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LACUNARY STATISTICAL SUMMABILITY OF SEQUENCES OF

SETS

UĞUR ULUSU AND FATİH NURAY

Abstract. In this paper we define the WSθ−analog of the Cauchy criterion

for convergence and show that it is equivalent to Wijsman lacunary statistical

convergence. Also, Wijsman lacunary statistical convergence is compared to
other summability methods which are defined in this paper. After giving new

definitions for convergence, we prove a result comparing them. In addition, we
give the relationship between Wijsman lacunary statistical convergence and

Hausdorf lacunary statistical convergence.

1. INTRODUCTION AND BACKGROUND

The concept of convergence of a sequence of real numbers has been extended to
statistical convergence independently by Fast [5] and Schoenberg [11]. The concept
of lacunary statistical convergence and summability were defined by Fridy and
Orhan in [7, 8].

The concept of convergence of sequences of numbers has been extended by
several authors to convergence of sequences of sets. The one of these such ex-
tensions considered in this paper is the concept of Wijsman convergence (see,
[1],[2],[3],[4],[9],[12],[13],[14]). Nuray and Rhoades [9] extended the notion of con-
vergence of set sequences to statistical convergence and gave some basic theorems.
Ulusu and Nuray [12] defined the Wijsman lacunary statistical convergence of se-
quence of sets and considered its relation with Wijsman statistical convergence,
which was defined by Nuray and Rhoades.

In this paper, we shall define the concept of Wijsman lacunary statistical Cauchy
sequences for sequences of sets and show that this concept is equivalent to the con-
cept of Wijsman lacunary statistically convergence. Also, Wijsman lacunary statis-
tical convergence will be compared to newly defined Wijsman lacunary summability
methods. Further, the definition of Wijsman lacunary almost convergence for se-
quences of sets is introduced and some comparison theorems are given.
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2. DEFINITIONS AND NOTATIONS

Now, we recall the concept of statistical, lacunary statistical, Wijsman, Haus-
dorff, Wijsman statistiscal, Hausdorff statistical, Wijsman strongly almost, Wijs-
man almost statistical, Wijsman lacunary statistical convergence, Wijsman lacu-
nary summability, Wijsman strongly lacunary summability and Wijsman Cesàro
summability of the sequences of sets (see, [2],[6],[7],[9],[12])

Definition 2.1. A sequence x = (xk) is said to be statistically convergent to the
number L if for every ε > 0,

lim
n→∞

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0.

In this case, we write st− limxk = L.

By a lacunary sequence we mean an increasing integer sequence θ = {kr} such
that k0 = 0 and hr = kr − kr−1 → ∞ as r → ∞. Throughout this paper the
intervals determined by θ will be denoted by Ir = (kr−1, kr].

Definition 2.2. A sequence x = (xk) is said to be lacunary statistically convergent
to the number L if for every ε > 0,

lim
r

1

hr
|{k ∈ Ir : |xk − L| ≥ ε}| = 0.

In this case, we write Sθ − limxk = L or xk → L(Sθ).

Let (X, ρ) be a metric space. For any point x ∈ X and any non-empty subset A
of X, we define the distance from x to A by

d(x,A) = inf
a∈A

ρ(x, a).

Definition 2.3. Let (X, ρ) be a metric space. For any non-empty closed subsets
A,Ak ⊆ X, we say that the sequence {Ak} is Wijsman convergent to A if

lim
k→∞

d(x,Ak) = d(x,A),

for each x ∈ X. In this case, we write W − limAk = A.

As an example, consider the following sequence of circles in the (x, y)-plane:

Ak = {(x, y) : x2 + y2 + 2kx = 0}.

As k →∞ the sequence is Wijsman convergent to the y-axis A = {(x, y) : x = 0}.

Definition 2.4. Let (X, ρ) be a metric space. For any non-empty closed subsets
A,Ak ⊆ X, we say that the sequence {Ak} is Hausdorff convergent to A if

lim
k→∞

sup
x∈X
|d(x,Ak)− d(x,A)| = 0.

In this case, we write H − limAk = A.

