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1. INTRODUCTION AND BACKGROUND

The concept of convergence of sequences of points has been extended by several
authors to convergence of sequences of sets. The one of these such extensions
considered in this paper is the concept of Wijsman convergence. We shall define
lacunary statistical convergence for sequences of sets and establish some basic results
regarding these notions.

Let us start with fundamental definitions from the literature. The natural den-
sity of a set K of positive integers is defined by

δ(K) := lim
n→∞

1

n
|{k ≤ n : k ∈ K}|,
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Lacunary Statistical Convergence of Sequences of Sets

where |k ≤ n : k ∈ K| denotes the number of elements of K not exceeding n.
Statistical convergence of sequences of points was introduced by Fast (Fast,

1951). Schoenberg (Schoenberg, 1959) established some basic properties of statis-
tical convergence and also studied the concept as a summability method.

A sequence x = (xk) is said to be statistically convergent to the number L if for
every ε > 0,

lim
n→∞

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0.

In this case we write st− limxk = L. Statistical convergence is a natural genera-
lization of ordinary convergence. If limxk = L, then st− limxk = L. The converse
does not hold in general.

By a lacunary sequence we mean an increasing integer sequence θ = {kr} such
that k0 = 0 and hr = kr − kr−1 → ∞ as r → ∞. Throughout this paper the
intervals determined by θ will be denoted by Ir = (kr−1, kr], and ratio kr

kr−1
will be

abbreviated by qr.
The concept of lacunary statistical convergence was defined by Fridy and Orhan

(Fridy & Orhan, 1993). A sequence x = (xk) is said to be lacunary statistically
convergent to the number L if for every ε > 0,

lim
r

1

hr
|{k ∈ Ir : |xk − L| ≥ ε}| = 0. (1)

In this case we write Sθ − limxk = L or xk → L(Sθ).
The sequence space Nθ, which is defined by

Nθ =

{
(xk) : lim

r

1

hr

∑
k∈Ir

|xk − L| = 0

}
.

Let (X, ρ) be a metric space. For any point x ∈ X and any non-empty subset A
of X, we define the distance from x to A by

d(x,A) = inf
a∈A

ρ(x,A).

Let (X, ρ) be a metric space. For any non-empty closed subsets A,Ak ⊆ X, we
say that the sequence {Ak} is Wijsman convergent to A if

lim
k→∞

d(x,Ak) = d(x,A)

for each x ∈ X. In this cace we write W − limAk = A.
As an example, consider the following sequence of circles in the (x, y)-plane:

Ak = {(x, y) : x2 + y2 + 2kx = 0}. As k →∞ the sequence is Wijsman convergent
to the y-axis A = {(x, y) : x = 0}.

The concepts of Wijsman statistical convergence and Wijsman strong Cesaro
summability were introduced by Nuray and Rhoades (Nuray & Rhoades, 2012): Let
(X, ρ) a metric space. For any non-empty closed subsets A,Ak ⊆ X, the sequence
{Ak} is said to be Wijsman statistically convergent to A if for ε > 0 and for each
x ∈ X,

lim
n→∞

1

n
|{k ≤ n : |d(x,Ak)− d(x,A)| ≥ ε}| = 0.

In this case we write st− limW Ak = A or Ak → A(WS).
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Let (X, ρ) a metric space. For any non-empty closed subsets A,Ak ⊆ X, the
sequence {Ak} is said to be Wijsman strongly Cesaro summable to A if for each
x ∈ X,

lim
n→∞

1

n

n∑
k=1

|d(x,Ak)− d(x,A)| = 0.

Also the concept of bounded sequence for sequences of sets was given by Nuray
and Rhoades (Nuray & Rhoades, 2012) as follows: Let (X, ρ) a metric space. For
any non-empty closed subsets Ak of X, the sequence {Ak} is said to be bounded if
supk d(x,Ak) <∞ for each x ∈ X.

2. MAIN RESULTS

In this section, we will define Wisjman lacunary statistical convergence of sequences
of sets and will give the relationship between Wijsman statistical convergence and
Wisjman lacunary statistical convergence of sequences of sets.

