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Abstract 
A numerical method that will improve and produce effective results for solving mathematical model for 
the system of predator-prey interactions which is defined by convection-diffusion-reaction problem is 
studied herein. We consider the Pseudo Residual-free Bubble (PRFB) method which is based on 
augmenting the finite element space by appropriate functions for the space discretization. The method 
is applied on different test problems and the numerical solutions are in good agreement with the result 
available in literature. The numerical results depict that the algorithm is efficient and feasible. 

 
 

Av-Avcı Problemleri için Kararlı Sonlu Eleman Yöntemleri Üzerine Bir 
Not 

Anahtar kelimeler 

Av-avcı denklem 

sistemleri;   

Konveksiyon-difüzyon-

reaksiyon;  Kararlı 

Sonlu Eleman Yöntemi;   

Çok-ölçekli Yöntemler. 

 

Öz 

Bu çalışmada, konveksiyon-difüzyon-reaksiyon problemleri ile modellenebilen av-avcı denklem 

sistemlerinin simülasyonunda kullanılan sayısal çözüm tekniklerini iyileştirecek ve daha etkin sonuçlar 

üretecek sayısal bir yöntem önerilmiştir. Uzay ayrıklaştırması için, sonlu elemanlar metodunu 

uygularken seçilen polinom baz fonksiyonlarına ilaveten fonksiyon uzayının özel tip fonksiyonlarla 

(residual-free bubbles) zenginleştirilmesine dayanan Pseudo Residual-free Bubble (PRFB) yöntemi 

kullanılmıştır. Söz konusu yöntem, çeşitli test örneklerine uygulanmış olup elde edilen sayısal 

çözümlerin, literatürde mevcut olan sonuçlar ile iyi bir uyum içinde olduğu gözlemlenmiştir. Sayısal 

sonuçlar, önerilen yöntemin verimli ve uygulanabilir olduğunu göstermektedir. 

© Afyon Kocatepe Üniversitesi 

 

1. Introduction 

   

The mathematical model for the predator-prey 

interactions is an important subject in mathematical 

biology and ecology (Allen 2007, Murray 2003). There 

are many approaches to describe the predator-prey 

systems that have been used to model the process of 

dispersal and its ecological effects and evolution 

(Chong et al. 2005, Meyer et al. 1997). One common 

approach contains interactions between reaction 

diffusion and convection processes, which can be 

modeled in terms of the convection-diffusion-

reaction (CDR) problems (Cosner 2014, Medvinsky et 

al. 2002). Here, the convection (C) term can be 

interpreted as the movement of species; the diffusion 

(D) describes the dispersion of the species  

 

 

throughout the physical domain of the problem and 

the reaction (R) defines the interaction process 

through the generated / consumed species involved 

in the phenomenon. Analytical solutions of those 

problems can only be obtained under specific 

circumstances, therefore efficient and feasible 

algorithms are needed for the numerical solutions of 

those problems. However, the numerical solution of 

those problems might become a challenge as it is well 

known that the discrete solutions generated by 

standard numerical methods is usually globally 

polluted by non-physical oscillations in the 

whole domain. Therefore, effective algorithms for the 

numerical solutions of those problems has 

               Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 
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captured the interest of a number of many 

researchers (Dimitrov and Kojouharov 2006, Garzon 

et al. 2012, Stefano et al. 2013). 

 

A considerable amount of research works has been 

devoted for discretizing predator-prey systems 

among them, the finite difference method is 

frequently used. However, those methods are 

inefficient and accurate solutions having the same 

qualitative features as the continuous problem could 

not be obtained for higher dimensions. Dimitrov and 

Kojouharo used non-standard techniques to 

construct stability-preserving Elementary Stable Non-

standard (ESN) schemes for arbitrary time step-sizes 

(Dimitrov and Kojouharov 2007, Mickens 1994). 