The concepts of Wijsman statistical convergence and Hausdorff statistical con-
vergence were given by Nuray and Rhoades [9] as follows:
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Definition 2.5. Let (X, ρ) be a metric space. For any non-empty closed subsets
A,Ak ⊆ X, we say that the sequence {Ak} is Wijsman statistical convergent to A
if {d(x,Ak)} is statistically convergent to d(x,A); i.e., for every ε > 0 and for each
x ∈ X,

lim
n→∞

1

n
|{k ≤ n : |d(x,Ak)− d(x,A)| ≥ ε}| = 0.

In this case, we write st− limW Ak = A or Ak → A(WS).

Definition 2.6. Let (X, ρ) be a metric space. For any non-empty closed subsets
A,Ak ⊆ X, we say that the sequence {Ak} is Hausdorff statistical convergent to A
if for each ε > 0,

lim
n→∞

1

n
|{k ≤ n : sup

x∈X
|d(x,Ak)− d(x,A)| ≥ ε}| = 0.

In this case, we write st− limH Ak = A or Ak → A(HS).

Let (X, ρ) be a metric space. For any non-empty closed subsets Ak of X, we say
that the sequence {Ak} is bounded if supk d(x,Ak) <∞, for each x ∈ X.

Also, the concepts of Wijsman Cesàro Summability, Wijsman strongly almost
convergence and Wijsman almost statistical convergence for sequences of sets were
given by Nuray and Rhoades [9] as follows:

Definition 2.7. Let (X, ρ) be a metric space. For any non-empty closed subsets
A, Ak ⊆ X, we say that {Ak} is Wijsman Cesàro summable to A if {d(x,Ak)} is
Cesàro summable to d(x,A); i.e., for each x ∈ X,

lim
n→∞

1

n

n∑
k=1

d(x,Ak) = d(x,A).

Definition 2.8. Let (X, ρ) be a metric space. For any non-empty closed subsets
A, Ak ⊆ X, we say that {Ak} is Wijsman strongly almost convergent to A if for
each x ∈ X,

lim
n→∞

1

n

n∑
k=1

|d(x,Ak+i)− d(x,A)| = 0,

uniformly in i.

Definition 2.9. Let (X, ρ) be a metric space. For any non-empty closed subsets A,
Ak ⊆ X, we say that the sequence {Ak} is Wijsman almost statistically convergent
to A if for each ε > 0 and for each x ∈ X,

lim
n→∞

1

n
|{k ≤ n : |d(x,Ak+i)− d(x,A)| ≥ ε}| = 0,

uniformly in i.

The concepts of Wijsman lacunary summability, Wijsman strongly lacunary
Summability and Wijsman lacunary statistical convergence of sequences of sets
were given by Ulusu and Nuray [12] as follows:

Definition 2.10. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsetsA, Ak ⊆ X, we say that {Ak} is Wijsman lacunary
summable to A, if {d(x,Ak)} is lacunary summable to d(x,A); i.e., for each x ∈ X,

lim
r→∞

1

hr

∑
Ir

d(x,Ak) = d(x,A).
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Definition 2.11. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A, Ak ⊆ X, we say that {Ak} is Wijsman strongly
lacunary Summable to A, if {d(x,Ak)} is strongly lacunary summable to d(x,A);
i.e., for each x ∈ X,

lim
r→∞

1

hr

∑
Ir

|d(x,Ak)− d(x,A)| = 0.

Definition 2.12. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A,Ak ⊆ X, we say that the sequence {Ak} is
Wijsman lacunary statistical convergent to A, if {d(x,Ak)} is lacunary statistically
convergent to d(x,A); i.e., for every ε > 0 and for each x ∈ X,

lim
r

1

hr
|k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε| = 0.

In this case, we write Sθ − limW Ak = A or Ak → A(WSθ).

Example 2.1. Let X = R and we define a sequence {Ak} as follows:

Ak :=


{x ∈ R : 2 ≤ x ≤ k} ,

if k ≥ 2, kr−1 < k ≤ kr
and k is a square integer,

{1} , otherwise.

As k → ∞ this sequence is Wijsman lacunary statistical converget to the set
A = {1}.