Definition 1. Let (X, ρ) a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A,Ak ⊆ X, we say that the sequence {Ak} is
Wijsman lacunary summable to A if for each x ∈ X,

lim
r

1

hr

∑
k∈Ir

d(x,Ak) = d(x,A).

In this case we write Ak → A(WNθ).
The set of Wijsman lacunary summable sequences will be denoted

WNθ :=

{
{Ak} : lim

r

1

hr

∑
k∈Ir

d(x,Ak) = d(x,A)

}
.

Definition 2. Let (X, ρ) a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A,Ak ⊆ X, we say that the sequence {Ak} is
Wijsman lacunary statistically convergent to A if for ε > 0 and for each x ∈ X,

lim
r

1

hr
|k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε| = 0.

In this case we write Sθ − limW = A or Ak → A(WSθ).
The set of Wijsman lacunary statistically convergent sequences will be denoted

WSθ :=

{
{Ak} : Sθ − lim W Ak = A

}
.

Example 1. Let X = R and we define a sequence {Ak} as follows:

Ak :=

{
{x ∈ R : 2 ≤ x ≤ kr − kr−1} , if k ≥ 2 and k is square integer,
{1} , otherwise.

This sequence is not Wijsman lacunary summable. But since

lim
r→∞

1

hr
| {k ∈ Ir : |d(x,Ak)− d(x, {1})| ≥ ε} | = lim

r→∞

√
kr − kr−1

hr
= 0

this sequence is Wijsman lacunary statistically convergent to the set A = {1}.
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Example 2. Let X = R2 and we define a sequence {Ak} as follows:

Ak :=


{

(x, y) ∈ R2 : x2 + (y − 1)2 =
1

k

}
,

if kr−1 < k < kr−1 + [
√
hr] and

k is a square integer,

{(0, 0)} , otherwise.

This sequence is Wijsman lacunary statistical converget to the set A = {(0, 0)}
since

lim
r→∞

1

hr
| {k ∈ Ir : |d(x,Ak)− d(x, {(0, 0)})| ≥ ε} | = 0.

But it is not Wijsman lacunary summable.

Definition 3. Let (X, ρ) a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A,Ak ⊆ X, we say that the sequence {Ak} is
Wijsman lacunary strongly summable to A for each x ∈ X,

lim
r

1

hr

∑
k∈Ir

|d(x,Ak)− d(x,A)| = 0.

In this case we write Ak → A([WNθ]).
The set of Wijsman lacunary strongly summable sequences will be denoted

[WNθ] :=

{
{Ak} : lim

r

1

hr

∑
k∈Ir

|d(x,Ak)− d(x,A)| = 0

}
.

Example 3. Let X = R and we define a sequence {Ak} as follows:

Ak :=

{
{x ∈ R : 2 ≤ x ≤ kr − kr−1} , if k ≥ 2 and k is square integer,
{1} , otherwise.

This sequence is Wijsman lacunary strongly summable to the set A = {1} since

lim
r→∞

1

hr

∑
k∈Ir

|d(x,Ak)− d(x, {1})| = lim
r→∞

1

hr
.
√
kr − kr−1 = 0.

i.e., {Ak} ∈ [WNθ].

Theorem 1. Let (X, ρ) be a metric space, θ = {kr} be a lacunary sequence and
A,Ak be non-empty closed subsets of X;

(i) (a) Ak → A([WNθ])⇒ Ak → A(WSθ)

(b) [WNθ] is a proper subset of WSθ;

(ii) {Ak} ∈ L∞ and Ak → A(WSθ)⇒ Ak → A([WNθ]);

(iii) WSθ ∩ L∞ = [WNθ] ∩ L∞,

where L∞ denotes the set of bounded sequences of sets.
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Proof. (i)− (a). if ε > 0 and Ak → A([WNθ]) we can write∑
k∈Ir |d(x,Ak)− d(x,A)| ≥

∑
k∈Ir

|d(x,Ak)−d(x,A)|≥ε
|d(x,Ak)− d(x,A)|

≥ ε. |{k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε}|

which gives the result.
(i)− (b). In order to show that the inclusion [WNθ] ⊂WSθ in (i) is proper, let

θ be given and we define a sequence {Ak} as follows:

Ak =

{
{k} , if kr−1 < k ≤ kr−1 +

[√
hr
]

r = 1, 2, · · ·
{0} , otherwise.

