FOUR DIMENSIONAL LOGARITHMIC TRANSFORMATION INTO \mathscr{L}_{u}

Fatih Nuray * and Nimet Akin

Abstract. Let $t=\left(t_{m}\right)$ and $\bar{t}=\left(\bar{t}_{n}\right)$ be two null sequences in the interval $(0,1)$ and define the four dimensional logarithmic matrix $L_{t, \bar{t}}=\left(a_{m n k l}^{t, \bar{t}}\right)$ by

$$
a_{m n k l}^{t, \bar{t}}=\frac{1}{\log \left(1-t_{m}\right) \log \left(1-\bar{t}_{n}\right)} \frac{1}{(k+1)(l+1)} t_{m}^{k+1}\left(\bar{t}_{n}\right)^{l+1} .
$$

The matrix $L_{t, \bar{t}}$ determines a sequence -to-sequence variant of classicial logarithmic summability method. The aim of this paper is to study these transformations to be $\mathscr{L}_{u}-\mathscr{L}_{u}$ summability methods.

1. Introduction

The most well-known notion of convergence for double sequences is the convergence in the sense of Pringsheim. Recall that a double sequence $x=\left\{x_{k l}\right\}$ of complex (or real) numbers is called convergent to a scalar ℓ in Pringsheim's sense (denoted by $\mathrm{P}-\lim x=\ell)$ if for every $\varepsilon>0$ there exists an $N \in \mathbb{N}$ such that $\left|x_{k l}-\ell\right|<\varepsilon$ whenever $k, l>N$. Such an x is described more briefly as "P-convergent". It is easy to verify that $x=\left\{x_{k l}\right\}$ convergences in Pringsheim's sense if and only if for every $\varepsilon>0$ there exists an integer $N=N(\varepsilon)$ such that $\left|x_{i j}-x_{k l}\right|<\varepsilon$ whenever $\min \{i, j, k, l\} \geqslant N$. A double sequence $x=\left\{x_{k l}\right\}$ is bounded if there exists a positive number M such that $\left|x_{k l}\right| \leqslant M$ for all k and l, that is, if $\sup _{k, l}\left|x_{k l}\right|<\infty$.
A double sequence $x=\left\{x_{k l}\right\}$ is said to convergence regularly if it converges in Pringsheim's sense and, in addition, the following finite limits exist:

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} x_{k l}=\ell_{l} \quad(l=1,2, \ldots), \\
& \lim _{l \rightarrow \infty} x_{k l}=j_{k} \quad(k=1,2, \ldots)
\end{aligned}
$$

Note that the main drawback of the Pringsheim's convergence is that a convergent sequence fails in general to be bounded. The notion of regular convergence lacks this disadvantage.
Let $A=\left(a_{m n k l}\right)$ denote a four dimensional summability method that maps the complex

[^0]double sequence x into the double sequence $A x=\left\{(A x)_{m n}\right\}$ where $(A x)_{m n}$ is defined as follows:
$$
(A x)_{m n}=\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} a_{m n k l} x_{k l} .
$$

In [17] Robison presented the following notion of regularity for four-dimensional matrix transformation and a Silverman-Toeplitz type characterization of such notion.

DEfinition 1. The four-dimensional matrix A is said to be RH-regular if it maps every bounded P -convergent sequence into a P -convergent sequence with the same P limit.

The assumption of bounded was added because a double sequence which is P-convergent is not necessarily bounded. Along these same lines, Robison and Hamilton presented a Silverman-Toeplitz type multidimensional characterization of regularity in [6] and [17].

THEOREM 1. The four-dimensional matrix A is $R H$-regular if and only if
$R H_{1}: P-\lim _{m, n} a_{m n k l}=0$ for each k and l;
$R H_{2}: P-\lim _{m, n} \sum_{k, l=0,0}^{\infty, \infty} a_{m n k l}=1$;
$R H_{3}: P-\lim _{m, n} \sum_{k=0}^{\infty}\left|a_{m n k l}\right|=0$ for each l;
$R H_{4}: P-\lim _{m, n} \sum_{l=0}^{\infty}\left|a_{m n k l}\right|=0$ for each k;
$R H_{5}: \sum_{k, l=0,0}^{\infty, \infty}\left|a_{\text {mnkl }}\right|$ is P-convergent;
$R H_{6}$: there exist finite positive integers Δ and Γ such that

$$
\sum_{k, l>\Gamma}\left|a_{m n k l}\right|<\Delta
$$

A double series $\sum_{k=1}^{\infty} \sum_{l=0}^{\infty} x_{k l}$ converges to a sum ℓ if
(a) the sequence of "rectangular" partial sums $S_{m n}$ converges:

$$
\ell=P-\lim _{m, n \rightarrow \infty} \sum_{k=1}^{m} \sum_{l=0}^{n} x_{k l}
$$

(b) every "row series" $\sum_{l=0}^{\infty} x_{k l}$ converges;
(c) every "column series" $\sum_{k=0}^{\infty} x_{k l}$ converges.

