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ABSTRACT

M.Sc.Thesis

STURM-LIOUVILLE PROBLEMS AND BOOLEAN DIFFERENTIAL

EQUATIONS

Elif Nuray

Afyon Kocatepe University

Graduate School of Natural and Applied Sciences

Department of Mathematics

Supervisors: Prof. Dr. Gheorghe Morosanu

Assist. Prof. Dr. Mehmet Eyüp Kiriş

This thesis consists of five sections. In the first section, the important points of

subject which we studied are introduced. In the second section, the biological diffu-

sion process is examined with mathematical model and the solution by method of

separation variables. Formulation of the general Sturm-Liouville problem is given

in the third section. In the fourth section, main results on Sturm-Liouville problem

is given with important properties. In addition to the properties, boundary value

problem and Green’s function is introduced and relation between Green’s function

and regular Sturm-Liouville problem via eigenfunction expansion is given. After

giving the important theorems, completeness of eigenfunctions of Sturm-Liouville

problems are investigated in the fourth section of the thesis. In the final section,

Boolean Differential Equations which are very important in Mathematical Logic are

introduced. The purpose of this section is to start to investigate getting Boolean

form of Sturm-Liouville problems if it is possible.

2013, v+50 pages.

Key Words: Sturm-Liouville Problems, logic function, Boolean Differential Equa-

tion, diffusion process on biological systems, the method of separation of variables,

Green’s function, boundary value problems, eigenvalue and eigenfunction.
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ÖZET

Yüksek Lisans Tezi

STURM-LIOUVILLE PROBLEMLERİ VE BOOLEAN DİFERANSİYEL

DENKLEMLERİ

Elif Nuray

Afyon Kocatepe Üniversitesi

Fen Bilimleri Enstitüsü

Matematik Anabilim Dalı

Danışmanlar: Prof. Dr. Gheorghe Morosanu

Yrd. Doc. Dr. Mehmet Eyüp Kiriş

Bu tez beş bölümden oluşmaktadır. Birinci bölümde, çalıştığımız konunun önemli

noktaları tanıtıldı. İkinci bölümde, biyolojiksel difüzyon sürecinin matematiksel

modeli ve değişkenlerine ayrılabilir yöntemi çalışıldı. Sturm-Liouville probleminin

formülü üçüncü bölümde ve ana sonuçları ile önemli özellikleri ise dördüncü bölümde

verildi. Özelliklere ek olarak, sınır değer problemi ile Green fonksiyonu tanıldı ve

özfonksiyon açılımı yardımıyla olan Sturm-Liouville problemi ve Green fonksiyonu

arasındaki ilişki anlatıldı. Yine dördüncü bölümde, önemli teoremler verildikten

sonra, Sturm-Liouville problemlerinin özfonksiyonlarının tamlığı araştırıldı. Final

bölümünde, Matematiksel Lojik’te çok önemli bir yer tutan Boolean Diferansiyel

Denklemleri tanıtıldı. Bu bölüm, eğer varsa, Sturm-Liouville problemlerinin Boolean

formunu araştırmak için bir ön adım niteliğini taşımaktadır.

2013, v+50 sayfa.

Anahtar Kelimeler: Sturm-Liouville Problemleri, lojik fonksiyonu, Boolean Difer-

ansiyel Denklemi, biyolojiksel sistemlerde difüzyon süreci, değişkenlerine ayırma

metodu, Green Fonksiyonu, sınır değer problemleri, özdeğer ve özfonksiyon.
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1 INTRODUCTION

Many of problems of the mathematical physics, mathematical biology and engi-

neering are connected to Sturm-Liouville problems. Mathematicians have studied

Sturm-Liouville problems for over 200 years. Highly developed theory and remains

an active area of interest. A regular Sturm–Liouville equation, named after Jacques

Charles François Sturm (1803–1855) and Joseph Liouville (1809–1882).

In this thesis, the main aim is giving the important points and the details about

Sturm-Liouville problem and also solving the problems by using several mathemati-

cal methods. In addition to this, the other important aim of this study is introducing

Boolean Differantial Equation. Biological diffusion process and heat equation exam-

ined before discussing about Sturm-Liouville problem. The examined mathematical

model was solved by the method of separation of variables. After reaching the for-

mulation of Sturm-Liouville problem, the main results and important properties was

given in the related section. In the last section, the basic subject was given about

Boolean Differenatial Equation. This study will be a first step for further stud-

ies about the relation between Sturm-Liouville problems and Boolean Differential

Equations.

2 ON A BIOLOGICAL DIFFUSION PROCESS

In this section, we discuss a biological process that leads to an example of a Sturm-

Liouville problem, thus motivating the mathematical theory included in the next

sections of this thesis. More precisely we are interested in

2.1 Diffusion Through Membranes. Description and the

Mathematical Modeling

If some matter is dissolved in a given fluid we obtain a solution. The solution

is characterized by its mass concentration, say c, which depends on the time t

and the space variable x, i.e., c = c(t, x). Thus c represents the mass of dissolved

matter per unit volume of liquid. The typical combination is salt plus water, and in

1



general solute plus solvent gives a solution. The solute molecules move through

the solvent from a high concentration to a low concentration region. This process is

called diffusion. According to the well-known Fick’s law of diffusion, the solute

flux per unit area, say j, is proportional to the rate of change ∂c
∂x
, i.e.,

j = −D ∂c

∂x
,

where D is a positive constant called the diffusion coefficient. It depends on the

corresponding solution. The minus sign is motivated by the fact that the molecular

flow is from a high concentration to a low concentration region.

If the solution occupies a region in R
3, then c = c(t, x, y, z). And the components

of the flux j satisfy the equations

jx = −D ∂c

∂x
, jy = −D∂c

∂y
, jz = −D∂c

∂z
. (2.1.1)

Let V be an arbitrary volume with boundary S. By the law of mass conservation

∂

∂t

∫

V

c(t, x, y, z)dV = −
∫

S

j.ndS, (2.1.2)

where n is the outward unit normal to S.

S

V

n

ds

Figure 2.1.1: The conservation of mass.

By making use of (2.1.2) and Gauss’ divergence theorem, one obtains

∫

V

(
∂c

∂t
+∇ · j

)
dV = 0. (2.1.3)

In equation (2.1.3) ∇ · j is the divergence of the vector j and defined as

∇ · j = ∂jx
∂x

+
∂jy
∂y

+
∂jz
∂z

.

2



As a result, equations (2.1.1) and (2.1.3) lead us to the classic diffusion equation

∂c

∂t
= D∇2c. (E)

Equation (E) is also the basic equation of heat conduction, so it is also called the

heat equation. In this case c = c(t, x, y, z) represents the temperature within a

body and D is the heat conductivity of the body, which is assumed to be homoge-

neous.

Now, following the e.g. (Jones et al. 2010), we are going to describe the diffusion of

a solute into a cell. The plasma membrane of the cell consists of a double layer of

lipid molecules, as shown in the figure below,

0 ∆

Membrane

Cell Exterior

c0
1

Cell Interior

c0
2

x

Figure 2.1.2: Idealised cell membrane model.

We consider diffusion through the double lipid layer that has the form of a slab

whose thickness is equal to δ > 0. For simplicity, assume that there is no solute in

the membrane at the initial time instant., i.e.,

c(0, x) = 0, 0 ≤ x ≤ δ. (IC1)

We also assume

c(t, 0) = c01, c(t, δ) = c02, (BC1)

where c01 and c02 are constants, i.e., the concentrations at the two outer walls of the

membrane are constant functions. The diffusion equation (E) has the form

∂c

∂t
= D

∂2c

∂x2
, (E1)

3



where c = c(t, x), t ≥ 0, 0 ≤ x ≤ δ.

Therefore themathematical model associated with the diffusion process described

above consists of equation (E1), initial condition (IC1) and boundary conditions

(BC1).

2.2 Solving the Mathematical Model by the Method of Sep-

aration of Variables

The boundary conditions that we denoted by (BC1) are called Dirichlet boundary

conditions. In order to solve our problem (E1), (IC1), (BC1), firstly we should

homogenize the boundary conditions (BC1) by using the change

c̃(t, x) =c(t, x)− (1− x

δ
)c01 −

x

δ
c02

=c(t, x) +
x

δ
(c01 − c02)− c01
︸ ︷︷ ︸

f(x)

. (2.2.1)

The function c̃ must satisfy the following equations

∂c̃

∂t
=D

∂2c̃

∂x2
, 0 < x < δ, t > 0, (E2)

c̃(0, x) =f(x), 0 ≤ x ≤ δ, (IC2)

c̃(t, 0) =0, c̃(t, δ) = 0, t > 0. (BC2)

The new boundary conditions (BC2) are indeed homogeneous. Instead, a function

f occurs in the initial condition, representing the initial distribution of c̃ in [0, δ].

We seek c̃ of the form

c̃(t, x) = u(x)v(t), (2.2.2)

i.e., the variables x and t are separated. That is why the method is called the

method of separation of variables. Substituting (2.2.2) into (E2) yields

u(x)v′(t) = Du′′(x)v(t),

or
u′′(x)

u(x)
=

1

D

v′(t)

v(t)
.

4



Since the left -hand side depends only on x and the right-hand side depends only

on t, it is necessary that both sides of the equation above be equal to the same

constant, say k, that is

u′′(x) =ku(x), (2.2.3)

v′(t) =Dkv(t). (2.2.4)

Conditions (BC2) imply

u(0) = 0 = u(δ), (2.2.5)

unless v(t) = 0 for all t. But this case is excluded because we would obtain c̃ ≡ 0

which is possible only if f ≡ 0.