Nevertheless, the need for a positive discrete solution 

for all positive initial values is considered as a 

drawback of the ESN method. Recently many 

researchers have worked on positive and elementary 

stable nonstandard (PESN) algorithms for predator-

prey systems (Dimitrov and Kojouharov 2006, 

Moghadas et al. 2004). 

 

The second approach to get effective approximations 

for treating CDR problems is the stabilized finite 

element method (FEM). Among to that class, the 

Residual-Free Bubbles (RFB) method which is based 

on enriching the finite element space with special 

“residual-free bubble” functions could be mentioned 

first (Brezzi et al. 1997, Brezzi and Russo 1994). 

Although the residual-free bubbles produce effective 

discretization, the drawback of this methodology 

resides in that it requires to solve locally defined 

differential equation which has similar characteristic 

behavior to the original one (Franca et al. 1998). 

Motivating by that observation, the Pseudo Residual-

free Bubble (PRFB) method has been introduced. In 

this strategy, the residual-free bubbles are 

approximated by piecewise linear functions on a 

suitable sub-grid to represent accurately the fine 

scale-effect of the exact solution in the coarse scale 

numerical approximation (Brezzi et al. 1998, Brezzi et 

al. 2005, Sendur and Nesliturk 2012, Sendur et al. 

2014). It seems that the PRFB strategy is quite robust 

and effective method for the numerical solutions of 

the CDR problems. 

 

In this study, we aim to discover the potential of the 

Pseudo Residual-free Bubble method as an algorithm 

for the numerical solution of predator-prey 

interactions. The organization of the paper is as 

follows: In Section 2, we introduce the mathematical 

models for the process of predator-prey dynamics in 

1D. We describe the details of the numerical method 

in Section 3. Finally, we perform the numerical 

experiments and draw conclusions in Section 4. 

 

2. Model Description  

 

We consider the following CDR problem as a 

mathematical model for a predator-prey system:

 

{
 

 
𝜕𝑢

𝜕𝑡
= 𝜖1

𝜕2𝑢

𝜕𝑥2
− 𝛼1

𝜕𝑢

𝜕𝑥
+ 𝑓(𝑢, 𝑣)

𝜕𝑣

𝜕𝑡
= 𝜖2

𝜕2𝑣

𝜕𝑥2
− 𝛼2

𝜕𝑢

𝜕𝑥
+ 𝑔(𝑢, 𝑣)   in  Ω × (0, 𝑇]

 

(1) 

 

where 𝑓(⋅), 𝑔(⋅) are assumed to be a 

𝒞2( [0, 𝑇]; 𝐿2(Ω)) functions. We will focus on the 

following two specific type functions,   

 

 Kinetics (i)   𝑓(𝑢, 𝑣) = 𝑢(𝑟1 − 𝑢) − 𝛾1𝑢𝑣   and   

                              𝑔(𝑢, 𝑣) = 𝑣(𝑟2 − 𝑣) + 𝛾2𝑢𝑣.  

 

 Kinetics (ii) 𝑓(𝑢, 𝑣) = 𝑢(1 − 𝑢) −
𝑢𝑣

𝑢+𝛼
   and   

                              𝑔(𝑢, 𝑣) = 𝛽
𝑢𝑣

𝑢+𝛼
− 𝛾𝑣.  

Here, the 1-dimensional bounded domain where the 

problem is to be solved has been denoted by Ω ⊂ ℝ, 

the boundary by 𝜕Ω and the time interval by (0, 𝑇]. 

The system parameters are as follows: 𝑢 and 𝑣 define 

the populations of prey and predators, 𝜖1 and 𝜖2 are 

diffusion constants, 𝛼1 and 𝛼2 are the convection 

rates, 𝑟1 and 𝑟2 are the growth rates, 𝛾1 is the 

predation rate and 𝛾2 is the conversion rates of the 

prey and the predator, respectively. Here, 𝜖1, 𝜖2, 𝛼1, 

𝛼2, 𝑟1, 𝑟2, 𝛾1, 𝛾2 are positive constants. The equation 

(1) will be supplied with the homogeneous Neumann 

boundary condition  

 

 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑥
= 0    on  𝜕Ω,    𝑡 ∈ (0, 𝑇] 
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and with an initial condition of the form  

 

 𝑢 = 𝑢0,    𝑣 = 𝑣0    in  Ω,    𝑡 = 0 

 

The qualitative properties of the model (1) including 

the theoretical aspects are studied in detail in (Garvie 

2007, Garvie et al. 2015, Hilker and Lewis 2010, Zhang 

and Jin 2017). 

