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a b s t r a c t

Multipliers and factorizations for bounded statistically convergent sequenceswere studied
by Connor et al. [J. Connor, K. Demirci, C. Orhan, Multipliers and factorizations for
bounded statistically convergent sequences, Analysis 22 (2002) 321–333] and for bounded
I-convergent sequences by Yardımcı [Ş. Yardımcı, Multipliers and factorizations for
bounded I-convergent sequences, Math. Commun., 11 (2006) 181–185]. In this paper, we
get analogous results of multipliers for bounded I2-convergent double sequences.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by
Fast [1] and Schoenberg [2]. A lot of developments have beenmade in this area after the works of Śalát [3] and Fridy [4,5]. In
general, statistically convergent sequences satisfymany of the properties of ordinary convergent sequences inmetric spaces
[1,4–6]. This concept was extended to the double sequences by Mursaleen and Edely [7]. Çakan and Altay [8] presented
multidimensional analogues of the results of Fridy and Orhan [9].

The idea of I-convergence was introduced by Kostyrko et al. [10] as a generalization of statistical convergence which is
based on the structure of the ideal I of subset of the set of natural numbers. Nuray and Ruckle [11] independently introduced
the same idea with another name generalized statistical convergence. Kostyrko et al. [12] gave some of the basic properties
of I-convergence and dealt with extremal I-limit points. Das et al. [13] introduced the concept of I and I∗-convergence of
double sequences in ametric space and studied some properties of this convergence. Also, Das andMalik [14] introduced the
concepts of I-limit points, I-cluster points and I-limit superior and I-limit inferior of double sequences. Nabiev et al. [15]
proved a decomposition theorem for I-convergent sequences and introduced the notions of I-Cauchy sequence and I∗-
Cauchy sequence, and then studied their certain properties. A lot of developments have been made in this area after the
works of [16–19].

Connor et al. [20] studied multipliers and factorizations for bounded statistically convergent sequences. Also
Yardımcı [21] studied multipliers for bounded I-convergent sequences. In this paper, we study multipliers for bounded
I2-convergence of double sequences.

2. Definitions and notations

Throughout the paper, N denotes the set of all positive integers, χA-the characteristic function of A ⊂ N and R the set of
all real numbers. We often regard χA as sequence (xmn), where xmn = χA(m, n), A ⊂ N × N; note in particular, that e can be
regarded as the sequence of all 1’s.
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Now, we recall the concepts of convergence, statistical and ideal convergence of the sequences (see [13,1,10,7,22,18,
23–27]).

A double sequence x = (xmn)m,n∈N of real numbers is said to be bounded if there exists a positive real number M such
that |xmn| < M , for allm, n ∈ N. That is

‖x‖∞ = sup
m,n

|xmn| < ∞.

A double sequence x = (xmn)m,n∈N of real numbers is said to be convergent to L ∈ R if for any ε > 0, there exists Nε ∈ N
such that |xmn − L| < ε, wheneverm, n > Nε . In this case, we write

lim
m,n→∞

xmn = L.

By ℓ2
∞
, c2(b) and c20 (b), we denote the space of all bounded, bounded convergent and bounded null double sequences,

respectively.
Let K ⊂ N × N. Let Kmn be the number of (j, k) ∈ K such that j ≤ m, k ≤ n. If the sequence

 Kmn
m.n


has a limit in

Pringsheim’s sense, then we say that K has double natural density and is denoted by

d2(Kmn) = lim
m,n→∞

Kmn

m · n
.

A double sequence x = (xmn)m,n∈N of real numbers is said to be statistically convergent to L ∈ R if for any ε > 0 we have
d2(A(ε)) = 0, where

A(ε) = {(m, n) ∈ N × N : |xmn − L| ≥ ε}.