The problem we have to solve is to find those constants k ∈ R for which problem

(2.2.3), (2.2.5) has no trivial solutions. We can see easily that the only solution of

this problem is u ≡ 0, for all k ≥ 0. This means that k must be negative. Let us

say k = −q2, where q > 0. In this case, the general solution of equation (2.2.3) is

given by

u(x) = α cos(qx) + β sin(qx),

where α, β ∈ R. From (2.2.5), it is easily seen that α = 0 and

q =
nπ

δ
, n = 1, 2, · · · (2.2.6)

Consequently

u(x) = β sin

(
nπ

δ
x

)
,

where β ∈ R\{0}.

To complete the solution of our original problem, we have to determine v = v(t).

Substituting k = −q2 = −n2π2

δ2
into equation (2.2.4), we obtain

v′(t) = −Dn
2π2

δ2
v(t),

so that

v(t) = γ exp

{
−D

n2π2

δ2
t

}
,

5



where γ ∈ R\{0}. Therefore we obtain

c̃(t, x) = ω exp

{
−D

n2π2

δ2
t

}
sin

(
nπ

δ
x

)
, (2.2.7)

where ω ∈ R\{0}.

Obviously any c̃ given by the equation (2.2.7) satisfy (E2) and (BC2). But it does

not satisfies in general (IC2) because f is not a sin function. The same remark is

valid for a finite sum of such functions c̃. This suggests that we formally extend our

search to series

c̃(t, x) =
∞∑

n=1

γn exp

{
−D

n2π2

δ2
t

}
sin

(
nπ

δ
x

)
.

Formally this c̃ satisfies (E2) and (BC2). In order to satisfy (IC2) we must have

∞∑

n=1

γn sin

(
nπ

δ
x

)
= f(x), 0 ≤ x ≤ δ.

Thus γn must be the Fourier coefficients of f with respect to the orthogonal system

{sin(nπ
δ
x)}n∈N, i.e.,

γn =
2

δ

∫ δ

0

f(t) sin

(
nπ

δ
t

)
dt, n ∈ N.

The solution we have provided so far for the mathematical model presented above is

a formal one. It is possible to show rigorously that c̃ is indeed a solution of problem

(E2), (BC2) and (IC2), provided that f is square integrable on [0, δ]. Coming back

to (2.2.1) we obtain c(t, x).

Comments

In this section, by using the method of separation variables to solve problem (E2),

(BC2) and (IC2) we arrived at the problem






u′′(x) = ku(x), 0 < x < δ

u(0) = 0 = u(δ).

(P)

We did show that there exist a sequence of k’s, kn = −n2π2

δ2
(n ∈ N), such that

for each n, problem (P) has nontrivial solutions. We also know that {un}n∈N is

6



a complete orthogonal system in the space of square integrable functions. This

information is useful when we want to expand f = f(x) as a Fourier series.

Usually kn are called eigenvalues and un eigenfunctions of problem (P). There

are many problems similar to (P) that arise when one uses separation of variables to

solve problems involving the Laplace operator. Next we will discuss a general class

of problems, called Sturm-Liouville problems, including the ones similar to (P). The

Sturm-Liouville theory aims to identify common features.

7



3 FORMULATION OF THE GENERAL STURM-

LIOUVILLE PROBLEM

In the previous section we solved a specific mathematical model by using the method

of separation of variables. Thus we arrived at the problem




u′′(x) = −λu(x), 0 < x < δ,

u(0) = 0 = u(δ),

(3.1)

where δ is a positive constant, and λ is a parameter (here we prefer to change k

to −λ). The main question was to find those λ for which problem (3.1) has non-

trivial solutions. Such values of λ are called eigenvalues of problem (3.1), and the

corresponding non-trivial solutions u = u(x) are the eigenfunctions of this problem.

In the following we discuss two more examples.

Example 3.1: Consider the problem




∂T
∂t

= α∂2T
∂x2 , 0 < x < L, t > 0,

T (t, 0) = 0 = ∂T
∂x
(t, L), t > 0,

T (0, x) = f(x), 0 ≤ x ≤ L.

(3.2)

This problem is a mathematical model describing the distribution of the heat (or

variation in temprature) in a rod of length L. Here α > 0 is the thermal diffusivitiy,

and f = f(x) is the initial distribution of T . For simplicity, we assume that f is a

smooth function. The boundary conditions show that: T is zero at the left endpoint

of the rod, and the heat flux is zero at the right endpoint.

Again, we use separation of variables. Thus we seek a solution of the form

T (t, x) = u(x)v(t).

Inserting this into the above equation, we get

u(x)v′(t) = αu′′(x)v(t)

or
u′′(x)

u(x)
=

1

α

v′(t)

v(t)
.

8



We then have the equations

u′′(x) = −λu(x) (3.3)

and

v′(t) = −αλv(t).

Here λ is a real parameter. As we will see later the case λ ∈ C\R is excluded. From

the boundary conditions we easily derive

u(0) = 0 = u′(L), (3.4)

since we are looking for non-trivial solutions of problem (3.2). We are looking for

those λ ∈ R for which there exist non-trivial solutions of the problem




u′′(x) = −λu(x), 0 < x < L,

u(0) = 0 = u′(L).

(3.5)

This problem is similar to the one we solved in the preceding section, except for

the new condition u′(L) = 0. It is easily seen that λ ≤ 0 can not be eigenvalues

of problem (3.5). If λ > 0, i.e., λ = µ2 with µ > 0, then imposing to the general

solution of the above differential equation,

u(x) = A cos(µx) +B sin(µx),

to satisfy the boundary conditions,

u(0) = 0 = u′(L),

we obtain

A = 0 and cos(µL) = 0.

Therefore, we have the following eigenvalues

λ = λn =
(2n+ 1)2π2

4L2
, n = 0, 1, · · ·

and the corresponding eigenfunctions

un(x) = sin

(
(2n+ 1)π

2L
x

)
, n = 0, 1, · · ·

Using these eigenvalues and eigenfunctions, one can proceed as in the previous sec-

tion to find the solution of problem (3.2) in the form of a series expansion.

9



Example 3.2: Consider the problem





ρ(x)
∂2y

∂t2
=

∂

∂x

[
p(x)

∂y

∂x

]
, 0 < x < L, t > 0,

y(t, 0) = 0, y(t, L) = 0, t > 0,

u(0, x) = f(x),
∂y

∂t
(0, x) = g(x), 0 < x < L,

(3.6)

which describes the vibrations of a string of length L, with space-dependent tension

p(x) and variable density ρ(x), with fixed end-points (i.e., the displacement y =

y(t, x) is null at x = 0 and x = L). The initial conditions show the initial position

of the string and its initial velocity at point x.

We are looking for solutions of the form

y(t, x) = v(t)u(x).

Plugging this into the above partial differential equation it follows that

ρ(x)v′′(t)u(x) =
d

dx
[p(x)u′(x)] v(t),

or
v′′(t)

v(t)
=

1

ρ(x)u(x)
(p(x)u′(x))

′
= −λ.

Therefore

v′′(t) = −λv(t), t > 0,

and

(p(x)u′(x))
′
= −λρ(x)u(x). (3.7)

We also have

u(0) = 0 = u(L). (3.8)

In order to solve problem (3.6) we try to find those λ for which the problem (3.7),

(3.8) has non-trivial solutions.

Now, having in mind the above examples, let us formulate the general Sturm-

Liouville problem

(p(x)u′(x))
′
+ q(x)u(x) = −λρ(x)u(x), a ≤ x ≤ b, (E3)

α1u(a) + α2u
′(a) = 0, β1u(b) + β2u

′(b) = 0, (BC3)

10



where −∞ < a < b < +∞.

In Example 3.2 (see (3.1)), we had

a = 0, b = δ, p(x) ≡ 1, q(x) ≡ 0, ρ(x) ≡ 1,

α1 = 1, α2 = 0, β1 = 1, β2 = 0.

In Example 3.1 above we had (see equations (3.3) and (3.4))

a = 0, b = L, p(x) ≡ 1, q(x) ≡ 0, ρ(x) ≡ 1,

α1 = 1, α2 = 0, β1 = 0, β2 = 1.

In Example 3.2 (see equations (3.7) and (3.8)),

a = 0, b = L, q(x) ≡ 0,

α1 = β1 = 1, α2 = β2 = 0.

Throughout in the following we assume that

p ∈ C1[a, b], p(x) > 0 for all x ∈ [a, b];

q, ρ ∈ C[a, b], ρ(x) > 0 for all x ∈ [a, b];

α1, α2, β1, β2 ∈ R, α2
1 + α2

2 6= 0, β2
1 + β2

2 6= 0.

Remark 3.3: Consider the general second-order differential equation

r(x)u′′(x) + s(x)u′(x) + w(x)u(x) = −λµ(x)u(x), a ≤ x ≤ b, (3.9)

where r, s, w, µ ∈ C[a, b], r(x) > 0 for all x ∈ [a, b].

We divide the equation by r(x) and then multiply the resulting equation by

p(x) = exp

∫ x

a

s(τ)

r(τ)
dτ

to obtain

(p(x)u′(x))
′
+ q(x)u(x) = −λρ(x)u(x),

11



where

q(x) =
p(x)w(x)

r(x)
, ρ(x) =

p(x)µ(x)

r(x)
.

