
Gulf Journal of Mathematics

Vol 2, Issue 1 (2014) 45-51

ROUGH CONVERGENCE OF DOUBLE SEQUENCES

ERDİNÇ DÜNDAR1∗ AND CELAL ÇAKAN2

Abstract. In this paper, we introduce the notion of rough convergence and
the set of rough limit points of a double sequence and obtained two rough
convergence criteria associated with this set. Later, we proved that this set
is closed and convex. Finally, we examined the relations between the set of
cluster points and the set of rough limit points of a double sequence.

1. Introduction and preliminaries

The well-know Pringsheim [18] convergence of double sequences is defined as the
convergence of nets, where the set of indexes N×N is ordered in the natural way.
The main drawback of this convergence is that a convergent double sequence
fails in general to be bounded. The notion of regular convergence introduced by
Hardy [10] lacks this disadvantage. In addition to the Pringsheim convergence
the regular convergence requires the convergence of rows and columns of a double
sequence. These two most important kinds of convergence and some related
notions were considered in the classical works of Robison [20], Kojima [12] and
Hamilton [9] in connection with maps defined by 4-dimensional matrices.

Nowadays double sequence has become one of the most active area of research
in the field of summability. Altay and Başar [3] defined some new spaces of double
sequences and also examined some properties of those sequence spaces. A lot of
developments have been made in this area after the works of [4, 5, 6, 14].

The idea of rough convergence was first introduced by Phu [15] in finite-
dimensional normed spaces. He showed that the set LIMrx is bounded, closed, and
convex; and he introduced the notion of rough Cauchy sequence. He also investi-
gated the relations between rough convergence and other convergence types and
the dependence of LIMrx on the roughness degree r. Phu [16] defined the rough
continuity of linear operators and showed that every linear operator f : X → Y is
r -continuous at every point x ∈ X under the assumption dimY <∞ and r > 0
where X and Y are normed spaces. He [17] extended the results given in [15] to
infinite-dimensional normed spaces.

Aytar [1] studied of rough statistical convergence and defined the set of rough
statistical limit points of a sequence and obtained two statistical convergence
criteria associated with this set and prove that this set is closed and convex. Also,
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Aytar [2] studied that the r-limit set of the sequence is equal to the intersection
of these sets and that r-core of the sequence is equal to the union of these sets.
Dündar and Çakan [7] investigated of rough ideal convergence and defined the
set of rough ideal limit points of a sequence.

In this paper, we introduce the notion of rough convergence and the set of
rough limit points of a double sequence and obtained two rough convergence
criteria associated with this set. Later, we proved that this set is closed and
convex. Finally, we examined the relations between the set of cluster points and
the set of rough limit points of a double sequence.

We note that our results and proof techniques presented in this paper are
analogues of those in Phu’s [15] paper and Aytar’s [1] paper. Namely, the actual
origin of most of these results and proof techniques is them papers.

2. definitions and notations

Throughout the paper N and R denote the set of all positive integers and the
set of all real numbers, respectively.

Now, we recall the concepts of convergence of the double sequences, rough
convergence of the sequences (see [1, 3, 7, 15, 19] ).

A double sequence x = (xmn)m,n∈N of real numbers is said to be bounded if
there exists a positive real number M such that |xmn| < M, for all m,n ∈ N.
That is

‖x‖∞ = sup
m,n
|xmn| <∞.

A double sequence x = (xmn)m,n∈N of real numbers is said to be convergent to
L ∈ R in Pringsheim’s sense (shortly, p-convergent to L ∈ R), if for any ε > 0
there exists Nε ∈ N such that |xmn − L| < ε, whenever m,n > Nε. In this case
we write

lim
m,n→∞

xmn = L.

Throughout the paper, let r be a nonnegative real number.
Let x = (xn) be a sequence in some normed linear space (X, ‖.‖). x = (xn) is

said to be rough convergent (r-convergent) to x∗, denoted by xn
r→ x∗ if

∀ε > 0 ∃nε ∈ N : n ≥ nε ⇒ ‖xn − x∗‖ < r + ε, (2.1)

or equivalently, if

lim sup ‖xn − x∗‖ ≤ r. (2.2)

The set

LIMrxn := {x∗ ∈ Rn : xn
r→ x∗}

is called the r-limit set of the sequence x = (xn).
A sequence x = (xn) is said to be r-convergent if LIMrx 6= ∅. In this case, r

is called the convergence degree of the sequence x = (xn). For r = 0, we get the
ordinary convergence.