A double series $\sum_{k=1}^{\infty} \sum_{l=0}^{\infty} x_{k l}$ is called absolutely convergent if the series

$$
\sum_{k=0}^{\infty} \sum_{l=0}^{\infty}\left|x_{k l}\right|
$$

converges. The space of all absolutely convergent double sequences will be denoted \mathscr{L}_{u}, that is

$$
\mathscr{L}_{u}:=\left\{x=\left\{x_{k l}\right\}: \quad \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left|x_{k l}\right|<\infty\right\} .
$$

Observe that every absolutely convergent double series is convergent. The reader may refer to the textbooks [2] and [12], and recent paper [18] on the spaces of double sequences, four dimensional matrices and related topics.

In [14], Patterson proved that the matrix $A=\left(a_{m n k l}\right)$ determines an $\mathscr{L}_{u}-\mathscr{L}_{u}$ method if and only if

$$
\begin{equation*}
\sup _{k, l} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left|a_{m n k l}\right|<\infty . \tag{1}
\end{equation*}
$$

The aim of this paper is study four dimensional Abel matrices as $\mathscr{L}_{u}-\mathscr{L}_{u}$ matrices.

2. Four dimensional logarithmic $\mathscr{L}_{u}-\mathscr{L}_{u}$ method

The logarithmic power series method of summability, denoted by \mathscr{L}_{u}, is following sequences-to-function transformation if

$$
\lim _{r_{1} \rightarrow 1^{-}, r_{2} \rightarrow 1^{-}}\left\{\frac{1}{\log \left(1-r_{1}\right) \log \left(1-r_{2}\right)} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{1}{(k+1)(l+1)} x_{k l} r_{1}^{k+1} r_{2}^{l+1}\right\}=a
$$

then $x=\left(x_{k l}\right)$ is \mathscr{L}_{u}-summable to a. This can be modified into a sequence-to-sequence transformation by replacing the continuous parameters r_{1} and r_{2} with the sequences $\left(t_{m}\right)$ and $\left(\bar{t}_{n}\right)$ such that $0<t_{m}<1$ for all $m, 0<\bar{t}_{n}<1$ for all $n, \lim _{m} t_{m}=1$ and $\lim _{n} \bar{t}_{n}=1$. Thus the sequence $x=\left\{x_{k l}\right\}$ is transformed into the sequence $L_{t, \bar{\tau}} x$ whose $\mathrm{mn} t h$ term is given by

$$
\left(L_{t, \bar{t}} x\right)_{m n}=\frac{1}{\log \left(1-t_{m}\right) \log \left(1-\bar{t}_{n}\right)} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{1}{(k+1)(l+1)} x_{k, l} l_{m}^{k+1}\left(\bar{t}_{n}\right)^{l+1}
$$

This transformation is represented by the matrix $L_{t, \bar{t}}=\left(a_{m n k l}^{t, \bar{t}}\right)$ given by

$$
a_{m n k l}^{t, \bar{t}}=\frac{1}{\log \left(1-t_{m}\right) \log \left(1-\bar{t}_{n}\right)} \frac{1}{(k+1)(l+1)} x_{k, l} t_{m}^{k+1}\left(\bar{t}_{n}\right)^{l+1}
$$

The matrix $L_{t, \bar{t}}$ is called a four dimensional logarithmic matrix. It is clear that $A_{t, \bar{t}}$ is RH-regular matrix.

THEOREM 2. The four dimensional logarithmic matrix $L_{t, \bar{\tau}}$ is an $\mathscr{L}_{u}-\mathscr{L}_{u}$ matrix if and only if $\frac{1}{\log \left(1-t_{m}\right) \log \left(1-\bar{\tau}_{n}\right)} \in \mathscr{L}_{u}$.

