Multipliers for bounded ℓ_{2}-convergence of double sequences

Erdinç Dündar ${ }^{\text {a }}$, Bilal Altay ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Fethi gemuhluoğlu, Anadolu Öğretmen, Lisesi, Malatya, Turkiye
${ }^{\text {b }}$ Inönü üniversitesi, Eğitim Fakultesi, Ilköğretim, Bölümü, Malatya, Turkiye

A R T I C L E INFO

Article history:

Received 20 April 2011
Accepted 28 September 2011

Keywords:

Ideal
ℓ-convergence
Double sequences
Multiplier

Abstract

Multipliers and factorizations for bounded statistically convergent sequences were studied by Connor et al. [J. Connor, K. Demirci, C. Orhan, Multipliers and factorizations for bounded statistically convergent sequences, Analysis 22 (2002) 321-333] and for bounded ℓ-convergent sequences by Yardımcı [Ş. Yardımcı, Multipliers and factorizations for bounded ℓ-convergent sequences, Math. Commun., 11 (2006) 181-185]. In this paper, we get analogous results of multipliers for bounded ℓ_{2}-convergent double sequences.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [1] and Schoenberg [2]. A lot of developments have been made in this area after the works of Śalát [3] and Fridy [4,5]. In general, statistically convergent sequences satisfy many of the properties of ordinary convergent sequences in metric spaces [1,4-6]. This concept was extended to the double sequences by Mursaleen and Edely [7]. Çakan and Altay [8] presented multidimensional analogues of the results of Fridy and Orhan [9].

The idea of ℓ-convergence was introduced by Kostyrko et al. [10] as a generalization of statistical convergence which is based on the structure of the ideal ℓ of subset of the set of natural numbers. Nuray and Ruckle [11] independently introduced the same idea with another name generalized statistical convergence. Kostyrko et al. [12] gave some of the basic properties of ℓ-convergence and dealt with extremal ℓ-limit points. Das et al. [13] introduced the concept of ℓ and ℓ^{*}-convergence of double sequences in a metric space and studied some properties of this convergence. Also, Das and Malik [14] introduced the concepts of ℓ-limit points, ℓ-cluster points and ℓ-limit superior and ℓ-limit inferior of double sequences. Nabiev et al. [15] proved a decomposition theorem for ℓ-convergent sequences and introduced the notions of ℓ-Cauchy sequence and ℓ^{*} Cauchy sequence, and then studied their certain properties. A lot of developments have been made in this area after the works of [16-19].

Connor et al. [20] studied multipliers and factorizations for bounded statistically convergent sequences. Also Yardımcı [21] studied multipliers for bounded ℓ-convergent sequences. In this paper, we study multipliers for bounded ℓ_{2}-convergence of double sequences.

2. Definitions and notations

Throughout the paper, \mathbb{N} denotes the set of all positive integers, χ_{A}-the characteristic function of $A \subset \mathbb{N}$ and \mathbb{R} the set of all real numbers. We often regard χ_{A} as sequence $\left(\chi_{m n}\right)$, where $x_{m n}=\chi_{A}(m, n), A \subset \mathbb{N} \times \mathbb{N}$; note in particular, that e can be regarded as the sequence of all 1's.

[^0]Now, we recall the concepts of convergence, statistical and ideal convergence of the sequences (see $[13,1,10,7,22,18$, 23-27]).

A double sequence $x=\left(x_{m n}\right)_{m, n \in \mathbb{N}}$ of real numbers is said to be bounded if there exists a positive real number M such that $\left|x_{m n}\right|<M$, for all $m, n \in \mathbb{N}$. That is

$$
\|x\|_{\infty}=\sup _{m, n}\left|x_{m n}\right|<\infty
$$

A double sequence $x=\left(x_{m n}\right)_{m, n \in \mathbb{N}}$ of real numbers is said to be convergent to $L \in \mathbb{R}$ if for any $\varepsilon>0$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $\left|x_{m n}-L\right|<\varepsilon$, whenever $m, n>N_{\varepsilon}$. In this case, we write

$$
\lim _{m, n \rightarrow \infty} x_{m n}=L
$$

By $\ell_{\infty}^{2}, c^{2}(b)$ and $c_{0}^{2}(b)$, we denote the space of all bounded, bounded convergent and bounded null double sequences, respectively.