Let X ≠ ∅. A class I of subsets of X is said to be an ideal in X provided:
(i) ∅ ∈ I, (ii) A, B ∈ I implies A ∪ B ∈ I, (iii) A ∈ I, B ⊂ A implies B ∈ I.
I is called a nontrivial ideal if X ∉ I.
Let X ≠ ∅. A non empty class F of subsets of X is said to be a filter in X provided:
(i) ∅ ∉ F , (ii) A, B ∈ F implies A ∩ B ∈ F , (iii) A ∈ F , A ⊂ B implies B ∈ F .

Lemma 2.1 ([10]). If I is a nontrivial ideal in X, X ≠ ∅, then the class

F (I) = {M ⊂ X : (∃A ∈ I)(M = X \ A)}

is a filter on X, called the filter associated with I.

A nontrivial ideal I in X is called admissible if {x} ∈ I for each x ∈ X .
A nontrivial ideal I2 of N × N is called strongly admissible if {i} × N and N × {i} belong to I2 for each i ∈ N . Throughout

the paper, we take I2 as a strongly admissible ideal in N × N.
Let I0

2 = {A ⊂ N × N : (∃m(A) ∈ N),

i, j ≥ m(A) ⇒ (i, j) ∉ A


}. Then I0

2 is a nontrivial strongly admissible ideal and
clearly an ideal I2 is strongly admissible if and only if I0

2 ⊂ I2.
Let I2 ⊂ 2N×N be a strongly admissible ideal. A double sequence x = (xmn)m,n∈N of real numbers is said to be I2-

convergent to L ∈ R, if for any ε > 0 we have

A(ε) = {(m, n) ∈ N × N : |xmn − L| ≥ ε} ∈ I2.

In this case, we say that x is I2-convergent and we write

I2 − lim
m,n→∞

xmn = L.

If I2 ⊂ 2N×N is a strongly admissible ideal, then usual convergence implies I2-convergence.
A double sequence x = (xmn)m,n∈N of real numbers is said to be I∗

2-convergent to L ∈ R if there exists a set M ∈ F (I2)
(i.e., N × N \ M ∈ I2) such that

lim
m,n→∞

xmn = L

for (m, n) ∈ M and we write

I∗

2 − lim
m,n→∞

xmn = L.

A double sequence x = (xmn)m,n∈N of real numbers is said to be I2-bounded if there exists a real number M > 0 such
that

{(m, n) ∈ N × N : |xmn| ≥ M} ∈ I2.

We say that an admissible ideal I2 ⊂ 2N×N satisfies the property (AP2) if for every countable family of mutually disjoint
sets {A1, A2, . . .} belonging to I2, there exists a countable family of sets {B1, B2, . . .} such that Aj ∩ Bj ∈ I0

2 , i.e., Aj ∩ Bj is
included in the finite union of rows and columns in N × N for each j ∈ N and B =


∞

j=1 Bj ∈ I2 (hence Bj ∈ I2 for each
j ∈ N).

Now we begin with quoting the lemmas due to Das et al. [13] and Kumar [17] which are needed throughout the paper.
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Lemma 2.2 ([13, Theorem 1]). Let I2 ⊂ 2N×N be a strongly admissible ideal. If I∗

2 − limm,n→∞ xmn = L, then I2 − limm,n→∞

xmn = L.

Lemma 2.3 ([13, Theorem 3]). If I2 is an admissible ideal of N × N having the property (AP2) and (X, ρ) is an arbitrary
metric space, then for an arbitrary double sequence x = (xmn)m,n∈N of elements of X, I2 − limm,n→∞ xmn = L implies
I∗

2 − limm,n→∞ xmn = L.

Lemma 2.4 ([17, Proposition 3.3]).
(a) Let I2 ⊂ 2N×N be a strongly admissible ideal. If limm,n→∞ xmn = L, then I2 − limm,n→∞ xmn = L.
(b) If I2 − limm,n→∞ xmn = LandI2 − limm,n→∞ ymn = K , then

(i) I2 − limm,n→∞(xmn + ymn) = L + K ;

(ii) I2 − limm,n→∞(xmnymn) = LK .

3. Multipliers

In this section, we deal with the multipliers on or into FI2(b) and F 0
I2

(b). By FI2 and FI2(b), we denote the set of all
I2-convergent double sequences and both bounded and I2-convergent double sequences, respectively. And by F 0

I2
(b), we

denote the set of all both bounded and null I2-convergent double sequences.