Proof. Since $0<t_{m}<1$ for all m and $0<\bar{t}_{n}<1$ for all n, we have

$$
\begin{aligned}
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left|a_{m n k l}^{t, \bar{t}}\right| & =\frac{1}{(k+1)(l+1)} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{\log \left(1-t_{m}\right) \log \left(1-\bar{t}_{n}\right)} t_{m}^{k+1}\left(\bar{t}_{n}\right)^{l+1} \\
& \leqslant \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{\log \left(1-t_{m}\right) \log \left(1-\bar{t}_{n}\right)}
\end{aligned}
$$

for every k and l. Thus if $\left(t_{m} \bar{t}_{n}\right) \in \mathscr{L}_{u}$, Theorem 1 in [14] guarantees that $L_{t, \bar{t}}$ is an $\mathscr{L}_{u}-\mathscr{L}_{u}$ matrix. Now suppose that $\frac{1}{\log \left(1-t_{m}\right) \log \left(1-\bar{t}_{n}\right)} \notin \mathscr{L}_{u}$, then we consider the sum
of the $\left(a_{m n 00}^{t, \bar{t}}\right)$ elements of $L_{t, \bar{t}}$:

$$
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left|a_{m n 00}^{t, \bar{t}}\right|=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{t_{m} \bar{t}_{n}}{\log \left(1-t_{m}\right) \log \left(1-\bar{t}_{n}\right)}=\infty
$$

which shows that $L_{t, \bar{t}}$ is not an $\mathscr{L}_{u}-\mathscr{L}_{u}$ matrix.

THEOREM 3. If $L_{t, \bar{t}}$ is an $\mathscr{L}_{u}-\mathscr{L}_{u}$ matrix and the series $\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} x_{k l}$ has bounded partial sums, then $x \in \mathscr{L}_{L_{t, \bar{T}}}$.

Proof. Define $s_{k l}=\sum_{i=0}^{k} \sum_{j=0}^{l} x_{k l}, s_{00}=0, s_{0 l}=0, s_{k 0}=0$ and $w_{m}^{k}=\frac{1}{k+1} t_{m}^{k+1}$, $v_{n}^{l}=\frac{1}{l+1}\left(\bar{t}_{n}\right)^{l+1}$. Then

$$
\begin{aligned}
& \left|\sum_{k=1}^{m} \sum_{l=1}^{n} \frac{1}{(k+1)(l+1)} t_{m}^{k+1}\left(\bar{t}_{n}\right)^{l+1} x_{k, l}\right| \\
= & \left|\sum_{k=1}^{m} \sum_{l=1}^{n} w_{m}^{k} v_{n}^{l} x_{k l}\right| \\
= & \left|\sum_{k=1}^{m} \sum_{l=1}^{n} w_{m}^{k} v_{n}^{l}\left(s_{k l}-s_{k, l-1}-s_{k-1, l}+s_{k-1, l-1}\right)\right| \\
= & \mid \sum_{k=1}^{m} \sum_{l=1}^{n} s_{k l}\left[w_{m}^{k} v_{n}^{l}-w_{m}^{k+1} v_{n}^{l}-w_{m}^{k} v_{n}^{l+1}+w_{m}^{k+1} v_{n}^{l+1} \mid\right. \\
\leqslant & 4 \log \left(1-t_{m}\right) \log \left(1-\bar{t}_{n}\right) \sup _{k \leqslant m, l \leqslant n}\left|s_{k l}\right| \\
< & M \log \left(1-t_{m}\right) \log \left(1-\bar{t}_{n}\right) .
\end{aligned}
$$

This yields that

$$
\left|\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{1}{(k+1)(l+1)} t_{m}^{k+1}\left(\bar{t}_{n}\right)^{l+1} x_{k l}\right|<M \log \left(1-t_{m}\right) \log \left(1-\bar{t}_{n}\right)
$$

Hence,

$$
\left|\left(L_{t, \bar{t}} x\right)_{m n}\right|<M
$$

thus $L_{t, \bar{t}}$ is an $\mathscr{L}_{u}-\mathscr{L}_{u}$ matrix, so $x \in \mathscr{L}_{L_{t, \bar{T}}}$.

3. A Tauberian theorem

We now prove an $\mathscr{L}_{u}-\mathscr{L}_{u}$ Tauberian theorem for the four dimensional logarithmic matrices.

THEOREM 4. Let $L_{t, \bar{t}}$ be an $\mathscr{L}_{u}-\mathscr{L}_{u}$ logarithmic matrix; if x is a double sequence such that $L_{t, \bar{t}} x$ is in \mathscr{L}_{u}, and

$$
\begin{equation*}
\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}\left|\Delta_{10} x_{i j}\right| i j<\infty \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}\left|\Delta_{01} x_{i j}\right| i j<\infty \tag{3}
\end{equation*}
$$

then x in \mathscr{L}_{u} where $\Delta_{10} x_{i j}=x_{i j}-x_{i+1, j}$ and $\Delta_{01} x_{i j}=x_{i j}-x_{i, j+1}$.