Therefore, every general second-order differential equation of the form (3.9) can be

written in the form (3.1), which is more convenient in what follows. For example,

the well-known Hermite equation

u′′(x)− 2xu′(x) + λu(x) = 0

can be written as (
e−x2

u′(x)
)′

= −λe−x2

u(x).

Remark 3.4: There are cases in which the conditions p > 0, ρ > 0 are not satisfied.

Such Sturm-Liouville problems are called singular. We shall investigate only regular

Sturm-Liouville problems (i.e., (E3) and (BC3), with p, ρ > 0).
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4 MAIN RESULTS ON STURM-LIOUVILLE PROB-

LEM

In the previous section, we discussed a few examples and obtained the formulation

of the general Sturm-Liouville problem. Now, we will give some properties related

to the eigenvalues and the eigenfunctions of our regular Sturm-Liouville problem

(defined by (E3) and (BC3)). Then, we will introduce Lagrange and Green’s identity.

Thus, we will be able to prove some of properties by using these important identities.

4.1 Properties of Sturm-Liouville Eigenvalue Problems

There are several properties that can be proven for the regular Sturm-Liouville

problem. However, we will not prove them all in this thesis. Following the e.g.

(Int.Ref.1) we will merely list some of the important facts and focus on a few of the

properties.

1. All eigenvalues λ are real.

2. There is an infinite number of eigenvalues

λ1 < λ2 < · · · < λn < λn+1 < · · ·

There is a smallest eigenvalue λ1 but no largest eigenvalue: λn → ∞ as n→ ∞.

3. Corresponding to each eigenvalue λn there is an eigenfunction say un(x) which

is unique up to an arbitrary multiplicative constant. un(x) has (n − 1) zeros

for x ∈ (a, b).

4. The eigenfunctions form is a complete set. For details see Section 4.8 below.

5. Eigenfunctions associated with distinct eigenvalues are orthogonal relative to

the weight function ρ(x). I.e., if λm 6= λn (m 6= n)

∫ b

a

ρ(x)φm(x)φn(x)dx = 0.

13



Example 4.1.1: We want to solve the eigenvalue problem

Lu = (xu′)′ +
2

x
u = −λρu

subject to a set of boundary conditions. Let us use the boundary conditions

u′(1) = 0, u′(2) = 0.

[Note that we do not know ρ(x) yet, but will choose an appropriate function to

obtain solutions.]

Expanding the derivative, we have

xu′′ + u′ +
2

x
u = −λρu.

Multiply this equation by x to obtain

x2u′′ + xu′ + (2 + λxρ)u = 0.

Notice that if we choose ρ(x) = x−1, then this equation can be made a Cauchy-Euler

type equation. Thus, we have

x2u′′ + xu′ + (2 + λ)u = 0.

The characteristic equation is

r2 + λ+ 2 = 0.

We know that all eigenvalues are real numbers. It is easy to see that for λ < −2 the

only solution is u ≡ 0. For λ = −2, the problem has the non-trivial solution u ≡ 1.

Now, if λ > −2 the general solution is

u(x) = c1 cos(
√
λ+ 2 ln |x|) + c2 sin(

√
λ+ 2 ln |x|).

Next we apply the boundary conditions. u′(1) = 0 forces c2 = 0. So that, we arrive

at

u(x) = c1 cos(
√
λ+ 2 ln |x|).

The second condition, u′(2) = 0, yields

sin(
√
λ+ 2 ln 2) = 0.
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This will give nontrivial solutions when

√
λ+ 2 ln 2 = nπ, n = 1, 2, 3, . . .

In summary, the eigenvalues are

λn = 2 +
( nπ
ln 2

)2
for n = 0, 1, 2, . . .

and the eigenfunctions for this eigenvalue problem are

un(x) = cos
( nπ
ln 2

ln x
)
, 1 ≤ x ≤ 2

We note that some of the properties listed in the beginning of the section hold for

this example. The eigenvalues are seen to be real, countable and λ→ ∞. Next, one

can find the zeros of each eigenfunction on [1, 2]. Then the argument of the cosine,

nπ
ln 2

ln x takes values 0 to nπ for x ∈ [1, 2]. The cosine function has (n− 1) roots on

this interval.

4.2 Lagrange’s and Green’s Identities

Before turning to the proofs that the eigenvalues of a Sturm-Liouville problem

are real and the associated eigenfunctions orthogonal, we will first need to intro-

duce two important identities. For the Sturm-Liouville operator, following the e.g.

(Int.Ref.1),

L =
d

dx

(
p
d

dx

)
+ q, (4.2.1)

we have two identities:

Lagrange’s Identity: uLv − vLu = [p(uv′ − vu′)]′;

Green’s Identity:
∫ b

a
(uLv − vLu) = [p(uv′ − vu′)]|ba.

Proof: The proof of Lagrange’s identity follows by a simple manipulation of the
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operator:

uLv − vLu =u

[
d

dx

(
p
dv

dx

)
+ qv

]
− v

[
d

dx

(
p
du

dx
+ qu

)]

=u
d

dx

(
p
dv

dx

)
− v

d

dx

(
p
dv

dx

)

=u
d

dx

(
p
dv

dx

)
+ p

du

dx

dv

dx
− v

d

dx

(
p
dv

dx

)
− p

du

dx

dv

dx

=
d

dx

[
pu

dv

dx
− pv

du

dx

]
.

Green’s identity is simply proven by integrating Lagrange’s identity.

4.3 Orthogonality and Reality

We are now ready to prove that the eigenvalues of a Sturm-Liouville problem are real

and the corresponding eigenfunctions are orthogonal. These are easily established

using Green’s identity.

Theorem 4.3.1: The eigenvalues of the Sturm-Liouville problem are real. (Int.Ref.1)

Proof: Let φn(x) be a solution of the eigenvalue problem associated with λn:

Lφn(x) = −λnρφn.

The complex conjugate of this equation is

Lφn = −λnρφn.

Now, multiply the first equation by φn and the second equation by φn and then

subtract the results. We obtain

φnLφn − φnLφn = (λn − λn)ρφnφn.

Integrate both sides of this equation:

∫ b

a

(
φnLφn − φnLφn

)
dx = (λn − λn)

∫ b

a

ρφnφndx.

Apply Green’s identity to the left hand side to find

[p(φnφ
′ − φnφ

′

n)]|ba = (λn − λn)

∫ b

a

ρφnφndx.
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Using the homogeneous boundary conditions for a self-adjoint operator (see (BC)

above), the left side vanishes to give

0 = (λn − λn)

∫ b

a

ρ |φn|2 dx.

The integral is positive, so we must have λn = λn. Therefore, the eigenvalues are

real.

Remark 4.3.2: Obviously, the eigenfunctions φn corresponding to λn can be chosen

to be real-valued functions.

Theorem 4.3.3: The eigenfunctions corresponding to distinct eigenvalues of the

Sturm-Liouville problem are orthogonal.

Proof: We can prove this similar to the previous theorem. Let φn(x) be a solution

of the eigenvalue problem associated with λn,

Lφn = −λnρφn,

and let φm(x) be a solution of the eigenvalue problem associated with λm 6= λn,

Lφm = −λmρφm.

Now, multiply the first equation by φm and the second equation by φn Subtracting

the results, we obtain

φmLφn − φnLφm = (λm − λn)ρφnφm.

Similar to the previous prooof, we integrate both sides of the equation and use

Green’s identity and the boundary conditions for a self-adjoint operator. This leaves

0 = (λm − λn)

∫ b

a

ρφnφmdx.

Since the eigenvalues are distinct, we can divide by λm − λn, so that we arrive at

0 =

∫ b

a

ρφnφmdx.

Therefore, the eigenfunctions are orthogonal with respect to the weight function

ρ(x).
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Now, let us give two more important theorems.

Theorem 4.3.4: The eigenvalues of the regular Sturm-Liouville problem are simple,

i.e., if λ is an eigenvalue of the regular Sturm-Liouville problem and φ1(x) and φ2(x)

are the corresponding eigenfunctions, then φ1(x) and φ2(x) are linearly dependent.

Proof: Since φ1(x) and φ2(x) both are solutions of (E), we have

(p(x)φ′
1)

′
+ q(x)φ1 + λρ(x)φ1 = 0 (4.3.1)

and

(p(x)φ
′

2)
′ + q(x)φ2 + λρ(x)φ2 = 0. (4.3.2)

Multiplying (4.3.1) by φ2, and (4.3.2) by φ1 and subtracting, we get

φ2 (p(x)φ
′
1)

′ − (p(x)φ′
2)

′
φ1 = 0. (4.3.3)

since

[φ2 (p(x)φ
′
1)− (p(x)φ′

2)φ1]
′
= φ2 (p(x)φ

′
1)

′
+ φ

′

2 (p(x)φ
′
1)− (p(x)φ′

2)
′
φ1 − (p(x)φ′

2)φ
′
1

= φ2 (p(x)φ
′
1)

′ − (p(x)φ′
2)

′
φ1

from (4.3.3) it follows that

[φ2 (p(x)φ
′
1)− (p(x)φ′

2)φ1]
′
= 0

and hence

p(x)
[
φ2φ

′

1 − φ
′

2φ1

]
= constant = C. (4.3.4)

To find the value of C, we note that φ1 and φ2 satisfy the boundary conditions (BC),

and hence

α1φ1(a) + α2φ
′

1(a) = 0

α1φ2(a) + α2φ
′

2(a) = 0.

which implies

φ1(a)φ
′

2(a)− φ2(a)φ
′

1(a) = 0.