 

3. Motivation for the numerical method  

 

We will first recall the variational formulation of 

problem (1):  

 

{
 
 
 

 
 
 
Find  𝑢 ∈ 𝐿2( (0, 𝑇); 𝑉 ) ∩ 𝒞0( [0, 𝑇]; 𝐿2(Ω)) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

(𝑢̇(𝑡), 𝑤) + 𝑎(𝑢(𝑡), 𝑤; 𝜖1, 𝛼1) = (𝑓(𝑢, 𝑣),𝑤),    ∀𝑤 ∈ 𝐻0
1(Ω)

(𝑣̇(𝑡), 𝑤) + 𝑎(𝑣(𝑡), 𝑤; 𝜖2, 𝛼2) = (𝑔(𝑢, 𝑣),𝑤),    ∀𝑤 ∈ 𝐻0
1(Ω)

𝑢(𝑥, 0) = 𝑢0, 𝑣(𝑥, 0) = 𝑣0

(2) 

 

where 𝑉 = 𝐻0
1(Ω). Here, the superposed dot denotes 

the time differentiation and (⋅,⋅) is the 𝐿2(Ω) inner 

product and the bilinear operator is  

 

𝑎(𝑢(𝑡), 𝑤; 𝜖, 𝛽) = 𝜖 ∫
Ω
𝑢𝑥 𝑤𝑥 + ∫Ω 𝛽 𝑢𝑥  𝑤     (3)                   

 

Let 0 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁−1 < 𝑥𝑁 = 1 and 

𝒯ℎ = {𝐾} be a decomposition of Ω into subintervals 

𝐾 = (𝑥𝑘−1 , 𝑥𝑘) where 𝑘 = 1,… ,𝑁 and {0 = 𝑡0 <

𝑡1… < 𝑡𝑀 = 𝑇} be a uniform partition of time 

interval with Δ𝑡𝑚 = 𝑡𝑚+1 − 𝑡𝑚. Moreover, the time 

discretization of the continuous reaction kinetics 

𝑓(𝑢, 𝑣) and 𝑔(𝑢, 𝑣)   are defined by: 

 

Kinetics (i) 

𝑓(𝑢𝑛, 𝑣𝑛) ≔ 𝛽1𝑢
𝑛(1 − 𝑢𝑛−1) − 𝛾1𝑢

𝑛𝑣𝑛−1 ≈ 𝑓(𝑢, 𝑣)

𝑔̂(𝑢𝑛, 𝑣𝑛) ≔ 𝛽2𝑣
𝑛(𝑟 − 𝑣𝑛−1) + 𝛾2𝑢

𝑛−1𝑣𝑛 ≈ 𝑔(𝑢, 𝑣)
 

Kinetics (ii) 

𝑓(𝑢𝑛 , 𝑣𝑛) ≔ 𝑢𝑛(1 − 𝑢𝑛−1) −
𝑢𝑛𝑣𝑛−1

𝑢𝑛−1 + 𝛼
≈ 𝑓(𝑢, 𝑣)

𝑔̂(𝑢𝑛 , 𝑣𝑛) ≔ 𝛽
𝑢𝑛−1𝑣𝑛

𝑢𝑛−1 + 𝛼
− 𝛾𝑣𝑛 ≈ 𝑔(𝑢, 𝑣)

 

  

Here, the finite element solutions 𝑢𝑛  and 𝑣𝑛  are 

approximations of the continuous solutions 𝑢 and 𝑣 

at 𝑡𝑛 . The problem (1) can be integrated in time by 

using semi-implicit time-stepping scheme to get the 

following discretized problem: 