Proof. In order to show that $L_{t, \bar{x}} x-x$ is in \mathscr{L}_{u} we write

$$
\left(L_{t, \bar{t}} x\right)_{m n}-x_{m n}=\frac{1}{\log \left(1-t_{m}\right) \log \left(1-\bar{t}_{n}\right)} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{1}{(k+1)(l+1)^{t}} t_{m}^{k+1}\left(\bar{t}_{n}\right)^{l+1}\left(x_{k l}-x_{m n}\right)
$$

Letting

$$
a_{m n k l}^{t, \bar{t}}=\frac{1}{\log \left(1-t_{m}\right) \log \left(1-\bar{t}_{n}\right)} \frac{1}{(k+1)(l+1)} t_{m}^{k+1}\left(\bar{t}_{n}\right)^{l+1}
$$

we shall prove that

$$
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} a_{m n k l}^{t, \bar{t}}\left|x_{k l}-x_{m n}\right|<\infty
$$

Let us write

$$
\mathscr{S}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} a_{m n k l}^{t, \bar{t}}\left|x_{k l}-x_{m n}\right| .
$$

Let $\mathscr{S}=\mathscr{S}_{1}+\mathscr{S}_{2}$, where

$$
\mathscr{S}_{1}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{m-1} \sum_{l=0}^{n-1} a_{m n k l}^{t, \bar{t}}\left|x_{k l}-x_{m n}\right|
$$

and

$$
\mathscr{S}_{2}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=m}^{\infty} \sum_{l=n}^{\infty} a_{m n k l}^{t, \bar{t}}\left|x_{k l}-x_{m n}\right|
$$

Since

$$
\left|x_{k l}-x_{m n}\right|=\left|x_{m n}-x_{k l}\right|=\left|\sum_{i=m}^{k-1} \Delta_{10} x_{i j}+\sum_{j=n}^{l-1} \Delta_{01} x_{i j}\right|
$$

this leads to

$$
\begin{aligned}
\mathscr{S}_{1} \leqslant & \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{m-1} \sum_{l=0}^{n-1} a_{m n k l}^{t, \bar{t}}\left(\sum_{i=m}^{k-1}\left|\Delta_{10} x_{i j}\right|+\sum_{j=n}^{l-1}\left|\Delta_{01} x_{i j}\right|\right) \\
\leqslant & \sum_{i=0}^{\infty} \sum_{j=0}^{\infty}\left|\Delta_{10} x_{i j}\right| \sum_{m=i+1}^{\infty} \sum_{n=j+1}^{\infty} \sum_{k=0}^{i} \sum_{l=0}^{j} a_{m n k l}^{t, \bar{t}} \\
& +\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}\left|\Delta_{01} x_{i j}\right| \sum_{m=i+1}^{\infty} \sum_{n=j+1}^{\infty} \sum_{k=0}^{i} \sum_{l=0}^{j} a_{m n k l}^{t, \bar{t}} \\
= & \left(\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}\left|\Delta_{10} x_{i j}\right|+\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}\left|\Delta_{01} x_{i j}\right|\right) \zeta_{i j}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathscr{S}_{2} \leqslant & \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=m+1}^{\infty} \sum_{l=n+1}^{\infty} a_{m n k l}^{t, \bar{t}}\left(\sum_{i=m}^{k-1}\left|\Delta_{10} x_{i j}\right|+\sum_{i=n}^{l-1}\left|\Delta_{01} x_{k i}\right|\right) \\
\leqslant & \sum_{i=0}^{\infty} \sum_{j=0}^{\infty}\left|\Delta_{10} x_{i j}\right| \sum_{m=0}^{i} \sum_{n=0}^{j} \sum_{k=i+1}^{\infty} \sum_{l=j+1}^{\infty} a_{m n k l}^{t, \bar{t}} \\
& +\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}\left|\Delta_{01} x_{i j}\right| \sum_{m=0}^{i} \sum_{n=0}^{j} \sum_{k=i+1}^{\infty} \sum_{l=j+1}^{\infty} a_{m n k l}^{t, \bar{t}} \\
= & \left(\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}\left|\Delta_{10} x_{i j}\right|+\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}\left|\Delta_{01} x_{i j}\right|\right) \varsigma_{i j}
\end{aligned}
$$

where

$$
\zeta_{i j}=\sum_{m=i+1}^{\infty} \sum_{n=j+1}^{\infty} \sum_{k=0}^{i} \sum_{l=0}^{j} a_{m n k l}^{t, \bar{t}} \quad \text { and } \quad \varsigma_{i j}=\sum_{m=0}^{i} \sum_{n=0}^{j} \sum_{k=i+1}^{\infty} \sum_{l=j+1}^{\infty} a_{m n k l}^{t, \bar{t}}
$$