Thus, from (4.3.4) it follows that

p(x)
[
φ2φ

′

1 − φ
′

2φ1

]
= 0 for all x ∈ [a, b].
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Since p(x) > 0, we must have φ2φ
′

1−φ
′

2φ1 = 0 for all x ∈ [a, b]. But, this means that

φ1 and φ2 are linearly dependent.

Corollary 4.3.5: Let λ1 and λ2 be two eigenvalues of the regular Sturm-Liouville

problem (E3), (BC3) and φ1(x) and φ2(x) be the corresponding eigenfunctions.

Then, φ1(x) and φ2(x) are linearly dependent if and only if λ1 = λ2.

Theorem 4.3.6: For the regular Sturm-Liouville problem (E3) there exists an in-

finite number of eigenvalues λn, n = 1, 2, . . .. These eigenvalues can be arranged as

a monotonically increasing sequence λ1 < λ2 < · · · such that λn → ∞ as n → ∞.

Further, eigenfunction φn(x) corresponding to the eigenvalue λn has exactly (n− 1)

zeros in the open interval (a, b).

4.4 The Eigenfunction Expansion Method

Followinf the e.g. (Int.Ref.1, Int.Ref.2) Let us consider a differential equation

Lu = f,

where u(x) satisfies given homogenous boundary conditions (see (BC3)). The method

makes use of the eigenfunctions satisfying the eigenvalue problem

Lφn = −λnρφn

subject to the given boundary conditions. Then, one assumes that u(x) can be

written as an expansion in the eigenfunctions,

u(x) =
∞∑

n=1

cnφn(x),

and inserts the expansion into the nonhomogeneous equation. This gives

f(x) = L
(

∞∑

n=1

cnφn(x)

)
= −

∞∑

n=1

cnλnρ(x)φn(x).

The expansion coefficients are found by making use of the orthogonality of the

eigenfunctions. Namely, we multiply the last equation by φm(x) and integrate. We

obtain ∫ b

a

f(x)φm(x)dx = −
∞∑

n=1

cnλn

∫ b

a

φn(x)φm(x)ρ(x)dx.
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Orthogonality yields

∫ b

a

f(x)φm(x)dx = −cmλm
∫ b

a

φ2
m(x)ρ(x)dx.

Solving for cm, we have

cm = −
∫ b

a
f(x)φm(x)dx

λm
∫ b

a
φ2
m(x)ρ(x)dx

.

Example 4.4.1: As an example, we consider the solution of the boundary value

problem

(xu′)′ +
u

x
=

1

x
, x ∈ [1, e],

u(1) = 0 = u(e).

This equation is already in self-adjoint form. So, we know that the associated

Sturm-Liouville eigenvalue problem has an orthogonal set of eigenfunctions. We

first determine this set. Namely, we need to solve

(xφ′)′ +
φ

x
= −λρφ, φ(1) = 0 = φ(e).

Rearranging the terms and multiplying by x, we have that

x2φ′′ + xφ′ + (1 + λρx)φ = 0.

This is almost an equation of Cauchy-Euler type. By taking the weight function

ρ(x) = 1
x
, we have

x2φ′′ + xφ′ + (1 + λ)φ = 0.

This is easy to solve. The characteristic equation is

r2 + (1 + λ) = 0.

One obtains nontrivial solutions of the eigenvalue problem satisfying the boundary

conditions when λ > −1. The solutions are

φn(x) = A sin(nπ ln x), n = 1, 2, · · ·

where λn = n2π2 − 1.
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It is often useful to normalize the eigenfunctions. This means that one chooses A so

that the norm of each eigenfunction is one. Thus, we have

1 =

∫ e

1

φ2
n(x)ρ(x)dx

= A2

∫ e

1

sin(nπ ln x)
1

x
dx

= A2

∫ 1

0

sin(nπu)du

=
1

2
A2.

Thus A =
√
2.

We now turn towards solving the nonhomogeneous problem, Lu = 1
x
.We first expand

the unknown solution in terms of the eigenfunctions,

u(x) =

∞∑

n=1

cn
√
2 sin(nπ ln x).

Inserting the solution into the differential equation, we have

1

x
= Lu = −

∞∑

n=1

cnλn
√
2 sin(nπ ln x)

1

x
.

Next, we make use of orthogonality. Multiplying both sides by φm(x) =
√
2 sin(mπ ln x)

and integrating, gives

λmcm =

∫ e

1

√
2 sin(mπ ln x)

1

x
dx =

√
2

mπ
[(−1)m − 1] .

Solving for cm, we have

cm =

√
2

mπ

[(−1)m − 1]

m2π2 − 1
.

Finally, we insert our coefficients into the expansion for u(x).The solution is then

u(x) =

∞∑

n=1

2

nπ

[(−1)n − 1]

n2π2 − 1
sin(mπ ln(x)).

Remark 4.4.2: The eigenfunction expansion method is useful to solve particular

nonhomogenous boundary value problems.
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4.5 Boundary Value Problem and Green’s Function

Firstly, following the e.g. (Int.Ref.2) let us consider a simple problem here in order

to motivate the idea of a Green’s function. Consider the equation

u′′(x) = f(x),

where x ∈ [0, L] and the homogeneous boundary conditions u(0) = 0 = u(L). This

problem is in fact the steady state heat equation, i.e., the heat equation without any

time dependence.

In order to solve this problem, we note that the complementary function satisfies

u′′c (x) = 0,

and if we integrate the problem, we obtain 1 and x as fundamental solutions. Now,

we choose linear combinations, to obtain

u1(x) = x, u2(x) = L− x,

satisfying the left and right boundary condition respectively.

By using the method of variation of parameters, since W = u1u
′

2 − u
′

1u2 = x(−1)−
(1)(L− x) = −L, we find that

v1(x) =
1

L

∫ x

0

f(x0)(L− x0)dx0,

v2(x) = − 1

L

∫ x

0

f(x0)x0dx0.

Therefore we obtain this general solution

u(x) = (c1 + v1(x))x+ (c2 + v2(x))(L− x).

Now, let us apply the boundary conditions. Setting x = 0 means that c2 = 0 and

for x = L we find

0 = (c1 + v1(L))L.

So that c1 = −v1(L). Then we note that

c1 + v1(x) = −v1(L) + v1(x)

= − 1

L

∫ L

0

f(x0)(L− x0)dx0 +
1

L

∫ x

0

f(x0)(L− x0)dx0

= − 1

L

∫ L

x

f(x0)(L− x0)dx0.
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We can write

u(x) =
x

L

∫ L

x

(x0 − L)f(x0)dx0 +
(x− L)

L

∫ x

0

x0f(x0)dx0.

Finally this means we can write the solution in the form

u(x) =

∫ L

0

G(x, x0)f(x0)dx0,

where

G(x, x0) =





x0

L
(x− L), 0 ≤ x0 ≤ x,

x
L
(x0 − L), x ≤ x0 ≤ L.

Now, let us give a few important theorems related to boundary value problem and

Green’s function.

Theorem 4.5.1: If

Lu = 0, a < x < b,

α1u(a) + α2u
′(a) = 0, β1u(b) + β2u

′(b) = 0,

has only the trivial solution, then the Green’s function G(x, x0) exists and is uniqe.

(Lo 2000)

Theorem 4.5.2: Let x0 be fixed. Define

G(x, x0) =






cAu1(x), x ≤ x0,

Bu2(x), x ≥ x0,

where A and B are constants to be determined. The unique solution for the nonho-

mogeneous problem

Lu = −f, a < x < b,

α1u(a) + α2u
′(a) = m, β1u(b) + β2u

′(b) = n,

is given by

u(x) =

∫ b

a

G(x, x0)f(x0)dx0 + k1u1(x) + k2u2(x),

where

k1 =
n

β1u1(b) + β2u′1(b)
and k2 =

m

α1u2(a) + α2u′2(a)
.
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Now, let us give some properties of the Green’s function (Int.Ref.4).

1. Differential Equation:

(p(x)G′(x, x0))
′ + q(x)G(x, x0) = 0, x 6= x0

For x < x0 we are on the second branch and G(x, x0) is proportional to u1(x).

Thus, since u1(x) ) is a solution of the homogeneous equation, then so is

G(x, x0). For x > x0 we are on the first branch and G(x, x0) is proportional to

u2(x). So, once again G(x, x0) is a solution of the homogeneous problem.

2. Boundary Conditions: For x = a we are on the second branch and G(x, x0)

is proportional to u1(x).Thus, whatever condition u1(x) satisfies, G(x, x0) will

satisfy. A similar statement can be made for x = b.

3. Symmetry or Reciprocity: G(x, x0) = G(x0, x)

4.6 Green’s Functions for Regular Sturm-Liouville Prob-

lems via Eigenfunction Expansions

Remark 4.6.1: For the problem u′′ = −λu with u(0) = 0 = u(L) we have

Eigenvalues: π2

L2 ,
4π2

L2 , . . .

Eigenfunctions: sin
(
πx
L

)
, sin

(
2πx
L

)
, . . .

The eigenfunction expansion of a function f : [0, L] → R is

∞∑

n=1

cn sin
(nπx
L

)
, cn =

〈f, sin(nπx/L)〉
〈sin(nπx/L), sin(nπx/L)〉 =

∫ L

0
f(x) sin(nπx/L)dx
∫ L

0
sin2(nπx/L)dx

.