 

{
 
 

 
 
𝑢𝑛−𝑢𝑛−1

Δ𝑡𝑛
= 𝜖1

𝜕2𝑢𝑛

𝜕𝑥2
− 𝛼1

𝜕𝑢𝑛

𝜕𝑥
+ 𝑓

𝑣𝑛−𝑣𝑛−1

Δ𝑡𝑛
= 𝜖2

𝜕2𝑣𝑛

𝜕𝑥2
− 𝛼2

𝜕𝑣𝑛

𝜕𝑥
+ 𝑔, 𝑛 = 1, . . ,𝑀.

(4) 

 

Then, the corresponding bilinear form is defined as, 

{
 
 

 
 
(𝑢𝑛,𝑤)−(𝑢𝑛−1,𝑤)

Δ𝑡𝑛
+ 𝑎(𝑢𝑛 ,𝑤; 𝜖1, 𝛼1) = (𝑓,𝑤)

(𝑣𝑛,𝑤)−(𝑣𝑛−1,𝑤)

Δ𝑡𝑛
+ 𝑎(𝑣𝑛 , 𝑤; 𝜖2, 𝛼2) = (𝑔,𝑤), 𝑛 = 1, … ,𝑀.

(5) 

for any 𝑤 ∈ 𝐻0
1. 

 

In order to discretize the problem (5) in space, we use 

an economical form of the RFB method (Brezzi et al. 

1992, Hughes 1995) which is designed for the 

stationary problem and its explicit description is given 

in (Sendur and Nesliturk 2012). Here, the RFB 

functions are replaced by pseudo RFBs, which retain 

the same qualitative behavior as the RFBs, and they 

are computed by using appropriate sub-grid inside 

each element 𝐾. Once the subgrid points are 

calculated, we can treat the resulting scheme as doing 

plain Galerkin on the new mesh that results adding 

the sub-grid to the original one. We now apply the 

strategy proposed in Sendur and Nesliturk (2012) to 

the problem (5), that is:  

Find 𝑢ℎ
𝑛 , 𝑣ℎ

𝑛 ∈ 𝑉ℎ such that ∀𝑤ℎ ∈ 𝑉ℎ  

 

{
 
 

 
 
(𝑢ℎ
𝑛,𝑤ℎ)−(𝑢ℎ

𝑛−1,𝑤ℎ)

Δ𝑡𝑛
+ 𝑎(𝑢ℎ

𝑛 , 𝑤ℎ; 𝜖1, 𝛼1) = (𝑓, 𝑤ℎ)

(𝑣ℎ
𝑛,𝑤ℎ)−(𝑣ℎ

𝑛−1,𝑤ℎ)

Δ𝑡𝑛
+ 𝑎(𝑣ℎ

𝑛 ,𝑤ℎ; 𝜖2, 𝛼2) = (𝑔,𝑤ℎ), 𝑛 = 1,… ,𝑀.

(6) 

 

where 𝑉ℎ ⊂ 𝐻0
1(𝐼)  is the finite-dimensional space 

(see Sendur and Nesliturk (2012) for details). It is also 

possible to express finite dimensional problem (6) as 

linear algebraic equations in the following block 

matrix form for each time step: 
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(
𝐴1
𝑛−1 𝐵1

𝑛−1

0 𝐶1
𝑛−1)(

𝑢𝑛

𝑣𝑛) = (
𝑢𝑛−1

𝑣𝑛−1) + (
Φ1
𝑛−1

Ψ1
𝑛−1) 

where 𝐴1
𝑛−1, 𝐵1

𝑛−1, 𝐶1
𝑛−1, Φ1

𝑛−1 and Ψ1
𝑛−1 are some 

matrices, depending on the solution at time level 

𝑡𝑛−1. 

 

4. Numerical Results 

 

We present experimental results demonstrating the 

performance of the present algorithm (PRFB) for the 

nonlinear convection-diffusion-reaction systems 

modeling predator-prey interactions. 

