On Certain Operator Method for Solving Differential Equations

Batirkhan Turmetov

Akhmet Yasawi University, Turkistan, Kazakhstan E-mail: turmetovbh@mail.ru

Abstract: In this paper a new method of construction of a solution for a wide class of fractional order differential equations is presented. This method is a generalization of the method of operator algorithms to fractional order differential equations. Let $m-1<\alpha\leq\gamma\leq m, m\in N, \ D^{\alpha,\gamma}f(t)=J^{(\gamma-\alpha)}\frac{d^m}{dt^m}J^{(m-\gamma)}f(t)$. Then the following proposition is true.

Theorem 1. Let $m-1 < \alpha \le \gamma \le m, m=1,2,..., s=\gamma-1,...,\gamma-m$. Then the functions

$$y_{s,p}(t) = \sum_{i=p}^{\infty} \lambda^{i-p} \begin{pmatrix} i \\ p \end{pmatrix} \frac{t^{i\alpha+s}}{\Gamma(i\alpha+s+1)}$$

for all values of p = 0, 1, ..., n - 1 are solutions of the following equation of fractional order:

$$(D^{\alpha,\gamma} - \lambda)^n y(t) = 0, t > 0.$$

Let $E^p_{\alpha,\alpha}(\lambda,t)=\sum_{i=p}^\infty \lambda^{i-p}\left(\begin{array}{c}i\\p\end{array}\right) rac{t^{i\alpha}}{\Gamma(i\alpha+\alpha)}, p=0,1,\ldots$ Consider the following func-

tion

$$y_p(f)(t) = \int_0^t (t-\tau)^{\alpha-1} E_{\alpha,\alpha}^p(-\lambda(t-\tau)^{\alpha}) f(\tau) d\tau,$$

Theorem 2. Let $m-1 < \alpha \le \gamma \le m, m=1,2,...$ Then functions $y_p(f)(t), p=0,1,...$ form f-normalized system with respect to the operator $D^{\alpha,\gamma} - \lambda$, i.e. the following equality holds:

$$\left\{ \begin{array}{l} \left(D^{\alpha,\gamma}-\lambda\right)y_0(f)(t)=f(t),\\ \left(D^{\alpha,\gamma}-\lambda\right)y_p(f)(t)=f_{p-1}(t),\ p\geq 1 \end{array} \right.$$

Keywords: operator method, operator of fractional differentiation and integration, fractional order differential equation

2010 Mathematics Subject Classification: 26A33, 34A08, 33E12, 35R11, 35K90

Asymptotically I-Cesàro Equivalence of Sequences of Sets

Uğur Ulusu

Department of Mathematics, Afyon Kocatepe University, Afyonkarahisar, Turkey E-mail: ulusu@aku.edu.tr

Abstract: In this study, we defined concept of asymptotically \mathcal{I} -Cesàro equivalence and investigate the relationship between the concepts of asymptotically strongly \mathcal{I} -Cesàro equivalence, asymptotically strongly \mathcal{I} -lacunary equivalence, asymptotically p-strongly \mathcal{I} -Cesàro equivalence and asymptotically \mathcal{I} -statistical equivalence of sequences of sets.

Keywords: Asymptotically equivalence, Cesàro summability, lacunary sequence, Ideal convergence, Sequences of sets, Wijsman convergence.

2010 Mathematics Subject Classification: 34C41, 40A35