Throughout the paper, Rn denotes the real n-dimensional space with the norm
‖.‖. Consider a double sequence x = (xmn) such that (xmn) ∈ Rn, m,n ∈ N.
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3. Main Results

Definition 3.1. The double sequence x = (xmn) is said to be rough convergent

(r-convergent) in Prinsgheim sense to x∗, denoted by xmn
r→ x∗ provided that

∀ε > 0 ∃kε ∈ N : m,n ≥ kε ⇒ ‖xmn − x∗‖ < r + ε, (3.1)

or equivalently, if

lim sup ‖xmn − x∗‖ ≤ r. (3.2)

Here r is called the roughness degree. If we take r = 0, then we obtain the
ordinary convergence of a double sequence. Assume that a double sequence y =
(ymn) is convergent and cannot be measured or calculated exactly; one has to do
with an approximated sequence x = (xmn) satisfying ‖xmn − ymn‖ ≤ r for all
m,n where r > 0 is an upper bound of approximation error. Then, the sequence
x = (xmn) is no more convergent in the Prindsheim’s sense, but

‖xmn − x∗‖ ≤ ‖xmn − ymn‖+ ‖ymn − x∗‖ ≤ r + ‖ymn − x∗‖ (3.3)

implies that it is r-convergent in the sense of (3.1).
If (3.1) holds, x∗ is an rough limit point of x = (xmn), which is usually no

more unique (for r > 0). So we have to consider the so-called rough limit set (or
shortly: r-limit) of x = (xmn) defined by

LIMrxmn := {x∗ ∈ Rn : xmn
r→ x∗}. (3.4)

A double sequence x = (xmn) is said to be r-convergent if LIMrxmn 6= ∅. In this
case, r is called a convergence degree of x = (xmn).

As noted above, we cannot say that the r-limit of a double sequence is unique
for the roughness degree r > 0. The following result is related to the this fact.

Theorem 3.2. For a double sequence x = (xmn), we have diam(LIMrxmn) ≤ 2r.
In general, diam(LIMrxmn) has no smaller bound.

Proof. Assume that

diam(LIMrxmn) = sup{‖y − z‖ : y, z ∈ LIMrxmn} > 2r.

Then, there exist y, z ∈ LIMrxmn such that ‖y− z‖ > 2r. Take ε ∈ (0, ‖y−z‖
2
− r).

Because y, z ∈ LIMrxmn, it follows from (3.1) and (3.4) that there is a k = kε ∈ N
such that

‖xmn − y‖ < r + ε and ‖xmn − z‖ < r + ε, for m,n ≥ k.

This implies

‖y − z‖ ≤ ‖xmn − y‖+ ‖xmn − z‖ < 2(r + ε) < 2(r +
‖y − z‖

2
− r) = ‖y − z‖,

This is a contradiction. Hence, diam(LIMrxmn) ≤ 2r.
Now, consider a double sequence x = (xmn) such that

lim
m,n→∞

xmn = x∗.

Let ε > 0. Then, it follows from

‖xmn − y‖ ≤ ‖xmn − x∗‖+ ‖x∗ − y‖ ≤ ‖xmn − x∗‖+ r
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and so

‖xmn − y‖ ≤ r + ε,

for y ∈ Br(x∗) := {y ∈ Rn : ‖y − x∗‖ ≤ r}. By (3.1) and (3.4) we have
LIMrxmn = Br(x∗). Because diam(Br(x∗)) = 2r, this shows that in general,
the upper bound 2r of the diameter of the set LIMrxmn cannot be decreased
anymore. �

Now, we give the topological and geometrical properties of the r-limit set of a
double sequence.

Theorem 3.3. The r-limit set of an arbitrary double sequence x = (xmn) is
closed

Proof. If LIMrxmn = ∅, then there is nothing to prove. Assume that LIMrxmn 6=
∅. Then, we can choose a sequence (ymn) ⊆ LIMrxmn such that ymn → y∗ for
m,n→∞. We will show that y∗ ∈ LIMrxmn.

Let ε > 0 be given. Because ymn → y∗, there exists k = kε ∈ N such that

‖ymn − y∗‖ < ε, for all m,n ≥ k.

Now choose an m0, n0 ∈ N such that m0, n0 ≥ k. Then we can write

‖ym0n0 − y∗‖ < ε.

On the other hand, because (ymn) ⊆ LIMrxmn, we have ym0n0 ∈ LIMrx, namely,

‖xmn − ym0n0‖ < r + ε.

Consequently,

‖xmn − y∗‖ ≤ ‖xmn − ym0n0‖+ ‖ym0n0 − y∗‖ < r + 2ε, if m, n,m0, n0 ≥ k.

This implies that y∗ ∈ LIMrxmn. �

Theorem 3.4. The r-limit set of a double sequence x = (xmn) is convex.