 

4.1. Experiment 1: Model (1) with kinetics (i) 

 

We will first consider the following test problem (see 

Zhang and Jin (2017)) in a bounded domain Ω =

(−100,150):  

 

{
 
 
 
 

 
 
 
 
𝜕𝑢

𝜕𝑡
= 𝜖1

𝜕2𝑢

𝜕𝑥2
− 0.3  

𝜕𝑢

𝜕𝑥
+ 𝑢(1 − 𝑢) − 0.2  𝑢𝑣

𝜕𝑣

𝜕𝑡
= 𝜖2

𝜕2𝑣

𝜕𝑥2
− 0.8  

𝜕𝑢

𝜕𝑥
+ 𝑣(1 − 𝑣) + 0.8  𝑢𝑣   in  Ω × (0,25]

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑥
= 0    on  𝜕Ω,   𝑡 ∈ (0,25]

𝑢(𝑥, 0) = 1,    𝑣(𝑥, 0) = {
0.2, 𝑥 ∈ [−1,1]
0, otherwise

(7) 

 

We first set 𝜖1 = 𝜖2 = 1 and decompose the domain 

into subintervals of length 𝑁 = 100 and present the 

solutions obtained with the standard Galerkin 

method on both coarse / fine mesh (as reference 

solution) and the present formulation in Figure 1. We 

observe that the present method is stable and 

produces a solution that is very close to the exact 

solution while the approximations obtained by the 

Galerkin method exhibit non-physical oscillations. 

 

 

 
(a) Numerical solution (Gal) for 𝑁 = 100.  

 
(b) Numerical solution (Gal) for 𝑁 = 4000. 

 
(c) Numerical solution (PRFB) for  𝑁 = 100.  

Figure 1: The numerical solution when 𝜖1 = 𝜖2 = 1 and 

Δ𝑡 = 0.001. 
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In Figure 2, we present the numerical solutions when 

𝜖2 = 1 and 𝑁 = 100 for various intensities of 

diffusion (𝜖1 = 0.01, 0.001, 0.0001). The results 

illustrate the importance of the augmented grid 

strategy to capture the details of the solution. We 

note that the results with finer meshes (not presented 

here) show better numerical approximations to the 

exact solution as Δ𝑡 and Δ𝑥 decrease. The results are 

qualitatively similar to the one in Zhang and Jin 

(2017). 

 

 
(a) 𝜖1 = 0.01 

 
(b)  𝜖1 = 0.001 

 

 
(c)  𝜖1 = 0.0001 

Figure 2: The numerical solutions (PRFB) when 𝜖2 = 1,

Δ𝑡 = 0.001, 𝑁 = 100. 

   

4.2. Experiment 2: Model (1) with kinetics (ii) with 

different conditions 

 

Next, we consider the following test case in a 

bounded domain Ω = (0,4000):  

 

{
 
 
 
 

 
 
 
 
𝜕𝑢

𝜕𝑡
= 𝜖1

𝜕2𝑢

𝜕𝑥2
− 𝛼1

𝜕𝑢

𝜕𝑥
+ 𝑢(1 − 𝑢) −

𝑢𝑣

𝑢+
33

80

𝜕𝑣

𝜕𝑡
= 𝜖2

𝜕2𝑣

𝜕𝑥2
− 𝛼2

𝜕𝑢

𝜕𝑥
+ 2

𝑢𝑣

𝑢+
33

80

− 0.8  𝑣    in  Ω × (0,40]

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑥
= 0    on  𝜕Ω,    𝑡 ∈ (0,600]

𝑢(𝑥, 0) =
11

40
+ 10−8(𝑥 − 1200)(𝑥 − 2800), 𝑣(𝑥, 0) =

319

640

(8) 

 

We first set 𝜖1 = 𝜖2 = 1 and decompose the domain 

into subintervals of length 𝑁 = 50 and present the 

numerical solutions obtained with the standard 

Galerkin method on both coarse and fine mesh 

(reference solution) and the present formulation. 