3. MAIN RESULTS

Definition 3.1. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A, Ak ⊆ X, we say that the sequence {Ak} is
said to be a Wijsman lacunary statistical Cauchy sequence if there is a subsequence
{Ak′(r)} of {Ak} such that k′(r) ∈ Ir for each r, W − limr Ak′(r) = A, and for every
ε > 0 and x ∈ X,

(3.1) lim
r→∞

1

hr
|{k ∈ Ir : |d(x,Ak)− d(x,Ak′(r))| ≥ ε}| = 0.

Theorem 3.1. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
The sequence {Ak} is Wijsman lacunary statistical convergent if and only if {Ak}
is a Wijsman lacunary statistical Cauchy sequence.

Proof. (⇒) Let Ak → A(WSθ) and write

K(j) :=

{
k ∈ N : |d(x,Ak)− d(x,A)| < 1

j

}
,

for each x ∈ X and each j ∈ N. Hence, for each j,K(j) ⊇ K(j+1) and

lim
r→∞

|K(j) ∩ Ir|
hr

= 1.

Choose m(1) such that r ≥ m(1) implies
|K(1) ∩ Ir|

hr
> 0, i.e., K(1) ∩ Ir 6= ∅.

Next choose m(2) > m(1) so that r ≥ m(2) implies K(2) ∩ Ir 6= ∅. Then, for
each r satisfying m(1) ≤ r < m(2), choose k′(r) ∈ Ir such that k′(r) ∈ Ir ∩K(1),
i.e., |d(x,Ak′(r)) − d(x,A)| < 1. In general, choose m(p + 1) > m(p) such that
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r > m(p+1) implies Ir∩K(p+1) 6= ∅. Then, for all r satisfying m(p) ≤ r < m(p+1),
choose k′(r) ∈ Ir ∩K(p), i.e.,

(3.2) |d(x,Ak′(r))− d(A, x)| < 1

p
.

Hence, we get k′(r) ∈ Ir for every r and (3.2) implies that

W − lim
r
d(x,Ak′(r)) = d(x,A).

Furthermore, for every ε > 0 we have,

1

hr
|{k ∈ Ir : |d(x,Ak)− d(x,Ak′(r))| ≥ ε}|

≤ 1

hr
|{k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε

2
}|

+
1

hr
|{k ∈ Ir : |d(x,Ak′(r))− d(x,A)| ≥ ε

2
}|.

Using the assumptions that Ak → A(WSθ) and W − limr d(x,Ak′(r)) = d(x,A), we
infer (3.1), whence Ak is a Wijsman lacunary statistical Cauchy sequence.

(⇐) Conversely, suppose that {Ak} is a Wijsman lacunary statistical Cauchy
sequence. For every ε > 0, we have

|{k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε}| ≤
∣∣∣{k ∈ Ir : |d(x,Ak)− d(x,Ak′(r))| ≥

ε

2
}
∣∣∣

+
∣∣∣{k ∈ Ir : |d(x,Ak′(r))− d(x,A)| ≥ ε

2
}
∣∣∣

from which it follows that Ak → A(WSθ). �

Now we give following theorem where ∆ denotes the forward difference operator
defined by ∆d(x,Ai) = d(x,Ai)− d(x,Ai+1).

Theorem 3.2. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
If Ak → A(WSθ) and for each x ∈ X

max{|∆d(x,Ai)| : i ∈ Ir} = o(
1

hr
) as r →∞,

then W − limAk = A.

Proof. Assume that Ak → A(WSθ) and by Theorem (3.1), choose a subsequence
{Ak′(r)} of {Ak} as in Definition (3.1). Since k′(r) ∈ Ir, for each x ∈ X we have

|d(x,Ak)− d(x,Ak′(r))| ≤
k′(r)−1∑
i=k

|∆d(x,Ai)|

≤ hr. (maxi∈Ir{|∆d(x,Ai)| : i ∈ Ir})

= o(1)

and therefore Ak′(r) → A(WS) implies that Ak → A(WS). �

Theorem 3.3. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
If {Ak} is a bounded sequence and Ak → A(WSθ), then {Ak} is Wijsman Cesàro
summable to A.
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Proof. Let (X, ρ) be a metric space, θ = {kr} be a lacunary sequence and let n be
a positive integer with n ∈ Ir; then

1

n

n∑
k=1

(
d(x,Ak)− d(x,A)

)
=

1

n

r−1∑
p=1

∑
k∈Ip

(
d(x,Ak)− d(x,A)

)
(3.3)

+
1

n

n∑
k=1+kr−1

(
d(x,Ak)− d(x,A)

)
.