Definition 3.1. Let E and F be two double sequence spaces. A multiplier from E into F is a sequence u = (umn)m,n∈N such
that

ux = (umnxmn) ∈ F

whenever x = (xmn)m,n∈N ∈ E. The linear space of all such multipliers will be denoted by m(E, F). Bounded multipliers will
be denoted byM(E, F). Hence we write

M(E, F) = ℓ2
∞

∩ m(E, F).

If E = F , then we writem(E) and M(E) instead ofm(E, F) and M(E, F), respectively.

Theorem 3.2. If E and F are subspaces of ℓ2
∞

that contain c20 (b), then

c20 (b) ⊂ m(E, F) ⊂ ℓ2
∞

.

Proof. The first inclusion follows from noting that if u ∈ c20 (b) and x ∈ E ⊂ ℓ2
∞
, then we have

ux ∈ c20 (b) ⊂ F

and so

c20 (b) ⊂ m(E, F).

For the second inclusion, let u = (umn) ∉ ℓ2
∞
. Then there are increasing sequences (mi), (nj) such that

|umi,nj | > (ij)2.

Now define the sequence

xij =


1
ij
, (i = mi, j = nj)

0, (otherwise).
(3.1)

Then, since x ∈ c20 (b) ⊂ E and

uijxij =


ij, (i = mi, j = nj)

0, (otherwise)
(3.2)

so ux ∉ ℓ2
∞
. Therefore ux ∉ F by inclusion of F ⊂ ℓ2

∞
; then we have u ∉ m(E, F). Hence we have

m(E, F) ⊂ ℓ2
∞

. �

Theorem 3.3. Let I2 be a strongly admissible ideal in 2N×N. Then
(i) m


F 0
I2

(b)


= M

F 0
I2

(b)


= ℓ2
∞
.

(ii) m

FI2(b)


= FI2(b).

Proof. (i) We show thatm

F 0
I2

(b)

= ℓ2

∞
. By Theorem 3.2, the inclusionm


F 0
I2

(b)


⊂ ℓ2
∞

holds.
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Now, we show that ℓ2
∞

⊂ m

F 0
I2

(b)

. Let u ∈ ℓ2

∞
and z ∈ F 0

I2
(b). Then for ε > 0 we have

{(m, n) ∈ N × N : |umnzmn| ≥ ε} ⊆


(m, n) ∈ N × N : |zmn| ≥

ε

‖u‖∞ + 1


.

Since z ∈ F 0
I2

(b), so we can write
(m, n) ∈ N × N : |zmn| ≥

ε

‖u‖∞ + 1


∈ I2

and from property of ideal we have

{(m, n) ∈ N × N : |umnzmn| ≥ ε} ∈ I2.

Also since u, z ∈ ℓ2
∞

so uz is bounded and hence

ℓ2
∞

⊂ m

F 0
I2

(b)

.

(ii) Let u ∈ m

FI2(b)


. Since e = (1) ∈ FI2(b), then

ue = u ∈ FI2(b).

Hence we have

m

FI2(b)


⊂ FI2(b).

If u ∈ FI2(b), then by Lemma 2.4

ux ∈ FI2(b),

for each x ∈ FI2(b). This means that u ∈ m

FI2(b)


. Hence we have

FI2(b) ⊂ m

FI2(b)


. �

Lemma 3.4. m

c20 (b)


= ℓ2

∞
.

Proof. Let x ∈ c20 (b) and θ ≠ u ∈ ℓ2
∞
. Then,

‖u‖∞ = sup
m,n∈N

|umn| < ∞,

‖x‖∞ = sup
m,n∈N

|xmn| < ∞

and for ε > 0 there exists N = N(ε) ∈ N such that

|xmn| <
ε

‖u‖∞

for everym, n > N . Let z = ux. Then

‖z‖∞ = sup
m,n∈N

|zmn|

= sup
m,n∈N

|umnxmn|

≤ sup
m,n∈N

|umn| sup
m,n∈N

|xmn| < ∞

so z bounded and

|umnxmn| = |umn ‖ xmn|

< ‖u‖∞

ε

‖u‖∞

= ε

form, n > N . Hence z ∈ c20 (b). Therefore, we have

ℓ2
∞

⊂ m

c20 (b)


.