Let $K \subset \mathbb{N} \times \mathbb{N}$. Let $K_{m n}$ be the number of $(j, k) \in K$ such that $j \leq m, k \leq n$. If the sequence $\left\{\frac{K_{m n}}{m . n}\right\}$ has a limit in Pringsheim's sense, then we say that K has double natural density and is denoted by

$$
d_{2}\left(K_{m n}\right)=\lim _{m, n \rightarrow \infty} \frac{K_{m n}}{m \cdot n}
$$

A double sequence $x=\left(x_{m n}\right)_{m, n \in \mathbb{N}}$ of real numbers is said to be statistically convergent to $L \in \mathbb{R}$ if for any $\varepsilon>0$ we have $d_{2}(A(\varepsilon))=0$, where

$$
A(\varepsilon)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left|x_{m n}-L\right| \geq \varepsilon\right\}
$$

Let $X \neq \emptyset$. A class ℓ of subsets of X is said to be an ideal in X provided:
(i) $\emptyset \in \ell$, (ii) $A, B \in \ell$ implies $A \cup B \in \ell$, (iii) $A \in \ell, B \subset A$ implies $B \in \ell$.
ℓ is called a nontrivial ideal if $X \notin \ell$.
Let $X \neq \emptyset$. A non empty class \mathcal{F} of subsets of X is said to be a filter in X provided:
(i) $\emptyset \notin \mathcal{F}$, (ii) $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$, (iii) $A \in \mathcal{F}, A \subset B$ implies $B \in \mathcal{F}$.

Lemma 2.1 ([10]). If ℓ is a nontrivial ideal in $X, X \neq \emptyset$, then the class

$$
\mathcal{F}(\ell)=\{M \subset X:(\exists A \in \ell)(M=X \backslash A)\}
$$

is a filter on X, called the filter associated with ℓ.
A nontrivial ideal ℓ in X is called admissible if $\{x\} \in \ell$ for each $x \in X$.
A nontrivial ideal ℓ_{2} of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times\{i\}$ belong to ℓ_{2} for each $i \in N$. Throughout the paper, we take ℓ_{2} as a strongly admissible ideal in $\mathbb{N} \times \mathbb{N}$.

Let $\ell_{2}^{0}=\{A \subset \mathbb{N} \times \mathbb{N}:(\exists m(A) \in \mathbb{N}),(i, j \geq m(A) \Rightarrow(i, j) \notin A)\}$. Then l_{2}^{0} is a nontrivial strongly admissible ideal and clearly an ideal ℓ_{2} is strongly admissible if and only if $\ell_{2}^{0} \subset \ell_{2}$.

Let $\ell_{2} \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x=\left(x_{m n}\right)_{m, n \in \mathbb{N}}$ of real numbers is said to be $\ell_{2}-$ convergent to $L \in \mathbb{R}$, if for any $\varepsilon>0$ we have

$$
A(\varepsilon)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left|x_{m n}-L\right| \geq \varepsilon\right\} \in \ell_{2}
$$

