible. When the plots are 

examined, no method produces such a result. A less-

linear increase is obtained by CN, HRG, and L3 for 

Dolphin, Karate, and US-Air networks, respectively. 

 

 

Figure 1. The average precision results over four 

networks based on different sized test data. The 

X-axis is the rate of links reserved for testing; the 

y-axis is the average precision value. 

 

AUC scores are more stable (see Figure 2). Here, all 

the methods for Dolphin and Tribe networks show a 

more stable performance, while the success of the 

methods differs as the predicted link number 

increases for the other two networks. In these plots, 

the more stable and higher the performance curve 

of a method, the better it is. Accordingly, we 

observe that HRG is the most successful method in 

all networks except Tribe. It seems that the L3 

method performs more unsuccessfully as the link 

ratio increases in almost all networks. It seems to be 

strongly affected by missing links in the network 
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Figure 2. The AUC results over four networks based on 

different sized test data. The X-axis is the rate of 

links reserved for testing; the y-axis is the AUC 

value. 

 

In the experiments conducted in this section, we 

observed that the precision of all methods increases 

as the removed link ratio is increased, while the AUC 

declines smoothly. As we mentioned in the previous 

section, since the studied networks are not regular 

lattice graphs and each has its own topological 

structure, removing links from these networks 

causes changes in their topology. In our 

experiments, we both used two different 

performance metrics and different networks. In this 

way, changing input and performance metrics can 

cause a cross-effect when evaluating the success of 

methods. However, in this setup, we see that the 

success of all sixteen link prediction methods 

without exception changes when the removed link 

amount changes, that is, when the topology of the 

network is gradually degraded/affected. 

Accordingly, we can claim that all methods are 

clearly affected by the topographical change, even if 

there might be a crossover effect coming from input 

or metric change. We do not measure this possible 

crossover effect for now because it is out of the 

scope of this work. 

 

3.4. Link Prediction Methods’ Correlation with 

Network Topology 

We analyze whether different topological 

properties of networks have an effect on link 

prediction methods by examining their correlations. 

The correlation results between the performance 

score of each method as AUC or Precision in 

different networks and the different topological 

properties, and the related heat maps are shown in 

Figure 3, left and right plots, respectively. According 

to AUC results, HRG and EC are highly positively 

correlated. PA and MCE are also correlated with EC. 

A high EC shows us that some nodes are quite 

popular in the network while many others are not, 

so there may be a tree-like structure. HRG uses a 

strategy relying on a hierarchical structure in the 

network. PA increases the score according to the 

number of neighbors. It is thus reasonable for these 

methods to be highly correlated with EC. On the 

other hand, we can say that the success of HRG and 

PA decreases as the network density increases. 

Correlation results with precision show the 

relationship between the ability of link prediction 

methods to detect missing links and topological 

properties. Accordingly, the success of PA and CAA 

increases as the density and the minimum degree 

increase, and the success of these two methods 

decreases as EC increases. The most interesting 

result here is that AUC scores of PA are positively 

correlated with EC, while Precision scores are 

negatively correlated. PA favors putting links 

between popular nodes. It is therefore reasonable 

that the score result increases with EC increase.  

However, the negative correlation on precision 

means that there is a decrease in the true positive 

link prediction rate with the increase of EC. Most of 

the links predicted by PA are tied to higher degree 

nodes. This can result in popular nodes being linked 

to unpopular ones if there are fewer popular node 

pairs than the number of missing links in the 

network. As a result, this may cause a negative 

correlation with EC. 
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Figure 3. Heat maps of the Pearson correlation 

coefficient. Precision (right) and AUC (left) 

correlations between all link prediction methods 

and all topological properties. Experiments are 

carried out with the 20% test data of the links. 

 

We showed which topological properties each 

method might be related to with correlation heat 

maps. As explained, some methods were found to 

be related one-to-one with some topological 

properties. But many methods do not seem to be 

correlated to any topological properties. In 

particular, the correlations between local methods 

and topological properties always seem low. Local 

methods use TCP, which takes into account only the 

first-level neighborhood of two nodes. Therefore, it 

may be possible that there is no relation between 

the centralizations, which gives information about 

the global structure of the network. However, the 

fact that they are not particularly related to 

transitivity should be investigated because 

transitivity is a property related to triangular 

connections in the first-level neighborhood of the 

node. Here, in order to measure correlation, we 

consider the global values such as the average of the 

local properties such as transitivity or degree. This 

may obscure the possible relationship between 

transitivity and link prediction. In addition, while the 

topological properties individually can provide 

information about the network structure, a few of 

them together can create cross-effects, allowing us 

to explain the structure of the network (for 

example, high EC and low T together can mean a 

hierarchical structure). The correlations we 

measured here only reflect the possible relations 

between singular properties and singular methods. 

This may also cause us not to see this result in 

correlation, even if some methods are affected by 

the combination of some topological properties. 

3.5. Discussion 

When all the experiments are evaluated together, it 

has been observed that there may be a relationship 

between the topological properties of the studied 

network and the performance of the link prediction 

method. When the details of this relationship are 

examined, it is concluded that some methods, such 

as HRG, may be affected by single topological 

properties such as EC. In the study, possible 

relationships were examined between each method 

and each topological property, on the networks in 

the experimental setup. In networks, it is possible 

that more than one topological property together 

creates new dynamics. However, it is not easy to 

measure this fact. Probably for this reason, the 

relationship between the performance of methods 

using local information and the topology of the 

network could not be resolved. A detailed analysis 

of this possible relation can be done with a 

regression. More specifically, the precision or AUC 

score of each method can be described by a 

regression line that takes input from the topological 

properties studied here. However, the fact that 

several topological properties together create a 

non-linear dynamic may still not be measurable 

even with regression. This difficulty arising from the 

nature of complex networks can be solved by 

examining each system in detail and temporally, 

with new topological properties (and/or hybrid 

topological properties) that will explain the 

structural features of that system. This study is the 

basis for revealing the topology-link prediction 

relationships. Later on, these relationships can be 

detailed in many respects. Some experiments 

conducted in this study can form the basis for 

studies in many different disciplines, each of which 

can be a separate subject in physics, mathematics, 

social or computer sciences. 

4. Conclusion 

We carried out a series of experiments to evaluate 

the performance of sixteen different link prediction 

methods used in traditional score ranking-based 

prediction. Experiments were performed with 

eleven networks having different characteristics. 

Performances were measured by AUC and 

Precision. Ultimately, we found that HRG and RA 

yielded the most successful results. Of these, HRG is 

less dependent on the number of missing links in the 

network. In addition, the possible relationship 

between these methods and the network topology 

was also examined in the experiments. Again, HRG 

was found to be correlated with the eigenvector 

centralization of the network. This method can be 
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advantageous if prediction is to be done on a 

network dominated by popular nodes. 

 

The results demonstrate that Precision and AUC 

scores can exhibit different behaviors. These 

experiments showed us that an objective evaluation 

of prediction results is a complex problem with 

various parameters. In the following stages, new 

and more different networks can be added to the 

experimental dataset. The relationship between 

topological properties and prediction methods can 

be examined in more depth by using other metrics 

such as recall or AUPR. Thus, partial hybrid solutions 

or ensemble solutions resulting in higher success 

can be developed according to the topology of the 

network. 
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