STRONGLY \mathcal{I}_{2}-LACUNARY CONVERGENCE AND \mathcal{I}_{2}-LACUNARY CAUCHY DOUBLE SEQUENCES OF SETS

Erdinç Dündar Uğur Ulusu and Nimet Pancaroğlu

Department of Mathematics,
Afyon Kocatepe University, Afyonkarahisar, Turkey
E-mail: erdincdundar79@gmail.com, edundar@aku.edu.tr ulusu@aku.edu.tr; npancaroglu@aku.edu.tr

(Received February 13, 2016)

Abstract

In this paper, we study the concepts of the Wijsman strongly \mathcal{I}_{2}-lacunary convergence, Wijsman strongly \mathcal{I}_{2}^{*}-lacunary convergence, Wijsman strongly \mathcal{I}_{2}-lacunary Cauchy double sequences and Wijsman strongly \mathcal{I}_{2}^{*}-lacunary Cauchy double sequences of sets and investigate the properties and relationships between them.

Keywords and phrases :Lacunary sequence, \mathcal{I}_{2}-convergence, \mathcal{I}_{2}-Cauchy, Double sequence of sets, Wijsman convergence.

AMS Subject Classification : 40A05, 40A35.

1 INTRODUCTION

Throughout the paper \mathbb{N} denotes the set of all positive integers and \mathbb{R} the set of all real numbers. The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [10] and Schoenberg [23].

This concept was extended to the double sequences by Mursaleen and Edely [16]. Çakan and Altay [5] presented multidimensional analogues of the results presented by Fridy and Orhan [11].

Nuray and Ruckle [20] independently introduced the same with another name generalized statistical convergence. The idea of \mathcal{I}-convergence was introduced by Kostyrko, S̆alát and Wilczyński [14] as a generalization of statistical convergence which is based on the structure of the ideal \mathcal{I} of subset of the set of natural numbers. Das et al. [6] introduced the concept of \mathcal{I}-convergence of double sequences in a metric space and studied some properties of this convergence. A lot of development have been made in this area after the works of $[8,15,17]$.

The concept of convergence of sequences of numbers has been extended by several authors to convergence of sequences of sets (see, [2, 3, 4, 19, 28, 29]). Nuray and Rhoades [19] extended the notion of convergence of set sequences to statistical convergence and gave some basic theorems. Ulusu and Nuray [26] defined the Wijsman lacunary statistical convergence of sequence of sets and considered its relation with Wiijsman statistical convergence, which was defined by Nuray and Rhoades.

Kişi and Nuray [12] introduced a new convergence notion, for sequences of sets, which is called Wijsman \mathcal{I}-convergence. Sever et al. [24] studied the concepts of Wijsman strongly lacunary convergence, Wijsman strongly \mathcal{I}-lacunary convergence, Wijsman strongly \mathcal{I}^{*}-lacunary convergence and Wijsman strongly \mathcal{I} lacunary Cauchy sequences of sets. Dündar et al. [7] examinated the ideas of Wijsman strongly lacunary Cauchy, Wijsman strongly \mathcal{I}-lacunary Cauchy and Wijsman strongly \mathcal{I}^{*}-lacunary Cauchy sequences of sets. Nuray et al. [21] studied Wijsman
statistical convergence, Hausdorff statistical convergence and Wijsman statistical Cauchy double sequences of sets and investigate the relationships between them. Nuray et al. [22] studied the concepts of Wijsman $\mathcal{I}, \mathcal{I}^{*}$-convergence and Wijsman $\mathcal{I}, \mathcal{I}^{*}$-Cauchy double sequences of sets.

In this paper, we study the concepts of Wijsman strongly \mathcal{I}_{2}-lacunary convergence, Wijsman strongly \mathcal{I}_{2}^{*}-lacunary convergence, Wijsman strongly \mathcal{I}_{2}-lacunary Cauchy sequences and Wijsman strongly \mathcal{I}_{2}^{*}-lacunary Cauchy double sequences of sets and investigate the properties and relationships between them.

2 DEFINITIONS AND NOTATIONS

Now, we recall the basic definitions and concepts (See [1, 2, 3, 4, 6, 7, 8, 9, 14, 18, 19, 22, 24, 26, 27, 28, 29]).

Throughout the paper, we let (X, ρ) be a metric space and A, A_{k} be any nonempty closed subsets of X.

For any point $x \in X$, we define the distance from x to A by

$$
d(x, A)=\inf _{a \in A} \rho(x, a) .
$$

We say that the sequence $\left\{A_{k}\right\}$ is Wijsman convergent to A if $\lim _{k \rightarrow \infty} d\left(x, A_{k}\right)$ $=d(x, A)$, for each $x \in X$. In this case we write $W-\lim A_{k}=A$.