In this case, we say that x is ℓ_{2}-convergent and we write

$$
\ell_{2}-\lim _{m, n \rightarrow \infty} x_{m n}=L
$$

If $\ell_{2} \subset 2^{\mathbb{N} \times \mathbb{N}}$ is a strongly admissible ideal, then usual convergence implies ℓ_{2}-convergence.
A double sequence $x=\left(x_{m n}\right)_{m, n \in \mathbb{N}}$ of real numbers is said to be ℓ_{2}^{*}-convergent to $L \in \mathbb{R}$ if there exists a set $M \in \mathcal{F}\left(\ell_{2}\right)$ (i.e., $\mathbb{N} \times \mathbb{N} \backslash M \in \ell_{2}$) such that

$$
\lim _{m, n \rightarrow \infty} x_{m n}=L
$$

for $(m, n) \in M$ and we write

$$
\ell_{2}^{*}-\lim _{m, n \rightarrow \infty} x_{m n}=L
$$

A double sequence $x=\left(x_{m n}\right)_{m, n \in \mathbb{N}}$ of real numbers is said to be ℓ_{2}-bounded if there exists a real number $M>0$ such that

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left|x_{m n}\right| \geq M\right\} \in \ell_{2}
$$

We say that an admissible ideal $\ell_{2} \subset 2^{\mathbb{N} \times \mathbb{N}}$ satisfies the property (AP2) if for every countable family of mutually disjoint sets $\left\{A_{1}, A_{2}, \ldots\right\}$ belonging to ℓ_{2}, there exists a countable family of sets $\left\{B_{1}, B_{2}, \ldots\right\}$ such that $A_{j} \cap B_{j} \in \ell_{2}^{0}$, i.e., $A_{j} \cap B_{j}$ is included in the finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $B=\bigcup_{j=1}^{\infty} B_{j} \in \ell_{2}$ (hence $B_{j} \in \ell_{2}$ for each $j \in \mathbb{N}$).

Now we begin with quoting the lemmas due to Das et al. [13] and Kumar [17] which are needed throughout the paper.

Lemma 2.2 ([13, Theorem 1]). Let $\ell_{2} \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. If $\ell_{2}^{*}-\lim _{m, n \rightarrow \infty} x_{m n}=L$, then $\ell_{2}-\lim _{m, n \rightarrow \infty}$ $x_{m n}=L$.

Lemma 2.3 ([13, Theorem 3]). If ℓ_{2} is an admissible ideal of $\mathbb{N} \times \mathbb{N}$ having the property (AP2) and (X, ρ) is an arbitrary metric space, then for an arbitrary double sequence $x=\left(x_{m n}\right)_{m, n \in \mathbb{N}}$ of elements of $X, \ell_{2}-\lim _{m, n \rightarrow \infty} x_{m n}=L$ implies $\ell_{2}^{*}-\lim _{m, n \rightarrow \infty} x_{m n}=L$.

Lemma 2.4 ([17, Proposition 3.3]).
(a) Let $\ell_{2} \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. If $\lim _{m, n \rightarrow \infty} x_{m n}=L$, then $\ell_{2}-\lim _{m, n \rightarrow \infty} x_{m n}=L$.
(b) If $\ell_{2}-\lim _{m, n \rightarrow \infty} x_{m n}=L$ and $\ell_{2}-\lim _{m, n \rightarrow \infty} y_{m n}=K$, then
(i) $\ell_{2}-\lim _{m, n \rightarrow \infty}\left(x_{m n}+y_{m n}\right)=L+K$;
(ii) $\ell_{2}-\lim _{m, n \rightarrow \infty}\left(x_{m n} y_{m n}\right)=L K$.

3. Multipliers

In this section, we deal with the multipliers on or into $F_{\ell_{2}}(b)$ and $F_{l_{2}}^{0}(b)$. By $F_{\ell_{2}}$ and $F_{l_{2}}(b)$, we denote the set of all ℓ_{2}-convergent double sequences and both bounded and ℓ_{2}-convergent double sequences, respectively. And by $F_{\ell_{2}}^{0}(b)$, we denote the set of all both bounded and null ℓ_{2}-convergent double sequences.
Definition 3.1. Let E and F be two double sequence spaces. A multiplier from E into F is a sequence $u=\left(u_{m n}\right)_{m, n \in \mathbb{N}}$ such that