By showing that $\zeta_{i j}=O(i j)$ and $\varsigma_{i j}=O(i j)$, we will prove that $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}\left|\Delta_{10} x_{i j}\right| i j<$ ∞ and $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty}\left|\Delta_{01} x_{i j}\right| i j<\infty$ implies that $L_{t, \bar{t}} x-x$ is in \mathscr{L}_{u}. These $O(i j)$ assertions are very easily verified since $L_{t, \bar{t}}$ is $\mathscr{L}_{u}-\mathscr{L}_{u}$ we have

$$
\zeta_{i j}=\sum_{k=0}^{i} \sum_{l=0}^{j} \sum_{m=i+1}^{\infty} \sum_{n=j+1}^{\infty} a_{m n k l}^{t, \bar{t}} \leqslant(i+1)(j+1) \sup _{k, l} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left|a_{m n k l}^{t, \bar{t}}\right|=O(i j)
$$

and since $L_{t, \bar{t}}$ is RH-regular we have

$$
\varsigma_{i, j}=\sum_{m=0}^{i} \sum_{n=0}^{j} \sum_{k=i+1}^{\infty} \sum_{l=j+1}^{\infty} a_{m n k l}^{t, \bar{t}} \leqslant(i+1)(j+1) \sup _{m, n} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty}\left|a_{m n k l}^{t, \bar{t}}\right|=O(i j)
$$

Thus, the proof is completed.

REFERENCES

[1] R. P. AGNEW,Inclusion relations among methods of summability compounded form given matrix methods, Ark. Mat. 2, (1952), 361-374.
[2] F. BAŞAR, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, İstanbul, (2012).
[3] J. A. Fridy, Absolute summability matrices that are stronger than the identity mapping, Proc. Amer. Math. Soc. 47, (1995), 112-118.
[4] J. A. Fridy and K. L. Robert, Some Tauberian theorems for Euler and Borel tummability, Intnat. J. Math. \& Math. Sci.3,4 (1980), 731-738.
[5] J. A. FRidy, Abel transformations into l^{1}, Canad. Math. Bull, 25, (1982), 421-427.
[6] H. J. Hamilton, Transformations of multiple sequences, Duke Math. J., 2 (1936), 29-60.
[7] G. H. Hardy, Divergent series, Oxford, (1949).
[8] G. H. Hardy and J. E. Littlewood, Theorems concerning the summability of series by Borel's exponential methods, Rend. Circ. Mat. Palermo, 41, (1916), 36-53.
[9] G. H. Hardy and J. E. Littlewood, On the Tauberian theorem for Borel summability, J. London Math. Soc., 18, (1943), 194-200.
[10] M. I. Kadets, On absolute, perfect, and unconditional convergences of double series in Banach spaces, Ukrainian Math. J., 49, 8 (1997), 1158-1168.
[11] M. Lemma, Logarithmic transformations into l^{1}, Rocky Mountain J. Math. ,28, 1 (1998), 253-266.
[12] M. Mursaleen and S.A. Mohiuddine, Convergence Methods for Double sequences and Applications, Springer Briefs In Mathematics, 2013.
[13] R. F. Patterson, A theorem on entire four dimensional summability methods, Appl. Math. Comput., 219, (2013), 7777-7782.
[14] R. F. Patterson, Four dimensional matrix characterization of absolute summability, Soochow J. Math., 30, 1 (2004), 21-26.
[15] R. F. Patterson, Analogues of some fundamental theorems of summability theory, Internat. J. Math. \& Math. Sci., 23, 1 (2000), 1-9.
[16] A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann.,53, (1900), 289-32.
[17] G. M. Robison,Divergent double sequences and series, Trans. Amer. Math. Soc., 28, (1926), 50-73.
[18] M. Yeşilkayagil and F. Başar, A note on Abel summability of double series, Numer. Funct. Anal. Optim., 38, 8 (2017), 1069-1076.

Fatih Nuray Department of Mathematics and Science Education

Afyon Kocatepe University
Afyonkarahisar, Turkey
e-mail: fnuray@aku.edu.tr
Nimet Akin
Department of Mathematics and Science Education
Afyon Kocatepe University Afyonkarahisar, Turkey
e-mail: npancaroglu@aku.edu.tr

[^0]: Mathematics subject classification (2010): 40B05,40C05.
 Keywords and phrases: Tauberian condition, logarithmic summability, four dimensional summability method, double sequences, Pringsheim limit.

 * Corresponding author.