Note that {Ak} is not bounded. We have, for every ε > 0 and for each x ∈ X,

1

hr
|{k ∈ Ir : |d(x,Ak)− d(x, {0})| ≥ ε}| =

[√
hr
]

hr
→ 0 as r →∞

i.e., Ak → {0}(WSθ). But,

1

hr

∑
k∈Ir

|d(x,Ak)− d(x, {0}| = 1

hr

[√
hr
]
.
([√

hr
]

+ 1
)

2
→ 1

2
6= 0

hence Ak 9 A([WNθ]).
(ii) Suppose that Ak → A(WSθ) and Ak ∈ L∞, say |d(x,Ak) − d(x,A)| ≤ M

for each x ∈ X and all k. Given ε > 0, we get

1

hr

∑
k∈Ir
|d(x,Ak)− d(x,A)|

=
1

hr

∑
k∈Ir

|d(x,Ak)−d(x,A)|≥ε

|d(x,Ak)− d(x,A)|

+
1

hr

∑
k∈Ir

|d(x,Ak)−d(x,A)|<ε

|d(x,Ak)− d(x,A)|

≤ M

hr
|{k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε}|+ ε

hence we have the result.
(iii) This is follows from consequences (i) and (ii).

Lemma 1. For any lacunary sequence θ = {kr}, st − limW Ak = A implies Sθ −
limW Ak = A if and only if lim infr qr > 1.

Proof. Suppose first that lim infr qr > 1; then there exists a λ > 0 such that qr ≥
1 + λ for sufficiently large r, which implies that

hr
kr
≥ λ

1 + λ
.

If st− limW Ak = A, then for every ε > 0 and for sufficiently large r, we have

1

kr
|{k ≤ kr : |d(x,Ak)− d(x,A)| ≥ ε}|

≥ 1

kr
|{k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε}|

≥ λ

1 + λ
.

(
1

hr
|{k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε}|

)
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this proves the sufficiently.

Conversely, suppose that lim infr qr = 1. Since θ is lacunary, we can select a
subsequence

{
krj
}

of θ satisfying

krj
krj−1

< 1 +
1

j
and

krj−1

krj−1

> j, where rj ≥ rj−1 + 2.

Now we define a sequence {Ak} as follows:

Ak :=

{
(x, y) ∈ R2, x2 + (y − 1)2 = 1

k4 , k ∈ Irj ,
{(0, 0)} , otherwise.

Then,

1

hrj

∑
k∈Irj

|d(x,Ak)− d(x, {(0, 0)})| = T for j = 1, 2, · · · , (T ∈ R+)

and

1

hr

∑
k∈Ir

|d(x,Ak)− d(x, {(0, 0)})| = 0 for r 6= rj .

It follows that {Ak} /∈ [WNθ]. However, {Ak} is Wijsman strongly Cesaro
summable, since if n is any sufficient large integer can find the unique j for which
krj−1 < n < krj+1−1 and write

1

n

n∑
i=1

|d(x,Ak)− d(x, {(0, 0)})| ≤
krj−1

+ hrj
krj−1

≤ 1

j
+

1

j
=

2

j
.

As n→∞ it follows that also j →∞. Hence {Ak} ∈ |Wσ1|. The above Theorem
1 (ii) implies that {Ak} /∈ WSθ, but it follows from (Nuray & Rhoades, 2012,
theorem 17) that {Ak} ∈WS. Hence WS *WSθ.

Lemma 2. For any lacunary sequence θ, Sθ− limW Ak = A implies st− limW Ak =
A if and only if lim supr qr <∞.

Proof. If lim supr qr <∞,then there is an K > 0 such that qr < K for all r. Suppose
that Sθ − limW Ak = A, and let Ur := |{k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε|. By (1),
given ε > 0, there is an r0 ∈ N such that

Ur
hr

< ε for all r > r0.