We say that the sequence $\left\{A_{k}\right\}$ is Wijsman Cauchy sequence, if for $\varepsilon>0$ and for each $x \in X$, there is a positive integer k_{0} such that for all $m, n>k_{0}$, $\left|d\left(x, A_{m}\right)-d\left(x, A_{n}\right)\right|<\varepsilon$.

By a lacunary sequence we mean an increasing integer sequence $\theta=\left\{k_{r}\right\}$ such that $k_{0}=0$ and $h_{r}=k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. Throughout this paper the intervals determined by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$, and ratio $\frac{k_{r}}{k_{r-1}}$ will be abbreviated by q_{r}.

Let $\theta=\left\{k_{r}\right\}$ be a lacunary sequence. We say that the sequence $\left\{A_{k}\right\}$ is

Wijsman strongly lacunary convergent to A if for each $x \in X$,

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left|d\left(x, A_{k}\right)-d(x, A)\right|=0 .
$$

In this case we write $A_{k} \rightarrow A\left([W N]_{\theta}\right)$ or $A_{k} \xrightarrow{[W N]_{\theta}} A$.
A family of sets $\mathcal{I} \subseteq 2^{\mathbb{N}}$ is called an ideal if and only if
(i) $\emptyset \in \mathcal{I}$, (ii) For each $A, B \in \mathcal{I}$ we have $A \cup B \in \mathcal{I}$, (iii) For each $A \in \mathcal{I}$ and each $B \subseteq A$ we have $B \in \mathcal{I}$.

An ideal is called non-trivial if $\mathbb{N} \notin \mathcal{I}$ and non-trivial ideal is called admissible if $\{n\} \in \mathcal{I}$ for each $n \in \mathbb{N}$.

A family of sets $F \subseteq 2^{\mathbb{N}}$ is called a filter if and only if
(i) $\emptyset \notin F,(i i)$ For each $A, B \in F$ we have $A \cap B \in F,(i i i)$ For each $A \in F$ and each $B \supseteq A$ we have $B \in F$.
\mathcal{I} is a non-trivial ideal in \mathbb{N}, then the set $\mathcal{F}(\mathcal{I})=\{M \subset X:(\exists A \in \mathcal{I})(M=$ $X \backslash A)\}$ is a filter in \mathbb{N}, called the filter associated with \mathcal{I}.

Let θ be lacunary sequence and $\mathcal{I} \subseteq 2^{\mathbb{N}}$ be an admissible ideal. We say that the sequence $\left\{A_{k}\right\}$ is said to be Wijsman strongly \mathcal{I}-lacunary convergent to A or $N_{\theta}\left[\mathcal{I}_{W}\right]$-convergent to A if for every $\varepsilon>0$ and for each $x \in X$, the set

$$
A(\varepsilon, x)=\left\{r \in \mathbb{N}: \frac{1}{h_{r}} \sum_{k \in I_{r}}\left|d\left(x, A_{k}\right)-d(x, A)\right| \geq \varepsilon\right\}
$$

belongs to \mathcal{I}. In this case, we write $A_{k} \rightarrow A\left(N_{\theta}\left[\mathcal{I}_{W}\right]\right)$.
Let (X, ρ) be a separable metric space and $\mathcal{I} \subseteq 2^{\mathbb{N}}$ be an admissible ideal. We say that the sequence $\left\{A_{k}\right\}$ is Wijsman strongly \mathcal{I}^{*}-lacunary convergent to A if and only if there exists a set $M=\left\{m_{1}<m_{2}<\cdots<m_{k}<\cdots\right\} \subset \mathbb{N}$ such that $M^{\prime}=\left\{r \in \mathbb{N}: m_{k} \in I_{r}\right\} \in F(\mathcal{I})$ for each $x \in X$,

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left|d\left(x, A_{m_{k}}\right)-d(x, A)\right|=0 .
$$

In this case, we write $A_{k} \rightarrow A\left(N_{\theta}\left[\mathcal{I}_{W}^{*}\right]\right)$.