$$
u x=\left(u_{m n} x_{m n}\right) \in F
$$

whenever $x=\left(x_{m n}\right)_{m, n \in \mathbb{N}} \in E$. The linear space of all such multipliers will be denoted by $m(E, F)$. Bounded multipliers will be denoted by $M(E, F)$. Hence we write

$$
M(E, F)=\ell_{\infty}^{2} \cap m(E, F)
$$

If $E=F$, then we write $m(E)$ and $M(E)$ instead of $m(E, F)$ and $M(E, F)$, respectively.
Theorem 3.2. If E and F are subspaces of ℓ_{∞}^{2} that contain $c_{0}^{2}(b)$, then

$$
c_{0}^{2}(b) \subset m(E, F) \subset \ell_{\infty}^{2}
$$

Proof. The first inclusion follows from noting that if $u \in c_{0}^{2}(b)$ and $x \in E \subset \ell_{\infty}^{2}$, then we have

$$
u x \in c_{0}^{2}(b) \subset F
$$

and so

$$
c_{0}^{2}(b) \subset m(E, F)
$$

For the second inclusion, let $u=\left(u_{m n}\right) \notin \ell_{\infty}^{2}$. Then there are increasing sequences $\left(m_{i}\right),\left(n_{j}\right)$ such that

$$
\left|u_{m_{i}, n_{j}}\right|>(i j)^{2}
$$

Now define the sequence

$$
x_{i j}= \begin{cases}\frac{1}{i j}, & \left(i=m_{i}, j=n_{j}\right) \tag{3.1}\\ 0, & (\text { otherwise })\end{cases}
$$

Then, since $x \in c_{0}^{2}(b) \subset E$ and

$$
u_{i j} x_{i j}= \begin{cases}i j, & \left(i=m_{i}, j=n_{j}\right) \tag{3.2}\\ 0, & \text { (otherwise) }\end{cases}
$$

so $u x \notin \ell_{\infty}^{2}$. Therefore $u x \notin F$ by inclusion of $F \subset \ell_{\infty}^{2}$; then we have $u \notin m(E, F)$. Hence we have

$$
m(E, F) \subset \ell_{\infty}^{2}
$$

Theorem 3.3. Let ℓ_{2} be a strongly admissible ideal in $2^{\mathbb{N} \times \mathbb{N}}$. Then
(i) $m\left(F_{l_{2}}^{0}(b)\right)=M\left(F_{\ell_{2}}^{0}(b)\right)=\ell_{\infty}^{2}$.
(ii) $m\left(F_{\ell_{2}}(b)\right)=F_{\ell_{2}}(b)$.

Proof. (i) We show that $m\left(F_{\ell_{2}}^{0}(b)\right)=\ell_{\infty}^{2}$. By Theorem 3.2, the inclusion $m\left(F_{\ell_{2}}^{0}(b)\right) \subset \ell_{\infty}^{2}$ holds.

Now, we show that $\ell_{\infty}^{2} \subset m\left(F_{\ell_{2}}^{0}(b)\right)$. Let $u \in \ell_{\infty}^{2}$ and $z \in F_{\ell_{2}}^{0}(b)$. Then for $\varepsilon>0$ we have

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left|u_{m n} z_{m n}\right| \geq \varepsilon\right\} \subseteq\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left|z_{m n}\right| \geq \frac{\varepsilon}{\|u\|_{\infty}+1}\right\}
$$

Since $z \in F_{\ell_{2}}^{0}(b)$, so we can write

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left|z_{m n}\right| \geq \frac{\varepsilon}{\|u\|_{\infty}+1}\right\} \in \ell_{2}
$$

and from property of ideal we have

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left|u_{m n} z_{m n}\right| \geq \varepsilon\right\} \in \ell_{2}
$$