Consider the first term on the right in (3.3),

1

n

r−1∑
p=1

∑
k∈Ip

(
d(x,Ak)− d(x,A)

)
≤ 1

kr−1

r−1∑
p=1

∑
k∈Ip

∣∣∣∣d(x,Ak)− d(x,A)

∣∣∣∣
(3.4) =

1

kr−1

r−1∑
p=1

hp.tp = (Ht)r,

say, where

tp =
1

hp

∑
k∈Ip

|d(x,Ak)− d(x,A)| .

Since {Ak} is bounded and Ak → A(WSθ), it follows from Theorem 1 (ii) of [12]
that tp → 0. Moreover

kr−1 =

r−1∑
p=1

hp →∞ as r →∞,

because θ is a lacunary sequence, which implies that (3.4) is a regular weighted
mean matrix transform of t in [10]; hence,

(3.5) (Ht)r → 0.

Now consider the second term on the right in (3.3). Since {Ak} is bounded,
there is a constant M > 0 such that |d(x,Ak)− d(x,A)| ≤M , for all k. Therefore,
for every ε > 0 we have,
(3.6)∣∣∣∣∣ 1n n∑

k=1+kr−1

(
d(x,Ak)− d(x,A)

)∣∣∣∣∣ ≤ 1

n

∑
kr−1<k≤n

|d(x,Ak)−d(x,A)|≥ε

|d(x,Ak)− d(x,A)|

+
1

n

∑
kr−1<k≤n

|d(x,Ak)−d(x,A)|<ε

|d(x,Ak)− d(x,A)|

≤ M

hr
|{k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε}|+ ε.

Since Ak → A(WSθ) and ε is an arbitrary, the expression on the left side of (3.6)
tends to zero as r →∞. Hence, (3.3), (3.5) and (3.6) imply that {Ak} is Wijsman
Cesàro summable to A. �
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Definition 3.2. Let (X, ρ) be a metric space and θ = {kr} be a lacunary se-
quence. For any non-empty closed subsets A, Ak ⊆ X, we say that {Ak} is Wijsman
strongly p−lacunary summable to A if {d(x,Ak)} is strongly p−lacunary summable
to d(x,A); i.e., for each p positive real number and for each x ∈ X

lim
r→∞

1

hr

∑
Ir

|d(x,Ak)− d(x,A)|p = 0.

Theorem 3.4. Let (X, ρ) be a metric space, θ = {kr} be a lacunary sequence and
let p positive real number. Then, for any non-empty closed subsets A, Ak ⊆ X;

(i) {Ak} is Wijsman lacunary statistical convergent to A if it is Wijsman
strongly p−lacunary summable to A.

(ii) If {Ak} is bounded and Wijsman lacunary statistical convergent to A then
it is Wijsman strongly p−lacunary summable to A.

Proof. (i) For any {Ak}, fix an ε > 0. Then∑
Ir

|d(x,Ak)− d(x,A)|p ≥ εp|{k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε}|,

and it follows that if {Ak} is Wijsman strongly p−lacunary summable to A then
{Ak} is Wijsman lacunary statistical convergent to A.

(ii) Let {Ak} be bounded and Wijsman lacunary statistical convergent to A.
Since {Ak} is bounded set

sup
k
{d(x,Ak)}+ d(x,A) = M.

Since {Ak} is Wijsman lacunary statistically convergent to A, for given ε > 0 we
can select Nε such that for each x ∈ X

1

hr

∣∣∣∣{k ∈ Ir : |d(x,Ak)− d(x,A)| ≥
(ε

2

) 1
p

}∣∣∣∣ < ε

2Mp
,

for all r > Nε and we let the set

Lr =

{
k ∈ Ir : |d(x,Ak)− d(x,A)| ≥

(ε
2

) 1
p

}
.