Let θ be lacunary sequence. The sequence $\left\{A_{k}\right\}$ is Wijsman strongly lacunary Cauchy if for every $\varepsilon>0$ and for each $x \in X$, there exists $k_{0}=k_{0}(\varepsilon) \in \mathbb{N}$ such that

$$
\frac{1}{h_{r}} \sum_{k, p \in I_{r}}\left|d\left(x, A_{k}\right)-d\left(x, A_{p}\right)\right|<\varepsilon
$$

for every $k, p \geq k_{0}$.
Let θ be lacunary sequence and $\mathcal{I} \subseteq 2^{\mathbb{N}}$ be an admissible ideal. The sequence $\left\{A_{k}\right\}$ is Wijsman strongly \mathcal{I}-lacunary Cauchy sequence if for every $\varepsilon>0$ and for each $x \in X$, there exists $k_{0}=k_{0}(\varepsilon) \in \mathbb{N}$ such that

$$
A(\varepsilon, x)=\left\{r \in \mathbb{N}: \frac{1}{h_{r}} \sum_{k \in I_{r}}\left|d\left(x, A_{k}\right)-d\left(x, A_{k_{0}}\right)\right| \geq \varepsilon\right\} \in \mathcal{I} .
$$

Let (X, ρ) be a separable metric space, θ be lacunary sequence and $\mathcal{I} \subseteq 2^{\mathbb{N}}$ be an admissible ideal. The sequence $\left\{A_{k}\right\}$ is Wijsman strongly \mathcal{I}^{*}-lacunary Cauchy sequence if for every $\varepsilon>0$ and for each $x \in X$, there exists a set $M=\left\{m_{1}<\right.$ $\left.m_{2}<\cdots<m_{k}<\cdots\right\} \subset \mathbb{N}$ such that $M^{\prime}=\left\{r \in \mathbb{N}: m_{k} \in I_{r}\right\} \in \mathcal{F}(\mathcal{I})$ and there exists $k_{0}=k_{0}(\varepsilon) \in \mathbb{N}$ such that

$$
\frac{1}{h_{r}} \sum_{k, p \in I_{r}}\left|d\left(x, A_{m_{k}}\right)-d\left(x, A_{m_{p}}\right)\right|<\varepsilon
$$

for every $k, p \geq k_{0}$.
The double sequence $\left\{A_{k j}\right\}$ is Wijsman convergent to A if

$$
P-\lim _{k, j \rightarrow \infty} d\left(x, A_{k j}\right)=d(x, A) \text { or } \lim _{k, j \rightarrow \infty} d\left(x, A_{k j}\right)=d(x, A)
$$

for each $x \in X$. In this case, we write $W_{2}-\lim A_{k j}=A$.
The double sequence $\theta=\left\{\left(k_{r}, j_{s}\right)\right\}$ is called double lacunary sequence if there exist two increasing sequence of integers such that
$k_{0}=0, \quad h_{r}=k_{r}-k_{r-1} \rightarrow \infty$ and $j_{0}=0, \quad \bar{h}_{u}=j_{u}-j_{u-1} \rightarrow \infty \quad$ as $r, u \rightarrow \infty$.

We use the following notations in the sequel:

$$
\begin{gathered}
k_{r u}=k_{r} j_{u}, h_{r u}=h_{r} \bar{h}_{u}, \quad I_{r u}=\left\{(k, j): k_{r-1}<k \leq k_{r} \text { and } j_{u-1}<j \leq j_{u}\right\}, \\
q_{r}=\frac{k_{r}}{k_{r-1}} \text { and } q_{u}=\frac{j_{u}}{j_{u-1}} .
\end{gathered}
$$

Let $\theta=\left\{\left(k_{r}, j_{s}\right)\right\}$ be a double lacunary sequence. The double sequence $\left\{A_{k j}\right\}$ is Wijsman strongly lacunary convergent to A if for each $x \in X$,

$$
\lim _{r, u \rightarrow \infty} \frac{1}{h_{r} \bar{h}_{u}} \sum_{k=k_{r-1}+1}^{k_{r}} \sum_{j=j_{u-1}+1}^{j_{u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|=0 .
$$

In this case, we write $A_{k j} \xrightarrow{\left[W_{2} N_{\theta}\right]} A$.
Throughout the paper we take \mathcal{I}_{2} as a nontrivial admissible ideal in $\mathbb{N} \times \mathbb{N}$.
A nontrivial ideal \mathcal{I}_{2} of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times\{i\}$ belong to \mathcal{I}_{2} for each $i \in N$.

It is evident that a strongly admissible ideal is admissible also.
$\mathcal{I}_{2}^{0}=\{A \subset \mathbb{N} \times \mathbb{N}:(\exists m(A) \in \mathbb{N})(i, j \geq m(A) \Rightarrow(i, j) \notin A)\}$. Then, \mathcal{I}_{2}^{0} is a nontrivial strongly admissible ideal and clearly an ideal \mathcal{I}_{2} is strongly admissible if and only if $\mathcal{I}_{2}^{0} \subset \mathcal{I}_{2}$.