Proof. Assume that y0, y1 ∈ LIMrxmn for the double sequence x = (xmn). For
every ε > 0 there exists a k = kε ∈ N such that

‖xmn − y0‖ < r + ε and ‖xmn − y1‖ < r + ε,

whenever m,n ≥ k. Thus, we have

‖xmn − [(1− λ)y0 + λy1]‖ = ‖(1− λ)(xmn − y0) + λ(xmn − y1)‖
< r + ε,

for m,n ≥ k and for λ ∈ [0, 1].This implies that

(1− λ)y0 + λy1 ∈ LIMrxmn,

for λ ∈ [0, 1], so LIMrxmn is convex. �

Theorem 3.5. Let r > 0. Then a double sequence x = (xmn) is r-convergent to
x∗ if and only if there exists a double sequence y = (ymn) such that

ymn → x∗ and ‖xmn − ymn‖ ≤ r, for each m,n ∈ N. (3.5)
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Proof. Assume that xmn
r→ x∗. Then, by (3.2) we have

lim sup ‖xmn − x∗‖ ≤ r. (3.6)

Now, define

ymn :=

{
x∗ , if ‖xmn − x∗‖ ≤ r

xmn + r x∗−xmn

‖xmn−x∗‖ , otherwise .

Then, we can write

‖ymn − x∗‖ =

{
0 , if ‖xmn − x∗‖ ≤ r

‖xmn − x∗‖ − r , otherwise

and by definition of ymn, we have

‖xmn − ymn‖ ≤ r, (3.7)

for all m,n ∈ N. By (3.6) and by definition of ymn, we get

lim sup ‖ymn − x∗‖ = 0.

This implies that ymn → x∗.
Assume that (3.5) holds. Because ymn → x∗, then for all ε > 0 there exists

k = kε ∈ N such that

‖ymn − x∗‖ < ε, for m, n ≥ k.

Since ‖xmn − ymn‖ ≤ r, this immediately

‖xmn − x∗‖ ≤ ‖xmn − ymn‖+ ‖ymn − x∗‖ < r + ε, for m, n ≥ k.

This implies that xmn
r→ x∗. �

We finally complete this work by giving the relation between the set of cluster
points and the set of r-limit points of a sequence.

Theorem 3.6. (i) If c is a cluster point of the double sequence x = (xmn), then

LIMrxmn ⊆ Br(c). (3.8)

(ii) Let Cx be the set of cluster points of x = (xmn). Then

LIMrxmn =
⋂
c∈Cx

Br(c) = {x∗ ∈ Rn : Cx ⊆ Br(x∗)}. (3.9)

Proof. (i) For an arbitrary cluster point c of x = (xmn), we have

‖x∗ − c‖ ≤ r, for all x∗ ∈ LIMrxmn,

otherwise there are infinite x = (xmn) satisfying

‖xmn − x∗‖ ≥ r + ε, with ε :=
‖x∗ − c‖ − r

2
> 0,

because c is an cluster point of (xmn), which contradicts with the fact that x∗ ∈
LIMrxmn. Hence, LIMrxmn ⊆ Br(c) must be true.

(ii)From (3.8), we have

LIMrxmn ⊆
⋂
c∈Cx

Br(c). (3.10)
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Now, let

y ∈
⋂
c∈Cx

Br(c).

Then, we have

‖y − c‖ ≤ r,

for all c ∈ Cx, which is equivalent to Cx ⊆ Br(y), i.e.,⋂
c∈Cx

Br(c) ⊆ {x∗ ∈ Rn : Cx ⊆ Br(x∗)}. (3.11)

Now, let y 6∈ LIMrxmn. Then, there is an ε > 0 such that there exists infinite
xmn satisfying ‖xmn − y‖ ≥ r + ε, which implies the existence of a cluster point
c of the double sequence x = (xmn) with ‖y − c‖ ≥ r + ε, i.e.,

Cx 6⊆ Br(y) and y 6∈ {x∗ ∈ Rn : Cx ⊆ Br(x∗)}.

Hence, y ∈ LIMrxmn follows from y ∈ {x∗ ∈ Rn : Cx ⊆ Br(x∗)}, i.e.,

{x∗ ∈ Rn : Cx ⊆ Br(x∗)} ⊆ LIMrxmn. (3.12)

Therefore the inclusions (3.10)-(3.12) ensure that (3.9) i.e.,

LIMrxmn =
⋂
c∈Cx

Br(c) = {x∗ ∈ Rn : Cx ⊆ Br(x∗)}.

�

Theorem 3.7. Let x = (xmn) be a bounded double sequence. If r ≥ diam(Cx),
then we have Cx ⊆ LIMrxmn.

Proof. Let c 6∈ LIMrxmn. Then, there exists an ε > 0 such that

‖xmn − c‖ ≥ r + ε. (3.13)

Since x = (xmn) is bounded and from the inequality (3.13), there exists an cluster
point c1 such that ‖c− c1‖ > r + ε1 where ε1 := ε

2
. So we get

diam(Cx) > r + ε1,

which proves the theorem.
The converse of this theorem is also holds, i.e., if Cx ⊆ LIMrxmn then we have

r ≥ diam(Cx). �

Acknowledgements

The author would like to express his thanks to Professor Salih Aytar, De-
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