Let us compute the denominator of cn. We have

∫ L

0

sin2

(
nπx

L

)
dx =

1

2

∫ L

0

(
1− cos

(
2nπx

L

))
dx =

L

2
.

Therefore the eigenfunction expansion of f(x) is

∞∑

n=1

cn sin sin

(
nπx

L

)
, cn =

2

L

∫ L

0

f(x) sin

(
nπx

L

)
dx.

This particular eigenfunction expansion of f(x) : [0, L] → R is called the Fourier

sine series.
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Now, following the e.g. (Int.Ref.2) let us consider again the regular Sturm-Liouville

problem of the form

Lu = f(x), (4.6.1)

where L given by (4.2.1), x ∈ [a, b]. Also consider the related eigenvalue problem

Lu = −λρ(x)u,

with some appropriately chosen ρ(x).We can solve (4.6.1) by using an eigenfunction

expansion of the form

u(x) =

∞∑

n=1

cnφn(x).

This can be differentiated term-by-term. So that, applying L we find

Lu(x) = −
∞∑

n=1

cnλnρ(x)φn(x) = f(x).

Let us multiply by φm(x) and integrate over the domain x ∈ [a, b]. The orthogonality

of the eigenfunctions (with respect to the weight ρ(x)) allows us to then show that

− cnλn =

∫ b

a
f(x)φn(x)dx∫ b

a
φ2
n(x)ρ(x)dx

.

Therefore

u(x) =

∫ b

a

f(x0)

∞∑

n=1

(
−φn(x)φn(x0)

λn
∫ b

a
φ2
nρ(x1)dx1

)
dx0

and so we recognize that we can write

u(x) =

∫ b

a

f(x0)G(x, x0)dx0,

where

G(x, x0) =

∞∑

n=1

(
−φn(x)φn(x0)

λn
∫ b

a
φ2
nρ(x1)dx1

)

which is therefore an eigenfunction expansion of the Green’s function.

Example 4.6.2: We shall find the Fourier sine series of the function

f(x) =






2, 0 < x < π
2

0, π
2
< x < π.
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For n ≥ 1

cn =
2

π

∫ π

0

f(t) sin(nt)dt

=
2

π

∫ π/2

0

2 sin(nt)dt

=
4

π

[− cos (nπ/2) + 1

n

]
.

Thus

f(x) =
∞∑

n=1

4

π

[− cos (nπ/2) + 1

n

]
sin nx, 0 < x < π.

Example 4.6.3: Consider

Lu =
d2u

dx2
= f(x)

with u(0) = u(δ) = 0 and the related eigenvalue problem

d2φ

dx2
= −λφ

with φ(0) = φ(δ) = 0. We already know from Subsection 2.2 that (here we just prefer

to write φn instead of un) λn =
(
nπ
δ

)2
and φn(x) = sin

(
nπx
δ

)
with n = 1, 2, 3, · · · .

Therefore, u(x) is given by

u(x) =

∞∑

n=1

cnφn(x),

=

∫ δ

o

f(x0)G(x, x0)dx0,

where

G(x, x0) = −2

δ

∞∑

n=1

sin(nπx/δ) sin(nπx0)

(nπ/δ)2
.

4.7 Convergence in the Mean

Following the e.g. (Lo 2000), let S be the space of all square integrable functions

with positive weight function ρ(x) in [a, b]. For any f and g in S, we define their

inner product by

(f, g) =

∫ b

a

ρ(x)f(x)g(x)dx.
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We know that the inner product has the following properties

(mf + ng, h) = m(f, h) + n(g, h),

(g, f) = (f, g),

where m and n are arbitrary numbers.

Two nonzero functions f and g in S are orthogonal if (f, g) = 0. For each f which

is in S, we define the norm of f as

‖f‖ =

(∫ b

a

ρ(x) |f(x)|2 dx
)1/2

.

It follows that

‖f‖ ≥ 0; ‖f‖ = 0 ⇔ f = 0.

‖mf‖ = |m| ‖f‖

for any number m. Besides that we have two inequalities:

Schwarz’s inequality: |(f, g)| ≤ ‖f‖ ‖g‖.
Triangle inequality: ‖f + g‖ ≤ ‖f‖+ ‖g‖.

Let {φn(x)} be a sequence of functions in S. The series
∑∞

k=1 akφk(x) converges in

the mean to a function f ∈ S if for ε > 0, there is an integer N = N(ε) such that

for n ≥ N , ∫ b

a

ρ(x) |Sn(x)− f(x)|2 dx < ε,

where Sn(x) =
∑n

k=1 akφk(x).

Now, let F = {φn(x)} be a family of orthogonal functions on [a, b] and let f ∈ S.

We have

En = ‖f − Sn‖2

= ‖f‖2 −
n∑

k=1

ak(φk, f)−
n∑

k=1

ak(f, φk) +

n∑

k=1

|ak|2 ‖φk‖2 .

Set

ck =
(f, φk)

‖φk‖2
,
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and we obtain

En = ‖f‖2 +
n∑

k=1

|ak − ck|2 ‖φk‖2 −
n∑

k=1

|ck|2 ‖φk‖2 .

Since En ≥ 0, the minimum of En is achieved if we choose ak = ck. Hence

minEn = ‖f‖2 −
n∑

k=1

|ck|2 ‖φk‖2 . (4.7.1)

The coefficients {ck} are called the Fourier coefficients of f with respect to F and

the series
∑∞

k=1 ckφk(x) is called Fourier series of f with respect to F . From (4.7.1),

we have

‖f‖2 ≥
n∑

k=1

|ck|2 ‖φk‖2 .

Definition 4.7.1: A family F = {φn(x)} of orthogonal functions is complete in S

if, for any f in S,

‖f‖2 =
∞∑

k=1

|ck|2 ‖φk‖2 . (4.7.2)

(4.7.2) is called Parseval’s equation.

Theorem 4.7.2: Let {φn(x)} be a family of orthogonal functions on [a, b]. Then

the Fourier series of f ∈ S converges in the mean to f if and only if {φn(x)} is

complete.

Proof: We note that

∥∥∥∥f −
n∑

k=1

ckφk

∥∥∥∥
2

= ‖f‖2 −
n∑

k=1

|ck|2‖φk‖2.

The theorem is proved if we let n→ ∞ in the above identitiy.

Remark 4.7.3: If {φn(x)} is an orthogonal set, i.e., {φj , φk} = δjk, then ck = (f, φk)

and the completeness relation is

‖f‖2 =
∞∑

k=1

|ck|2 . (4.7.3)

Theorem 4.7.4: Let {φn(x)} be a complete orthonormal set on [a, b]. Then any

continious function f in S such that (f, φn) = 0 for all n must be identically zero.

Proof: From (4.7.3), we have ‖f‖2 = 0. Hence f ≡ 0.
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Theorem 4.7.5: Let {φn(x)} be a complete orthonormal set on [a, b] and let
∑∞

n=1 cnφn(x)

be the Fourier series of f in S. Then

∫ b

a

f(x)dx =
∞∑

n=1

cn

∫ b

a

φn(x)dx.

Proof:

∣∣∣∣
∫ b

a

f(x)dx−
m∑

n=1

cn

∫ b

a

φn(x)dx

∣∣∣∣ ≤
∫ b

a

∣∣∣∣f(x)−
m∑

n=1

cnφn(x)

∣∣∣∣dx

≤
∥∥∥∥f −

m∑

n=1

cnφn

∥∥∥∥ ‖1‖

from Schwars’s inequality. The last term goes to 0 as m → ∞ since the Fourier

series of f converges to f in the mean.

4.8 Completeness of Eigenfunctions of Sturm-Liouville Prob-

lems

In this section, we discuss completeness of eigenfunctions. Our background about

Green’s function and Fourier series is going to lead to our basic approach in this

section. Before giving the details about completeness, we need to give some necessary

and important definitions and theorems related to integral operator with continuous

kernel.

Following the e.g. (Lo 2000, Agarwal and O’Regan 2009), let Ku be defined by

(Ku)(x) =

∫ b

a

k(x, x0)u(x0)dx0,

where k(x, x0) is a complex-valued continuous function of x and x0, such that

k(x, x0) = k(x0, x) but not identically zero on [a, b]× [a, b] and u ∈ C[a, b].

Theorem 4.8.1: The set of functions {Ku}, with ‖u‖ = 1, is uniformly bounded

and equicontinuous in [a, b].

Theorem 4.8.2: (Ku, v) = (u,Kv) for u and v ∈ C[a, b] and (Ku, u) is real. Since

(Ku, v) = (u,Kv), K is called a symmetric operator.
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Proof:

(Ku, v) =

∫ b

a

[ ∫ b

a

k(x, x0)u(x0)dx0

]
v(x)dx

=

∫ b

a

[ ∫ b

a

k(x, x0)v(x)dx

]
u(x0)dx0

=

∫ b

a

[ ∫ b

a

k(x0, x)v(x)dx

]
u(x0)dx0

=

∫ b

a

[ ∫ b

a

k(x0, x)v(x)dx

]
u(x0)dx0

=

∫ b

a

u(x0)Kv(x0)dx0 = (u,Kv).

Therefore, (Ku, u) = (u,Ku) = (Ku, u). Thus, (Ku, u) is real.

Remark 4.8.3: All the eigenvalues of K are real and eigenfunctions of K corre-

sponding to distinct eigenvalues are orthogonal on [a, b].