We say that an admissible ideal $\mathcal{I}_{2} \subset 2^{\mathbb{N} \times \mathbb{N}}$ satisfies the property (AP2) if for every countable family of mutually disjoint sets $\left\{A_{1}, A_{2}, \ldots\right\}$ belonging to \mathcal{I}_{2}, there exists a countable family of sets $\left\{B_{1}, B_{2}, \ldots\right\}$ such that $A_{j} \Delta B_{j} \in \mathcal{I}_{2}^{0}$, i.e., $A_{j} \Delta B_{j}$ is included in the finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$, for each $j \in \mathbb{N}$ and $B=\bigcup_{j=1}^{\infty} B_{j} \in \mathcal{I}_{2}$ (hence $B_{j} \in \mathcal{I}_{2}$ for each $j \in \mathbb{N}$).

Throughout the paper, we let $\mathcal{I} \subseteq 2^{\mathbb{N}}$ be an admissible ideal, (X, ρ) be a separable metric space and A, A_{k} be any non-empty closed subsets of X.

We say that a double sequence of sets $\left\{A_{k j}\right\}$ is Wijsman \mathcal{I}_{2}-convergent to A, if for each $x \in X$ and for every $\varepsilon>0,\left\{(k, j) \in \mathbb{N} \times \mathbb{N}:\left|d\left(x, A_{k j}\right)-d(x, A)\right| \geq \varepsilon\right\} \in$ \mathcal{I}_{2}. In this case, we write $\mathcal{I}_{W_{2}}-\lim _{k, j \rightarrow \infty} d\left(x, A_{k j}\right)=d(x, A)$.

We say that the double sequence of sets $\left\{A_{k j}\right\}$ is Wijsman \mathcal{I}_{2}^{*}-convergent to A, if there exists a set $M_{2} \in \mathcal{F}\left(\mathcal{I}_{2}\right)$ (i.e., $\mathbb{N} \times \mathbb{N} \backslash M_{2}=H \in \mathcal{I}_{2}$) such that for each $x \in X$

$$
\lim _{\substack{k, j \rightarrow \infty \\(k, j) \in M_{2}}} d\left(x, A_{k j}\right)=d(x, A) .
$$

In this case, we write $\mathcal{I}_{W_{2}}^{*}-\lim _{k, j \rightarrow \infty} d\left(x, A_{k j}\right)=d(x, A)$.
Lemma 2.1.(8], Theorem 3.3). Let $\left\{P_{i}\right\}_{i=1}^{\infty}$ be a countable collection of subsets of $\mathbb{N} \times \mathbb{N}$ such that $P_{i} \in F\left(\mathcal{I}_{2}\right)$ for each i, where $\mathcal{F}\left(\mathcal{I}_{2}\right)$ is a filter associate with a strongly admissible ideal \mathcal{I}_{2} with the property $(A P 2)$. Then, there exists a set $P \subset \mathbb{N} \times \mathbb{N}$ such that $P \in \mathcal{F}\left(\mathcal{I}_{2}\right)$ and the set $P \backslash P_{i}$ is finite for all i.

3 MAIN RESULTS

Throughout the paper we take (X, ρ) be a separable metric space, $\theta=\left\{k_{r j}\right\}$ be a double lacunary sequence, $\mathcal{I}_{2} \subseteq 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal and $A, A_{k j}$ be non-empty closed subsets of X.

Definition 3.1. The sequence $\left\{A_{k j}\right\}$ is said to be Wijsman strongly \mathcal{I}_{2}-lacunary convergent to A or $N_{\theta}\left[\mathcal{I}_{W_{2}}\right]$-convergent to A iffor every $\varepsilon>0$ and for each $x \in X$, the set

$$
A(\varepsilon, x)=\left\{(r, u) \in \mathbb{N} \times \mathbb{N}: \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right| \geq \varepsilon\right\} \in \mathcal{I}_{2} .
$$

In this case, we write $A_{k j} \rightarrow A\left(N_{\theta}\left[\mathcal{I}_{W_{2}}\right]\right)$.
Theorem 3.2. If $\left\{A_{k j}\right\}$ is Wijsman strongly lacunary convergent to A, then it is Wijsman strongly \mathcal{I}_{2}-lacunary convergent to A.