Comparing the results in Figure 3, we conclude that 

the present method performs very well even on 

coarse mesh and produces a solution that is very close 

to the exact solution while the approximation 

obtained by the Galerkin method is not satisfactory. 
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(a)  Numerical solution (Gal) for 𝑁 = 4000. 

 
(b)  Numerical solution (Gal) for 𝑁 = 50. 

 
(c)  Numerical solution (PRFB) for 𝑁 = 50. 

Figure 3: The numerical solutions when 𝜖1 = 𝜖2 = 1 and 

Δ𝑡 = 0.001. 

   

In Figure 4, we present the numerical solutions when 

𝜖2 = 1 and 𝑁 = 100 for various intensities of 

diffusion (𝜖1 = 0.01, 0.0001). The results show the 

present formulation is convenient to capture the 

exact characteristics of the solution for a wide range 

of problem configurations. 

 

 
(a) Numerical solution (Gal) for 𝜖1 = 0.01, 𝑁 = 4000. 

 
(b) Numerical solution (PRFB) for 𝜖1 = 0.01, 𝑁 = 100. 
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(c) Numerical solution (Gal) for 𝜖1 = 0.0001, 𝑁 =

4000.  

 
(d) Numerical solution (PRFB) for 𝜖1 = 0.0001, 𝑁 =

100.   

Figure 4: The numerical solution when 𝜖2 = 1 and Δ𝑡 =

0.001. 

 

4.3. Experiment 3: Model (1) with kinetics (ii) 

 

Finally, we take the following test case (see Garvie 

(2007)) in a bounded domain Ω = (0,200) with 

different conditions:  

{
 
 
 
 

 
 
 
 
𝜕𝑢

𝜕𝑡
= 𝜖1

𝜕2𝑢

𝜕𝑥2
− 𝛼1

𝜕𝑢

𝜕𝑥
+ 𝑢(1 − 𝑢) −

𝑢𝑣

𝑢+0.3

𝜕𝑣

𝜕𝑡
= 𝜖2

𝜕2𝑣

𝜕𝑥2
− 𝛼2

𝜕𝑢

𝜕𝑥
+ 2

𝑢𝑣

𝑢+𝛼
− 0.8  𝑣    in  Ω × (0,40]

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑥
= 0    on  𝜕Ω,    𝑡 ∈ (0,40]

𝑢(𝑥, 0) = 𝑒−(𝑥−
100)2

5 ,    𝑣(𝑥, 0) =
2

5

(9) 

 

In Figures 5-6, we set 𝜖1 = 𝜖2 = 1 and 𝜖1 = 0.0001,

𝜖2 = 1, respectively, decompose the domain into 

𝑁 = 100 subintervals and plot the numerical 

approximations obtained with the standard Galerkin 

method on fine mesh (as reference solution) and the 

present method. Figures 5-6 demonstrate that we 

achieve a perfect match between the numerical and 

reference solutions. We also note that the plots are 

qualitatively similar to the one in Garvie (2007). 

 
(a) Numerical solution (Gal) for 𝑁 = 4000.  
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(b) Numerical solution (PRFB) for 𝑁 = 100.  

Figure 5: The numerical solution when 𝜖1 = 𝜖2 = 1 and 

Δ𝑡 = 0.001. 

  

 
(a) Numerical solution (Gal) for 𝑁 = 4000. 

 

 
(b) Numerical solution (PRFB) for 𝑁 = 100. 

Figure 6:  The numerical solution when 𝜖1 = 0.0001 𝜖2 =

1 and Δ𝑡 = 0.001. 

 

 

5. Conclusion 

 

In this paper, numerous benchmark problems are 

employed to validate the performance and the 

robustness of the PRFB method for the numerical 

solution of predator-prey interactions. Numerical 

experiments cover a wide range of problem 

configurations and the results illustrate the good 

performance of the PRFB method. 
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