Also since $u, z \in \ell_{\infty}^{2}$ so $u z$ is bounded and hence

$$
\ell_{\infty}^{2} \subset m\left(F_{l_{2}}^{0}(b)\right)
$$

(ii) Let $u \in m\left(F_{l_{2}}(b)\right)$. Since $e=(1) \in F_{l_{2}}(b)$, then

$$
u e=u \in F_{l_{2}}(b)
$$

Hence we have

$$
m\left(F_{\ell_{2}}(b)\right) \subset F_{\ell_{2}}(b)
$$

If $u \in F_{\ell_{2}}(b)$, then by Lemma 2.4

$$
u x \in F_{\ell_{2}}(b)
$$

for each $x \in F_{l_{2}}(b)$. This means that $u \in m\left(F_{\ell_{2}}(b)\right)$. Hence we have

$$
F_{\ell_{2}}(b) \subset m\left(F_{\ell_{2}}(b)\right)
$$

Lemma 3.4. $m\left(c_{0}^{2}(b)\right)=\ell_{\infty}^{2}$.
Proof. Let $x \in c_{0}^{2}(b)$ and $\theta \neq u \in \ell_{\infty}^{2}$. Then,

$$
\begin{aligned}
& \|u\|_{\infty}=\sup _{m, n \in \mathbb{N}}\left|u_{m n}\right|<\infty \\
& \|x\|_{\infty}=\sup _{m, n \in \mathbb{N}}\left|x_{m n}\right|<\infty
\end{aligned}
$$

and for $\varepsilon>0$ there exists $N=N(\varepsilon) \in \mathbb{N}$ such that

$$
\left|x_{m n}\right|<\frac{\varepsilon}{\|u\|_{\infty}}
$$

for every $m, n>N$. Let $z=u x$. Then

$$
\begin{aligned}
\|z\|_{\infty} & =\sup _{m, n \in \mathbb{N}}\left|z_{m n}\right| \\
& =\sup _{m, n \in \mathbb{N}}\left|u_{m n} x_{m n}\right| \\
& \leq \sup _{m, n \in \mathbb{N}}\left|u_{m n}\right| \sup _{m, n \in \mathbb{N}}\left|x_{m n}\right|<\infty
\end{aligned}
$$

so z bounded and

$$
\begin{aligned}
\left|u_{m n} x_{m n}\right| & =\left|u_{m n} \| x_{m n}\right| \\
& <\|u\|_{\infty} \frac{\varepsilon}{\|u\|_{\infty}} \\
& =\varepsilon
\end{aligned}
$$

for $m, n>N$. Hence $z \in c_{0}^{2}(b)$. Therefore, we have

$$
\ell_{\infty}^{2} \subset m\left(c_{0}^{2}(b)\right)
$$

The inclusion $m\left(c_{0}^{2}(b)\right) \subset \ell_{\infty}^{2}$ follows from Theorem 3.2.
Combining Theorem 3.2 and Lemma 3.4, we have the following theorem.

Theorem 3.5. Let ℓ_{2} be a strongly admissible ideal in $2^{\mathbb{N} \times \mathbb{N}}$. Then

$$
m\left(c_{0}^{2}(b), F_{\ell_{2}}^{0}(b)\right)=\ell_{\infty}^{2}
$$

Theorem 3.6. Let ℓ_{2} be a strongly admissible ideal in $2^{\mathbb{N} \times \mathbb{N}}$. Then

$$
c_{0}^{2}(b) \subset m\left(F_{l_{2}}(b), c^{2}(b)\right) \subseteq c^{2}(b)
$$

Proof. For $u \in c_{0}^{2}(b)$ and $x \in F_{\ell_{2}}(b) \subset \ell_{\infty}^{2}$ by Lemma 3.4 since $u x \in c_{0}^{2}(b) \subset c^{2}(b)$, so we have $c_{0}^{2}(b) \subset m\left(F_{l_{2}}(b), c^{2}(b)\right)$.