Theorem 4.8.4: Let {fn(x)} be a sequence of uniformly bounded and equicontin-

uous functions on [a, b]. Then it contains a subsequence {fnk(x)} which converges

uniformly on [a, b].

Let µi be the eigenvalues of K and χi are the corresponding eigenfunction of K.

Theorem 4.8.5: Let u ∈ C[a, b]. The Fourier series of Ku with respect to {χi(x)}
converges uniformly to Ku on [a, b].

Proof: Let gm(x) = u(x) −
∑m

i=1(u, χi)χi(x). Then, (gm, χi) = 0 for i = 1, . . .m.

From extremal principles,

‖Kgm‖ ≤ |µm+1| ‖gm‖ .

Since µm+1 → 0, the sequence {Kgm} converges to 0 in the mean. Thus

Ku =
∞∑

i=1

(u, χi)Kχi =
∞∑

i=1

µi(u, χi)χi =
∞∑

i=1

(u,Kχi)χi =
∞∑

i=1

(Ku, χi)χi.

For any q > p,
q∑

i=p

µi(u, χi)χi = K

[
q∑

i=p

(u, χi)χi

]
.

Since |Ku| ≤M(b − a)1/2 ‖u‖, we have

∣∣∣∣
q∑

i=p

µi(u, χi)χi

∣∣∣∣ ≤M(b− a)1/2

[
q∑

i=p

|(u, χk)|2
]1/2
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which goes to zero as p, q → ∞ by Bessel’s inequality. So that,

∞∑

i=1

(Ku, χi)χi

is uniformly convergent to a continuous function on [a, b], namely, Ku.

Theorem 4.8.6: For each nonzero eigenvalue of K, there corresponds at most a

finite number of linearly independent eigenfunctions, and the number of nonzero

eigenvalues is either finite or infinite with µi → 0.

Now, we can discuss completeness fo eigenfunctions of Sturm-Liouville problems.

Here we assume ρ ≡ 1.

Let G(x, x0) be the Green’s function for the Sturm-Liouville problem

Lu = (pu′)′ − qu = −λu(x),

α1u(a) + α2u
′(a) = 0, β1u(b) + β2u

′(b) = 0. (4.8.1)

We note that G(x, x0) is continuous and symmetric on [a, b]× [a, b]. Define

(Ku)(x) =

∫ b

a

G(x, x0)u(x0)dx0.

There is exists a finite number of nonzero eigenvalues {µi} with corresponding nor-

malized eigenfunctions {χi(x)} such that |µi+1| ≤ |µi| and (χi, χj) = δij .

Remark 4.8.7: If the kernel is G(x, x0), then there is a sequence of eigenfunctions

{χi(x)} with corresponding eigenvalues {µi} with µi → 0 for the operator K.

Theorem 4.8.8: Let f ∈ C2[a, b] and satisfy the boundary conditions (4.8.2). Then

f =

∞∑

i=1

(f, χi)χi,

where the convergence is uniform on [a, b].

Proof: Let f ∈ C2[a, b] and satisfy (4.8.1). Then u = Lf ∈ C[a, b]. We know from

the properties of Green’s function that f = −Ku. From Theorem 4.8.5

f = −Ku = −
∞∑

i=1

(Ku, χi)χi =

∞∑

i=1

(f, χi)χi.
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Theorem 4.8.9: {χi(x)} is a complete orthonormal set in [a, b].

Proof: Let f ∈ S and let ε > 0 be given. Then there exists a function g ∈ C2[a, b]

such that ‖f − g‖ < ε. By using the triangle inequality, we have

∥∥∥∥f −
m∑

i=1

(f, χi)χi

∥∥∥∥ ≤ ‖f − g‖+
∥∥∥∥g −

m∑

i=1

(g, χi)χi

∥∥∥∥+
∥∥∥∥

m∑

i=1

(g − f, χi)χi

∥∥∥∥.

By Bessel’s inequality,

∥∥∥∥
m∑

i=1

(g − f, χi)χi

∥∥∥∥
2

=

m∑

i=1

|(g − f, χi)|2 ≤ ||g − f ||2 < ε2,

and there exists an integer M =M(ε) such that for m > M ,

∥∥∥∥g −
m∑

i=1

(g, χi)χi

∥∥∥∥ < ε.

Hence, ∥∥∥∥f −
m∑

i=1

(f, χi)χi

∥∥∥∥ < 3ε for m > M.

Remark 4.8.10: The eigenfunctions {un(x)} of Lu = −λu with boundary condi-

tions (BC3) form a complete orthogonal set in [a, b] if λ = 0 is not an eigenvalue.

Example 4.8.11: Show that {e 1

2
x sin(nx

2
)} is a complete orthogonal set on [0, 2π].

Solution: Consider the Sturm-Liouville problem

u′′ − u′ + λu = 0, 0 < x < 2π,

u(0) = 0 = u(2π).

To solve this equation we look at the characteristic equation

r2 − r + λ = 0.

It has roots

r =
1±

√
1− 4λ

2
.

We consider the following three situations separately:
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Case 1: 1−4λ > 0. In this case we have two real roots r = 1+
√
1−4λ
2

and r = 1−
√
1−4λ
2

.

Thus, the solution looks like

u = c1e
1+

√
1−4λ

2
x + c2e

1−
√

1−4λ

2
x.

Applying to the boundary conditions we get

u(0) = c1 + c2 = 0 =⇒ c1 = −c2,

u(2π) = c1(e
(1+

√
1−4λ)π − e(1−

√
1−4λ)π) = 0.

Since the term in the parenthesis is non-zero we see that c1 = 0 and thus c2 = 0. So

our only solution in this case is the trivial one u = 0.

Case 2: 1 − 4λ < 0. In this case we get complex roots r = 1
2
± i

√
4λ− 1. So the

solution is

u = c1e
1

2
x sin

(√
4λ− 1

2
x

)
+ c2e

1

2
x cos

(√
4λ− 1

2
x

)
.

Plugging in the boundary conditions gives

u(0) = c2 = 0,

u(2π) = c1e
π sin(π

√
4λ− 1).

In order not to have a trivial solution we assume c1 6= 0 then this equation implies

sin(π
√
4λ− 1) = 0 =⇒ π

√
4λ− 1 = nπ, n = 1, 2, · · · .

So that, the λ’s that satisfy this equation are

λn =
n2 + 1

4
, n = 1, 2, · · · .

And the eigenfunction corresponding to λn is

e
1

2
x sin

(
nx

2

)
.

Case 3: 1− 4λ = 0. In this case the two roots are 1
2
. Hence, we have

u = c1e
1

2
x + c2e

1

2
x.

By applying the boundary conditions we get c1 = 0 = c2. Thus λ is not an eigenvalue

and the only solution for this case is u ≡ 0.

As a result, when we consider the last remark which is given above we see that

{e 1

2
x sin(nx

2
)} is a complete orthogonal on [0, 2π].
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A few notes about eigenvalues and eigenfunctions

Following the e.g. (Lo 2000, Mc Owen 1996) consider the Sturm-Liouville problem

Lu = (pu′)′ − qu = −λρu, a < x < b, (4.8.2)

u(a) = 0 = u(b) (4.8.3)

with the additional condition q(x) ≥ 0 on [a, b].

Theorem 4.8.12: All the eigenvalues of (4.8.2)-(4.8.3) are positive.

Proof: Let λ be an eigenvalue and let u(x) be the corresponding eigenfunction.

Multiplying (4.8.2) by u(x) and integrating by parts from a to b, we have

0 =

∫ b

a

u [(pu′)′ − qu+ λρu] dx = upu′|ba +
∫ b

a

[
−pu′2 − qu2 + λρu2

]
dx.

By using the boundary conditions, we get

λ =

∫ b

a
[pu′2 + qu2] dx
∫ b

a
ρu2dx

≥ 0

since p > 0, q ≥ 0 and ρ > 0 on [a, b].

In case of λ = 0, then u is a constant. From (4.8.3), u ≡ 0, a contradiction. So that,

λ > 0.

The Green’s function for the problem

Lu = 0, u(a) = 0 = u(b)

exists. Because λ = 0 is not an eigenvalue. The corresponding nonhomogenous

problem

Lw = −f, w(a) = 0 = w(b)

has a unique solution given by

w(x) =

∫ b

a

G(x, x0)f(x0)dx0.
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If we set f(x) = λρ(x)u(x), then the eigenfunction u(x) of (4.8.2)-(4.8.3) with the

corresponding eigenvalue λ satisfies

u(x) = λ

∫ b

a

G(x, x0)ρ(x0)u(x0)dx0.

Let ψ(x) =
√
ρ(x)u(x) and µ = 1

λ
. Then, we obtain

Kψ =

∫ b

a

√
ρ(x)G(x, x0)

√
ρ(x0)ψ(x0)dx0 = µψ(x). (4.8.4)

Hence, there exists a sequence of eigenvalues {µk} of (4.8.4) with normalized eigen-

functions {χk(x)} such that |µk| ≥ |µk+1| and |µk| → 0. Since λk =
1
µk

are eigenvalues

of (4.8.2)-(4.8.3) and λk is positive and simple.

Theorem 4.8.13: The nth-eigenvalue for the Sturm-Liouville problem (4.8.2)-(4.8.3)

is the minimum value of the functional

I(u) =

∫ b

a
[pu′2 + qu2] dx
∫ b

a
ρu2dx

(4.8.5)

for the class of continuous, piecewise smooth functions satisfying (4.8.3) and (u, ui) =

0, i = 1, . . . , (n − 1), where ui(x) are the first (n − 1) normalized eigenfunctions.