Then, for each x ∈ X

1

hr

∑
Ir

|d(x,Ak)− d(x,A)|p =
1

hr

 ∑
k∈Ir
k∈Lr

|d(x,Ak)− d(x,A)|p

+
∑
k∈Ir
k/∈Lr

|d(x,Ak)− d(x,A)|p


<

1

hr
.
hr.ε

2Mp
Mp +

1

hr
.
hr.ε

2
=
ε

2
+
ε

2
= ε.

Hence, {Ak} is Wijsman strongly p−lacunary summable to A. �
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Definition 3.3. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A, Ak ⊆ X, we say that {Ak} is Wijsman
lacunary almost convergent to A, if for each ε > 0 and for each x ∈ X,

lim
r→∞

1

hr

∑
Ir

d(x,Ak+i) = d(x,A),

uniformly in i.

Definition 3.4. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A, Ak ⊆ X, we say that {Ak} is Wijsman
lacunary strongly almost convergent to A, if for each ε > 0 and for each x ∈ X,

lim
r→∞

1

hr

∑
Ir

|d(x,Ak+i)− d(x,A)| = 0,

uniformly in i.

Example 3.1. Let X = R2 and we define a sequence {Ak} as follows:

Ak :=


{

(x, y) ∈ R2 : (x− 1)2 + (y + 1)2 =
1

k

}
, if kr−1 < k < kr−1 + [

√
hr],

{(1, 0)} , otherwise.

As k → ∞ this sequence is Wijsman lacunary strongly almost convergent to the
set A = {(1, 0)}.

Definition 3.5. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A, Ak ⊆ X, we say that {Ak} is Wijsman
lacunary strongly p−almost convergent to A, if for each ε > 0 and for each x ∈ X,

lim
r→∞

1

hr

∑
Ir

|d(x,Ak+i)− d(x,A)|p = 0,

uniformly in i, where p is a positive real number.

Definition 3.6. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A, Ak ⊆ X, we say that the sequence {Ak} is
Wijsman lacunary almost statistically convergent to A, if for each ε > 0 and for
each x ∈ X,

lim
r→∞

1

hr
|{k ∈ Ir : |d(x,Ak+i)− d(x,A)| ≥ ε| = 0,

uniformly in i.

Let L∞, C, (WAC)θ and |WAC|θ, respectively, denote the sets of the all bounded,
Wijsman convergent, Wijsman lacunary almost convergent and Wijsman lacunary
strongly almost convergent sequences of sets. It is easy to see that

C ⊂ (WAC)θ ⊂ |WAC|θ ⊂ L∞.

Theorem 3.5. Let (X, ρ) be a metric space, θ = {kr} be a lacunary sequence and
p be a positive number. Then, for any non-empty closed subsets A, Ak ⊆ X,

(i) {Ak} is Wijsman lacunary almost statistically convergent to A, if it is Wijs-
man lacunary strongly p−almost converget to A,
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(ii) If {Ak} is bounded and Wijsman lacunary almost statistically convergent
to A, then it is Wijsman lacunary strongly p−almost convergent to A.

Proof. The proof is similar to the proof of Theorem (3.4). �

Definition 3.7. Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence.
For any non-empty closed subsets A, Ak ⊆ X, we say that the sequence {Ak} is
Hausdorff lacunary statistically convergent to A, if for each ε > 0,

lim
r→∞

1

hr

∣∣∣∣{k ∈ Ir : sup
x∈X
|d(x,Ak)− d(x,A)| ≥ ε

}∣∣∣∣ = 0

i.e.,
sup
x∈X
|d(x,Ak)− d(x,A)| < ε a.a.k.

in this case, we write HSθ − limAk = A, Sθ − limH Ak = A, Ak → A(HSθ).

Theorem 3.6. Let (X, ρ) be a metric space, θ = {kr} be a lacunary and {Ak} be a
sequence of non-empty closed subsets of X. If {Ak} is Hausdorff lacunary statistical
converget, then {Ak} is Wijsman lacunary statistical convergent.

Proof. For any sequence {Ak} and for every ε > 0, since

|{k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε}| ≤
∣∣∣∣{k ∈ Ir : sup

x∈X
|d(x,Ak)− d(x,A)| ≥ ε

}∣∣∣∣
we get the result. �
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