Now let M := max{Ur : 1 ≤ r ≤ r0} and let t be any integer satisfying kr−1 < t ≤

104



Ulusu, U., & Nuray, F. /Progress in Applied Mathematics, 4 (2), 2012

kr; then we can write

1

t
|{k ≤ t : |d(x,Ak)− d(x,A)| ≥ ε}|

≤ 1

kr−1
|{k ≤ kr : |d(x,Ak)− d(x,A)| ≥ ε}|

=
1

kr−1
{U1 + U2 + · · ·+ Ur0 + Ur0+1 + · · ·+ Ur}

≤ M

kr−1
.r0 +

1

kr−1

{
hr0+1

Ur0+1

hr0+1
+ · · ·+ hr

Ur
hr

}
≤ r0.M

kr−1
+

1

kr−1

(
sup
r>r0

Ur
hr

)
{hr0+1 + · · ·+ hr}

≤ r0.M

kr−1
+ ε.

kr−kr0
kr−1

≤ r0.M

kr−1
+ ε.qr ≤

r0.M

kr−1
+ ε.K

and the sufficiently follows immediately.
Conversely, suppose that lim supr qr = ∞ and construct a sequence in [WNθ]

that is not Wijsman strongly Cesaro summable. First select a subsequence (krj ) of
the lacunary sequence θ = {kr} such that qrj > j, and then we define a bounded
sequence {Ak} as follows:

Ak :=

{
{1} , krj−1 < k < 2krj−1,

{0} , otherwise.

Then

τrj =
1

hrj

∑
Irj

|d(x,Ak)− d(x, {0})| =
krj−1

krj−1 − krj−1

<
1

j − 1

and, if r 6= rj , τr = 0. Thus {Ak} ∈ [WNθ]. Observe next that any sequence in
|Wσ1| consisting of only {0}’s and {1}’s has an associated Wijsman strongly limit
{L} which is {0} or {1}. For the sequence {Ak} above, and k = 1, 2, ..., krj ,

1

krj

∑
k

|d(x,Ak)− d(x, {1})| ≥ 1

krj
(krj − 2krj−1) = 1−

2krj−1

kr
> 1− 2

j

which converges to {1}, and, for k = 1, 2, ...2krj−1,

1

2krj−1

∑
k

|d(x,Ak)− d(x, {0})| ≥
krj−1

2krj−1
=

1

2

and it follows that {Ak} /∈ |Wσ1|.

Combining Lemma 1 and Lemma 2 we have

Theorem 2. Let θ be a lacunary sequence; then WS = WSθ if and only if

1 < lim inf
r

qr ≤ lim sup
r

qr <∞;

then st− limW Ak = A implies Sθ − limAk = A.
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Proof. This follows from Lemma 1 and Lemma 2.

Theorem 3. If {Ak} ∈WS ∩WSθ, then Sθ − limW Ak = st− limW Ak.

Proof. Suppose st − limW Ak = A and Sθ − limW Ak = B, and A 6= B. For
1
2 |d(x,A)− d(x,B)| > ε and each x ∈ X we get

lim
n

1

n
|{k ≤ n : |d(x,Ak)− d(x,B)| ≥ ε}| = 1.

Consider the km th term of the statistical limit expression
1

n
|{k ≤ n : |d(x,Ak)−

d(x,B)| ≥ ε}| :

1

ki
|{k ≤ ki : |d(x,Ak)− d(x,B)| ≥ ε}|

=
1

ki

∣∣∣∣{k ∈ i⋃
r=1

Ir : |d(x,Ak)− d(x,B)| ≥ ε}
∣∣∣∣

=
1

ki

i∑
r=1
|{k ∈ Ir : |d(x,Ak)− d(x,B)| ≥ ε}|

= 1
i∑

r=1
hr

i∑
r=1
|{k ∈ Ir : |d(x,Ak)− d(x,B)| ≥ ε}|,

= 1
i∑

r=1
hr

i∑
r=1

hrur

(2)

where ur =
1

hr
|{k ∈ Ir : |d(x,Ak) − d(x,B)| ≥ ε}| → 0 because Ak → B(WSθ).

Since θ is lacunary sequence, (2) is a regular weighted mean transform of u, and
therefore it, too, tends to zero as i → ∞. Also, since this is a subsequence of{

1

n
|{k ≤ n : |d(x,Ak)− d(x,B)| ≥ ε}|

}∞
n=1

, we infer that

lim
n

1

n
|{k ≤ n : |d(x,Ak)− d(x,B)| ≥ ε}| 6= 1,

and this contradiction shows that we cannot have A 6= B.