The nth eigenfunction un(x) is the corresponding normalized minimizing function.

Theorem 4.8.14 (Courant’s Theorem): Let φ1(x), . . . , φn−1(x) be arbitrary contin-

uous functions on [a, b]. Let Λ(φ1, . . . , φn−1) be the minimum of the functional I(u)

in (4.8.5) where class H of admissible functions u(x) is the space of all continuous,

piecewise smooth functions u(x) in [a, b] with u(a) = 0 = u(b) and (u, φi) = 0 for

i = 1, 2, . . . , n− 1. Then the nth eigenvalue λn of (4.8.2)-(4.8.3) is

λn = maxΛ(φ1, . . . φn−1)

for all possible choices of the functions φ1, . . . , φn−1.
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5 BOOLEAN DIFFERENTIAL EQUATIONS

In this section, we will discuss Boolean Differential Equations which is one of the im-

portant part of Model Theory in Mathematical Logic. After giving some definitions

and theorems, we will be able to solve the examples about the subject. At the end

of this section, we will be started to investigate the relation between Sturm-Liouville

Problems and Boolean Differential Equations. This thesis will be starting point for

further studies. Now, let us start with the essential definitions.

A Boolean Differential Equation is an equation that includes derivative operations

and differential operators of an unknown Boolean function. All differentials of

Boolean variables, differential operations and derivative operations of Boolean func-

tions are Boolean functions with special properties.

5.1 Logic (Boolean) Function

We begin by defining the concept of a boolean function.

Definition 5.1.1: A Boolean function of n variables is a function f of Bn into B,

where B is the set {0, 1}, n is a positive integer, and Bn denotes the n-fold cartesian

product of the set B with itself. A point x∗ = (x1, x2, . . . , xn) ∈ Bn is a true

point (resp. false point) of the Boolean function f if f(x∗) = 1 (resp. f(x∗) = 0).

(Int.Ref.5)

The most elementary way to define a Boolean function f is to provide its truth

table, i.e. to give a complete list of all the points in Bn together with the value of

the function at each point.

Any decision that can be answered yes/no or true/false can be mathematically rep-

resented as a combination of logic functions. George Boole invented and published

this form of mathematics (Boolean Algebra) in 1847. The 3 basic logic functions,

which can be used to solve any Boolean equation, are (Steinbah 1974):
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NOT

AND

OR

Other common logic functions, that are combinations of the basic 3, are:

NAND

NOR

XOR

5.2 Boolean Equation

A Boolean equation equals two given Boolean functions and its solution is a set of

Boolean vectors, i.e., if f(x) and g(x) are logic functions then f(x) = g(x) is a logic

equation, and its solution is a set of vectors b where f(b) = g(b) = 0 or f(b) = g(b) =

1. In practical applications both functions are given by logic expressions that consist

of variables connected by logic operations and structured by parantheses. (Int.Ref.6)

Now, let us give a standart system of logical equations is expressed as





f1(p1, p2, . . . , pn) = c1,

f2(p1, p2, . . . , pn) = c2,

...

fm(p1, p2, . . . , pn) = cm,

(5.2.1)

where fi, i = 1, . . . , m are logical functions, pi, i = 1, . . . , m are logical constants. A

set of logical constants di, i = 1, 2, . . . , n, such that pi = di, i = 1, 2, . . . , n, satisfy

(5.2.1) is said to be solution of (5.2.1).

37



As an example, consider the following system:






p ∧ q = c1

q ∨ r = c2

r ↔ (p) = c3

1. Assume the logical constants are

c1 = 1, c2 = 1, c3 = 1

A straightforward verifications shows that

p = 1

q = 1

r = 0

2. Assume the logical constans are

c1 = 1, c2 = 0, c3 = 1

It can be checked that there is no solution.

3. Assume the logical constants are

c1 = 0, c2 = 1, c3 = 0

There are then two solutions:





p1 = 1

q1 = 0

r1 = 1

and
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



p1 = 0

q1 = 1

r1 = 0

It shows that the solutions of system of logical equations are quite different from

those of linear algebraic equations where the type of solution dpends only on the

coefficients of the system.

5.3 Boolean Derivative

Now following the e.g. (Int.Ref.7), we describe a single variable by an italic letter

like xi and a set of variables by a bold letter like x0. The first group of derivative

operations explores the change of the function value with regard to the change of

a single variable xi. Hence, the subsets, evaluated by simple derivative operations,

include two function values which are reached by changing xi.

Before giving the first definition, let us introduce the meaning of ” ⊕ ” with using

” ∨ ” and ” ∧ ” which are the basic notations of logic equations. We will use this

notations in equations and definitions.

The exclusive disjunction: p⊕q can be expressed in terms of the logical conjunction

(∨), the disjunction (∧), and the negation (p) or (q) as follows:

p⊕ q = (p ∧ q) ∨ (p ∨ q)

p⊕ q = (p ∧ q) ∨ (p ∧ q)

Additionally, we have the relation as follows:

r = p ∧ q ↔ r = p · q(mod2)

r = p⊕ q ↔ r = p+ q(mod2)
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In summary, we can write the notations like:

p⊕ q = (p ∧ q) ∨ (p ∧ q) = pq + pq

= (p ∨ q] ∧ (p ∨ q) = (p+ q)(p+ q)

= (p ∨ q) ∧ (p ∧ q) = (p+ q)(pq)

Definition 5.3.1: Let f(x) = f(xi, x1) be a logic function of n variables. Then

∂f(x)

∂xi
= f(xi = 0, x1)⊕ f(xi = 1, x1) (5.3.1)

is the (simple) derivative (where the binary operator defined by p⊕ q = 0 if p = q

and p⊕ q = 1, if p 6= q),

min
xi

f(x) = f(xi = 0, x1) ∧ f(xi = 1, x1)

the (simple) minimum and

max
xi

f(x) = f(xi = 0, x1) ∨ f(xi = 1, x1)

the (simple) maximum of the logic function f(x) with regard to the variable xi.

(Int.Ref.7)

The second group of derivative operations explores the change of a function with

regard to the set of variables x0. Hence, the subsets, evaluated by vectorial derivative

operations, include again two function values which are reached by changing all

variables of the set x0 at the same point of time.

Definition 5.3.2: Let f(x) = f(x0, x1) be a logic function of n variables. Then

∂f(x0, x1)

∂x0
= f(x0, x1)⊕ f(x0, x1) (5.3.2)

is the vectorial derivative,

min
x0

f(x0, x1) = f(x0, x1) ∧ f(x0, x1)

the vectorial minimum, and

max
x0

f(x) = f(x0, x1) ∨ f(x0, x1)
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the vectorial maximum of the logic function f(x0, x1) with regard to the variables

of x0. (Int.Ref.7)

The result of each derivative operation of a Boolean function is again a Boolean

function. Hence, derivative operations can be executed iteratively for the result of

a previous derivative operation.

Definition 5.3.3: Let f(x) = f(x0, x1) be a logic function of n variables, and let

x0 = (x1, x2, . . . , xm). Then

∂mf(x0, x1)

∂x1∂x2 . . . ∂xm
=

∂

∂xm
(. . . (

∂

∂x2
(
∂f(x0, x1)

∂x1
)) . . .)

is the m-fold derivative,

min
x0

mf(x0, x1) = min
xm

(. . . (min
x2

(min
x1

f(x0, x1))) . . .)

the m-fold minimum,

max
x0

mf(x0, x1) = max
xm

(. . . (max
x2

(max
x1

f(x0, x1))) . . .)

the m-fold maximum and

∆x0
f(x0, x1) = min

x0

mf(x0, x1)⊕max
x0

mf(x0, x1)

the ∆- operation of the function f(x0, x1) with regard to the set of variables x0.

The Boolean derivative ∂f(x)
∂xi

of the Booleean function f(x) = f(x1, x2, . . . , xn) with

respect to variables x1, x2, . . . , xn is defined in the form

∂f(x)

∂xi
= f(x1, x2, . . . , xn)⊕ f(x1, x2, . . . , xi, . . . , xn) (5.3.3)

This notation represents the change in the value of the variable xi is inverted to

xi. Relationship (5.3) is used to compute the logical derivative with respect to a

variable when the Boolean function f(x) is defined in symbolic form.

Example 5.3.4: For the function of three variables

41



f(x) = x1x2 ∨ x3,

compute the Boolean derivatives with respect to the variables x1, x2 and x3 (∨ is the

disjunction symbol). Using (5.3), we obtain the symbolic expression of the variable

with respect to x1:

∂f(x)

∂x1
= (x1x2 ∨ x3)⊕ (x1x2 ∨ x3) = x2x3

Similarly with respect to the other variables

∂f(x)

∂x2
= x1x3

and
∂f(x)

∂x3
= x1x2.

5.4 Boolean Differential Equations

The topic of Boolean equations has been a hot topic of research for almost two cen-

turies and its importance can hardly be overestimated. Boolean-equation solving

permeates many areas of modern science such as logical design, biology, grammars,

chemistry, law, medicine, spectroscopy, and graph theory. Many important prob-

lems in operations research can be reduced to the problem of solving a system of

Boolean equations. A notable example is the problem of an n-person coalition game

with a domination relation between different strategies. The solutions of Boolean

equations serve also as an important tool in the treatment of pseudo-Boolean equa-

tions and inequalities, and their associated problems in integer linear programming.