The inclusionm

c20 (b)


⊂ ℓ2

∞
follows from Theorem 3.2. �

Combining Theorem 3.2 and Lemma 3.4, we have the following theorem.
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Theorem 3.5. Let I2 be a strongly admissible ideal in 2N×N. Then

m(c20 (b), F
0
I2

(b)) = ℓ2
∞

.

Theorem 3.6. Let I2 be a strongly admissible ideal in 2N×N. Then

c20 (b) ⊂ m

FI2(b), c

2(b)


⊆ c2(b).

Proof. For u ∈ c20 (b) and x ∈ FI2(b) ⊂ ℓ2
∞

by Lemma 3.4 since ux ∈ c20 (b) ⊂ c2(b), so we have

c20 (b) ⊂ m

FI2(b), c

2(b)

.

Let u ∈ m

FI2(b), c

2(b)

. Since e = (1) ∈ FI2(b), ue = u ∈ c2(b) so we have

m

FI2(b), c

2(b)


⊆ c2(b). �

Theorem 3.7. Let I2 be a strongly admissible ideal in 2N×N. Then
(i) If c2(b) is a proper subset of FI2(b), then m


FI2(b), c

2(b)


= c20 (b) and
(ii) m


c2(b), FI2(b)


= FI2(b).

Proof. (i) By Theorem 3.6, we know that

c20 (b) ⊂ m

FI2(b), c

2(b)

.

We show that u ∉ m

FI2(b), c

2(b)

for u ∈ c2(b) \ c20 (b). Then there exists a number l such that

lim
m,n→∞

umn = l ≠ 0.

Let

z →I2 1

for z ∈ FI2(b) \ c2(b). Then there is an ε > 0 such that

A = {(m, n) : |zmn − 1| ≥ ε} ∈ I2.

Define x = (xmn) by

xmn = χAc (m, n)

and observe that x is bounded and I2-convergent to 1; hence x ∈ FI2(b). Also note that xu converges to ℓ ≠ 0 along Ac and
to 0 along A; hence xu ∉ c2(b) and thus

u ∉ m(FI2(b), c
2(b)).

Hence we have

m(FI2(b), c
2(b)) ⊂ c20 (b).

(ii) Since e = (1) ∈ c2(b), we have

m(c2(b), FI2(b)) ⊆ FI2(b).

If u ∈ FI2(b) and if x ∈ c2(b) ⊆ FI2(b), then ux is bounded and I2-convergent by Lemma 2.4. Hence we have

FI2(b) ⊂ m(c2(b), FI2(b)). �

Theorem 3.8. Let I2 ⊂ 2N×N be a strongly admissible ideal with the property (AP2). Then

m(F 0
I2

(b), c20 (b)) = {u ∈ ℓ2
∞

: uχE ∈ c20 (b) for all E such that E ∈ I2}.

Proof. Let D = {u ∈ ℓ2
∞

: uχE ∈ c20 (b) for all E such that E ∈ I2}. First note that if E ∈ I2, then

χE ∈ F 0
I2

(b).

If u ∈ m(F 0
I2

(b), c20 (b)), then

uχE ∈ c20 (b).

Thus we have

m(F 0
I2

(b), c20 (b)) ⊆ D.
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Now let u ∈ D and x ∈ F 0
I2

(b). Then by property (AP2) there is an A ⊆ N × N such that

xχAc ∈ c20 (b) and A ∈ I2.

By property (AP2), as

ux = uxχAc + uxχA

and both terms of the right hand side are null sequences, ux ∈ c20 (b). Thus we have

D ⊆ m(F 0
I2

(b), c20 (b)).

This completes the proof of theorem. �
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