We now consider the inclusion of WSθ′ by WSθ, where θ′ is lacunary refinement
of θ. Recall (Freedman, Sember, & Raphael, 1978) that the lacunary sequence
θ′ = {k′r} is called a lacunary refinement of the lacunary sequence θ = {kr} if
{kr} ⊆ {k′r}.

Theorem 4. If θ′, is a lacunary refinement of θ and Ak → A(WSθ′), then Ak →
A(WSθ).

Proof. Suppose each Ir of θ contains the points {k′r,i}
v(r)
i=1 of θ′ so that

kr−1 < k′r,1 < k′r,2 < ... < k′r,v(r) = kr, where I ′r,i = (k′r,i−1, k
′
r,1].
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Note that for all r, v(r) ≥ 1 because {kr} ⊆ {k′r}. Let {I∗j }∞j=1 be the sequence
of abutting intervals {I ′r,i} ordered by increasing right end points. Since Ak →
A(WSθ′), we get, for each ε > 0,

lim
j

∑
I∗j⊂Ir

1

h∗r
|{k ∈ I∗j : |d(x,Ak)− d(x,A)| ≥ ε}| = 0. (3)

As before we write, hr = kr − kr−1, h
′
r,i = k′r,i− k′r,i−1 and h′r,1 = k′r,1− kr−1. For

each ε > 0 we have

1

hr
|{k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε}|

=
1

hr

∑
I∗j⊆Ir

h∗j
1

h∗j
|{k ∈ I∗j : |d(x,Ak)− d(x,A)| ≥ ε}|

=
1

hr

∑
I∗j⊆Ir

h∗j (Cθ′χK)j

(4)

where χK is the characteristic function of the set K := {k ∈ I∗j : |d(x,Ak) −
d(x,A)| ≥ ε} and Cθ′χK where,

Cθ′χK =


1

h∗j
, if k ∈ I∗j

0, if k /∈ I∗j

By (3), Cθ′χK is a null sequence, and (4) is a regular weighted mean transform of
Cθ′χK . Hence, the transform (4) also to goes zero as r →∞.

Nuray and Rhoades (Nuray & Rhoades, 2012) introduced the notion of strongly
almost convergence for sequence of sets as follows:

Definition 4. For any non-empty closed subsets A,Ak ⊆ X, we say that the se-
quence {Ak} is Wijsman strongly almost convergent to A if for each x ∈ X,

lim
n

1

n

n∑
k=1

|d(x,Ak+i)− d(x,A)| = 0

uniformly in i. In this case we write Ak → A([WAC]).

The set of Wijsman strongly almost convergent sequences will be denoted

[WAC] :=

{
{Ak} : lim

n

1

n

n∑
k=1

|d(x,Ak+i)− d(x,A)| = 0

}
.

It is known that
[WAC] ⊂ L∞. (5)

Example 4. Let X = R and we define a sequence {Ak} as follows:

Ak :=

{
{x ∈ R : 2 ≤ x ≤ k} , if k ≥ 2 and k is square integer,

{1} , otherwise.
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This sequence is Wijsman strongly almost convergent to the set A = {1} since

lim
n→∞

1

n

n∑
k=1

|d(x,Ak+i)− d(x, {1})| ≤ lim
n→∞

1

n
.
√
n = 0

uniformly i. i.e., {Ak} ∈ [WAC].

Proposition 1. [WAC] =
⋂
WNθ

Theorem 5. If Φ denotes the set of all lacunary sequences, then

[WAC] = L∞ ∩

(⋂
θ∈Φ

WSθ

)
.

Proof. By proposition above, the relations (5) and Theorem 1 (iii),

L∞ ⊃ [WAC] =
⋂
θ∈Φ

[WNθ] = L∞ ∩

(⋂
θ∈Φ

[WNθ]

)
=
⋂
θ∈Φ

(L∞ ∩ [WNθ])

=
⋂
θ∈Φ

(L∞ ∩WSθ) = L∞ ∩

(⋂
θ∈Φ

WSθ

)
.
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