(Int.Ref.6)

Let us take the Boolean function

f(x) = f(x1, x2, x3) = x1 ∨ x2x3. (5.4.1)

Using the Definition 5.3.1 we get the vectorial derivative with regard to (x1, x3) as

follows:
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∂f(x1, x2, x3)

∂(x1, x3)
= f(x1, x2, x3)⊕ f(x1, x2, x3)

= (x1 ∨ x2x3)⊕ (x1 ∨ x2x3)

= (x1 ∨ x1x2x3)⊕ (x1 ∨ x1x2x3)

= (x1 ⊕ x1x2x3)⊕ (x1 ⊕ x1x2x3)

= 1⊕ x1x2x3 ⊕ x1x2x3)

= 1⊕ x2(x1x3 ⊕ x1x3)

= 1⊕ x2(x1 ⊕ x3)

= x2 ∨ (x1 ⊕ x3)

= x2 ∨ (x1 ⊕ x3). (*)

Hence, the result of this vectorial derivative is the Boolean function

g(x1, x2, x3) = x2 ∨ (x1 ⊕ x3) (5.4.2)

and we have the Boolean differential equation:

∂f(x1, x2, x3)

∂(x1, x3)
= g(x1, x2, x3). (5.4.3)

The function (5.4.2) is uniquely defined by the given function (5.4.1), the definition

of the vectorial derivative (5.4.3) and the direction of change described by the taken

subset of variables (x1, x2).

All calculation steps of (*) can also be executed in the reverse direction. Hence, the

function f(x1, x2, x3) (5.4.1) is a solution of the Boolean differential equation (5.4.3)

where the function g(x1, x2, x3) is defined by (5.4.2).

Now the question arises whether the function f(x1, x2, x3) is uniquely defined by the

function g(x1, x2, x3) and Boolean differential equation (5.4.3) The answer to this

question is NO. There are 15 other Boolean functions fi(x1, x2, x3) which solve the

BDE (5.4.3) for the function g(x1, x2, x3) ). All 16 solution functions of the BDE

(5.4.3) for the the function g(x1, x2, x3) are (Int.Ref.6):
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f0(x1, x2, x3) = x1(x1 ∨ x3),

f1(x1, x2, x3) = x1(x2 ∨ x3)⊕ x2(x1 ⊕ x3)

f2(x1, x2, x3) = x1(x2 ∨ x3)⊕ x2(x1 ⊕ x3)

f3(x1, x2, x3) = x1(x2 ∨ x3)⊕ x2

f4(x1, x2, x3) = x1(x2 ∨ x3)⊕ x2(x1 ⊕ x3)

f5(x1, x2, x3) = x1(x2 ∨ x3)⊕ (x1 ⊕ x3)

f6(x1, x2, x3) = x1(x2 ∨ x3)⊕ (x1 ⊕ x2 ⊕ x3)

f7(x1, x2, x3) = x1(x2 ∨ x3)⊕ (x2 ∨ (x1 ⊕ x3))

f8(x1, x2, x3) = x1(x2 ∨ x3)⊕ x2(x1 ⊕ x3)

= (x1x2x3 ⊕ x1x2x3 ⊕ x1x2x3)⊕ (x1x2x3)

= x1 ∨ x2x3,

f9(x1, x2, x3) = x1(x2 ∨ x3)⊕ (x1 ⊕ x2 ⊕ x3)

f10(x1, x2, x3) = x1(x2 ∨ x3 ⊕ (x1 ⊕ x3)

f11(x1, x2, x3) = x1(x2 ∨ x3)⊕ (x2 ∨ (x1 ⊕ x3))

f12(x1, x2, x3) = x1(x2 ∨ x3)⊕ x2

f13(x1, x2, x3) = x1(x2 ∨ x3)⊕ (x2 ∨ (x1 ⊕ x3))

f14(x1, x2, x3) = x1(x2 ∨ x3)⊕ (x2 ∨ (x1 ⊕ x3))

f15(x1, x2, x3) = x1(x2 ∨ x3)⊕ 1

It can be verified directly (by inserting these 16 functions into the BDE) (5.4.3) that

the calculated vectorial derivatives are equal to the function g(x1, x2, x3).

The enumeration of these 16 solution function shows that all solution function have

a common basic structure

fi(x1, x2, x3) = g0(x1, x2, x3)⊕ hi(x1, x2, x3) (5.4.4)

with
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g0(x1, x2, x3) = x1(x2 ∨ x3)

= x1x2 ∨ x1x3

= x1x2 ∨ x1x3 ∨ 0

= x1x2 ∨ x1x1x3 ∨ x1x̄1x̄3

= x1 ∧ (x2 ∨ x1x3 ∨ x̄1x̄3)

= x1 ∧ x2 ∨ (x1 ⊕ x3)

= x1 ∧ g(x1, x2, x3). (**)

The variable x1 is selected from the set (x1, x3) used to define the direction of the

vectorial derivative. The other variable x3 can be chosen in (**) to specify the

function g0(x1, x2, x3) = x1(x2 ∨ x3). This function g0(x1, x2, x3) can be used to

create together with the same 16 functions hi(x1, x2, x3) exactly the same set of 16

solution function of the BDE (5.4.3) for the function g0(x1, x2, x3) (5.4.2).

The transformation for the solution function f8(x1, x2, x3) confirms that the used

initial function f1(x1, x2, x3) = f8(x1, x2, x3) (5.4.1) is an element of the solution set.

(Rudeanu 1974)

All functions hi(x1, x2, x3) hold the BDE

∂hi(x1, x2, x3)

∂(x1, x3)
= 0.

This property can be checked easily. Either the functions hi(x1, x2, x3) does not

depend on (x1, x3), than we have e.g.

∂h3(x1, x2, x3)

∂(x1, x3)
=

∂(x2)

∂(x1, x3)

= x2 ⊕ x2 = 0,

or the variables (x1, x3) appear in the function hi(x1, x2, x3) connected by an ⊕-

operation, than we have e.g. hi(x1, x2, x3)
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∂h1(x1, x2, x3)

∂(x1, x3)
=
∂(x2(x1 ⊕ x3))

∂(x1, x3)

= x2(x1 ⊕ x3)⊕ x2(x1 ⊕ x3)

= x2(x1 ⊕ x3)⊕ x2(x1 ⊕ x3) = 0.

There is one remaining question concerning the BDE of a single derivative operation

like (5.4.3): Are there solution functions f(x1, x2, x3) for each function g(x1, x2, x3)?

The answer to this question is NO too. It can be verified, for instance, by checking

all 256 functions f(x1, x2, x3) that no function f(x1, x2, x3) exists as solution of the

BDE (5.4.3) where the function g(x1, x2, x3) = x1, x2, x3. The reason for that come

from the definition of the vectorial derivative.

Due to

g(x0, x1) =
∂f(x0, x1)

∂x0
= f(x0, x1)⊕ f(x0, x1)

we get

g(x0, x1) =
∂f(x0, x1)

∂x0
= f(x0, x1)⊕ f(x0, x1)

and consequently

g(x0, x1) = g(x0, x1)

which can be expressed by

g(x0, x1) = g(x0, x1)

g(x0, x1)⊕ g(x0, x1) = g(x0, x1) = g(x0, x1)

g(x0, x1)⊕ g(x0, x1) = 0

∂g(x0, x1)

∂x0
= 0. (5.4.5)
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Hence, the function g(x1, x2, x3) in the BDE (5.4.3) must hold the condition (5.4.5)

in order to find solution functions f(x1, x2, x3). For that reason (5.4.5) is called

integrability condition for the vectorial derivatives of Boolean functions.

We learn form from this example:

1. A Boolean differential equation (5.4.3) includes the unknown function f(x1, x2, x3).

2. There are solutions of a BDE like (5.4.3) only if the righthand function g(x1, x2, x3)

holds a special integrability condition.

3. As shown in (5.4.4), the general solution of an inhomogeneous BDE is built

using a single special solution of the inhomogeneous BDE and the set of all

solutions of the associated homogeneous BDE. The associated homogeneous

BDE is developed by replacing the righthand side of an inhomogeneous BDE

by 0.

4. Generally, the solution of a Boolean differential equation is a set of Boolean

functions. This is a significant difference to Boolean equations. The solution

of a Boolean equation is a set of Boolean vectors.

Example 5.4.1: Let the following Boolean differential equation be given: ∂f
∂x1

= 1,

where f is two-variable Boolean function. To solve the equations by the method

of unspecified coefficients, it needs to be represented by the canonical exclusive OR

form:

f = f (0)x1x2 ⊕ f (1)x1x2 ⊕ f (3)x1x2

with unspecified coefficients f (0), f (1), f (2), f (3). Then we have to compute the Boolean

difference with respect to variable x1 and make it equal to 1:

∂f

∂x1
= f (0)x2 ⊕ f (1)x2 ⊕ f (2)x2 ⊕ f (3)x2

= (f (0) + f (2))x2 + (f (1) ⊕ f (3))x2

= 1
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Next, one can substitute all possible values of x2 and write the system of Boolean

equations as follows:

f (0) ⊕ f (2) = 1

f (1) ⊕ f (3) = 1.

Next, combine these two equations by one

(f (0) ⊕ f (2)) · (f (1) ⊕ f (3)) = 1.

So, the initial Boolean differential equation is reduced to one logic equation with

4 unknown variables f (0), f (1), f (2), f (3). The solution of the equation is the set of

functions {x1, x1 ⊕ x2, x1 ⊕ x2, x1}.
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