Let $u \in m\left(F_{l_{2}}(b), c^{2}(b)\right)$. Since $e=(1) \in F_{l_{2}}(b), u e=u \in c^{2}(b)$ so we have

$$
m\left(F_{l_{2}}(b), c^{2}(b)\right) \subseteq c^{2}(b)
$$

Theorem 3.7. Let ℓ_{2} be a strongly admissible ideal in $2^{\mathbb{N} \times \mathbb{N}}$. Then
(i) If $c^{2}(b)$ is a proper subset of $F_{l_{2}}(b)$, then $m\left(F_{\ell_{2}}(b), c^{2}(b)\right)=c_{0}^{2}(b)$ and
(ii) $m\left(c^{2}(b), F_{l_{2}}(b)\right)=F_{l_{2}}(b)$.

Proof. (i) By Theorem 3.6, we know that

$$
c_{0}^{2}(b) \subset m\left(F_{l_{2}}(b), c^{2}(b)\right) .
$$

We show that $u \notin m\left(F_{l_{2}}(b), c^{2}(b)\right)$ for $u \in c^{2}(b) \backslash c_{0}^{2}(b)$. Then there exists a number l such that

$$
\lim _{m, n \rightarrow \infty} u_{m n}=l \neq 0
$$

Let

$$
z \rightarrow_{\ell_{2}} 1
$$

for $z \in F_{\ell_{2}}(b) \backslash c^{2}(b)$. Then there is an $\varepsilon>0$ such that

$$
A=\left\{(m, n):\left|z_{m n}-1\right| \geq \varepsilon\right\} \in \ell_{2} .
$$

Define $x=\left(x_{m n}\right)$ by

$$
x_{m n}=\chi_{A^{c}}(m, n)
$$

and observe that x is bounded and ℓ_{2}-convergent to 1 ; hence $x \in F_{\ell_{2}}$ (b). Also note that $x u$ converges to $\ell \neq 0$ along A^{c} and to 0 along A; hence $x u \notin c^{2}(b)$ and thus

$$
u \notin m\left(F_{l_{2}}(b), c^{2}(b)\right)
$$

Hence we have

$$
m\left(F_{l_{2}}(b), c^{2}(b)\right) \subset c_{0}^{2}(b)
$$

(ii) Since $e=(1) \in c^{2}(b)$, we have $m\left(c^{2}(b), F_{l_{2}}(b)\right) \subseteq F_{l_{2}}(b)$.
If $u \in F_{\ell_{2}}(b)$ and if $x \in c^{2}(b) \subseteq F_{\ell_{2}}(b)$, then $u x$ is bounded and ℓ_{2}-convergent by Lemma 2.4. Hence we have $F_{l_{2}}(b) \subset m\left(c^{2}(b), F_{l_{2}}(b)\right)$.

Theorem 3.8. Let $\ell_{2} \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal with the property (AP2). Then $m\left(F_{\ell_{2}}^{0}(b), c_{0}^{2}(b)\right)=\left\{u \in \ell_{\infty}^{2}: u \chi_{E} \in c_{0}^{2}(b)\right.$ for all E such that $\left.E \in \ell_{2}\right\}$.

Proof. Let $D=\left\{u \in \ell_{\infty}^{2}: u \chi_{E} \in c_{0}^{2}(b)\right.$ for all E such that $\left.E \in \ell_{2}\right\}$. First note that if $E \in \ell_{2}$, then $\chi_{E} \in F_{l_{2}}^{0}(b)$.
If $u \in m\left(F_{l_{2}}^{0}(b), c_{0}^{2}(b)\right)$, then

$$
u \chi_{E} \in c_{0}^{2}(b)
$$

Thus we have

$$
m\left(F_{l_{2}}^{0}(b), c_{0}^{2}(b)\right) \subseteq D
$$

Now let $u \in D$ and $x \in F_{\ell_{2}}^{0}(b)$. Then by property (AP2) there is an $A \subseteq \mathbb{N} \times \mathbb{N}$ such that
$x \chi_{A^{c}} \in c_{0}^{2}(b)$ and $A \in \ell_{2}$.
By property (AP2), as

$$
u x=u x \chi_{A^{c}}+u x \chi_{A}
$$

and both terms of the right hand side are null sequences, $u x \in c_{0}^{2}(b)$. Thus we have

$$
D \subseteq m\left(F_{l_{2}}^{0}(b), c_{0}^{2}(b)\right)
$$

This completes the proof of theorem.

References

[1] H. Fast, Sur la convergenc statistique, Colloq. Math. 2 (1951) 241-244.
[2] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959) $361-375$.
[3] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980) 139-150.
[4] J.A. Fridy, On statistical convergence, Analysis 5 (1985) 301-313.
[5] J.A. Fridy, Statistical limit points, Poc. Amer. Math. Soc. 118 (1993) 1187-1192.
[6] D. Rath, B.C. Tripaty, On statistically convergence and statistically Cauchy sequences, Indian J. Pure Appl. Math. 25 (4) (1994) 381-386.
[7] Mursaleen, O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003) 223-231.
[8] C. Çakan, B. Altay, Statistically boundedness and statistical core of double sequences, J. Math. Anal. Appl. 317 (2006) 690-697.
[9] J.A. Fridy, C. Orhan, Statistical limit superior and inferior, Proc. Amer. Math. Soc. 125 (1997) 3625-3631.
[10] P. Kostyrko, T. Šalát, W. Wilczyński, I-convergence, Real Anal. Exchange 26 (2) (2000) 669-686.
[11] F. Nuray, W.H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000) 513-527.
[12] P. Kostyrko, M. Šalát, T. Šalát, M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca 55 (2005) 443-464.
[13] P. Das, P. Kostyrko, W. Wilczyński, P. Malik, I and I^{*}-convergence of double sequences, Math. Slovaca 58 (5) (2008) 605-620.
[14] P. Das, P. Malik, On extremal I-limit points of double sequences, Tatra Mt. Math. Publ. 40 (2008) 91-102.
[15] A. Nabiev, S. Pehlivan, M. Gürdal, On I-Cauchy sequence, Taiwanese J. Math. 11 (2) (2007) 569-576.
[16] K. Demirci, I-limit superior and limit inferior, Math. Commun. 6 (2001) 165-172.
[17] V. Kumar, On I and I^{*}-convergence of double sequences, Math. Commun. 12 (2007) 171-181.
[18] T. Šalát, B.C. Tripathy, M. Ziman, On I-convergence field, Italian J. Pure \& Appl. Math. 17 (2005) 45-54.
[19] B. Tripathy, B.C. Tripathy, On I-convergent double sequences, Soochow J. Math. 31 (2005) 549-560.
[20] J. Connor, K. Demirci, C. Orhan, Multipliers and factorizations for bounded statistically convergent sequences, Analysis 22 (2002) $321-333$.
[21] Ş. Yardımcı, Multipliers and factorizations for bounded ℓ-convergent sequences, Math. Commun. 11 (2006) 181-185.
[22] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900) 289-321.
[23] B. Altay, F. Bașar, Some new spaces of double sequences, J. Math. Anal. Appl. 309 (1) (2005) 70-90.
[24] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989) 194-198.
[25] J. Connor, The statistical and strong p-Cestaro convergence of sequences, Analysis 8 (1988) 47-63.
[26] J. Connor, Two valued measures and summability, Analysis 10 (1990) 373-385.
[27] E. Kolk, Matrix summability of statistically convergent sequences, Analysis 13 (1993) 77-83.

[^0]: * Corresponding author.

 E-mail addresses: erdincdundar79@gmail.com.tr (E. Dündar), baltay@inonu.edu.tr (B. Altay).