Proof. Let $\left\{A_{k j}\right\}$ is Wijsman strongly lacunary convergent to A. For every $\varepsilon>0$ and for each $x \in X$ there exists $k_{0}=k_{0}(\varepsilon, x) \in \mathbb{N}$ such that

$$
\frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|<\varepsilon,
$$

for all $k, j \geq k_{0}$. Then, we have

$$
\begin{aligned}
T(x, \varepsilon)= & \left\{(r, u) \in \mathbb{N} \times \mathbb{N}: \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right| \geq \varepsilon\right\} \\
& \subset\left\{1,2, \cdots, k_{0}-1\right\}
\end{aligned}
$$

Since \mathcal{I}_{2} is a strongly admissible ideal we have $\left\{1,2, \cdots, k_{0}-1\right\} \in \mathcal{I}_{2}$ and so $T(x, \varepsilon) \in \mathcal{I}_{2}$. This completes the proof.

Definition 3.3. The sequence $\left\{A_{k j}\right\}$ is Wijsman \mathcal{I}_{2}^{*}-lacunary convergent to A if and only if there exists a set $M=\{(k, j) \in \mathbb{N} \times \mathbb{N}\}$ such that $M^{\prime}=\{(r, u) \in \mathbb{N} \times \mathbb{N}$: $\left.(k, j) \in I_{r u}\right\} \in \mathcal{F}\left(\mathcal{I}_{2}\right)$ for each $x \in X$,

$$
\lim _{r, u \rightarrow \infty} \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}} d\left(x, A_{k j}\right)=d(x, A) .
$$

In this case, we write $A_{k j} \rightarrow A\left(N_{\theta}\left(\mathcal{I}_{W_{2}}^{*}\right)\right)$.
Definition 3.4. The sequence $\left\{A_{k j}\right\}$ is Wijsman strongly \mathcal{I}_{2}^{*}-lacunary convergent to A if and only if there exists a set $M=\{(k, j) \in \mathbb{N} \times \mathbb{N}\}$ such that $M^{\prime}=\{(r, u) \in$ $\left.\mathbb{N} \times \mathbb{N}:(k, j) \in I_{r u}\right\} \in \mathcal{F}\left(\mathcal{I}_{2}\right)$ for each $x \in X$,

$$
\lim _{r, u \rightarrow \infty} \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|=0
$$

In this case, we write $A_{k j} \rightarrow A\left(N_{\theta}\left[\mathcal{I}_{W_{2}}^{*}\right]\right)$.
Theorem 3.5. If the sequence $\left\{A_{k j}\right\}$ is Wijsman strongly \mathcal{I}_{2}^{*}-lacunary convergent to A, then $\left\{A_{k j}\right\}$ is Wijsman strongly \mathcal{I}_{2}-lacunary convergent to A.

Proof. Suppose that $\left\{A_{k j}\right\}$ is Wijsman strongly \mathcal{I}_{2}^{*}-lacunary convergent to A. Then, there exists a set $M=\{(k, j) \in \mathbb{N} \times \mathbb{N}\}$ such that $M^{\prime}=\{(r, u) \in \mathbb{N} \times \mathbb{N}:(k, j) \in$ $\left.I_{r u}\right\} \in \mathcal{F}\left(\mathcal{I}_{2}\right)$ for each $x \in X$,

$$
\frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|<\varepsilon,
$$

for every $\varepsilon>0$ and for all $k, j \geq k_{0}=k_{0}(\varepsilon, x) \in \mathbb{N}$. Hence, for every $\varepsilon>0$ and for each $x \in X$ we have

$$
\begin{aligned}
& T(\varepsilon, x)=\left\{(r, u) \in \mathbb{N} \times \mathbb{N}: \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right| \geq \varepsilon\right\} \\
& \subset H \cup\left(M^{\prime} \cap\left(\left(\left\{1,2, \ldots,\left(k_{0}-1\right)\right\} \times \mathbb{N}\right) \cup\left(\mathbb{N} \times\left\{1,2, \ldots,\left(k_{0}-1\right)\right\}\right)\right)\right),
\end{aligned}
$$

for $\mathbb{N} \times \mathbb{N} \backslash M^{\prime}=H \in \mathcal{I}_{2}$. Since \mathcal{I}_{2} is an admissible ideal we have

$$
H \cup\left(M^{\prime} \cap\left(\left(\left\{1,2, \ldots,\left(k_{0}-1\right)\right\} \times \mathbb{N}\right) \cup\left(\mathbb{N} \times\left\{1,2, \ldots,\left(k_{0}-1\right)\right\}\right)\right)\right) \in \mathcal{I}_{2}
$$

and so $T(\varepsilon, x) \in \mathcal{I}_{2}$. Hence, this completes the proof.
Theorem 3.6. Let $\mathcal{I}_{2} \subseteq 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal with property (AP2). If $\left\{A_{k j}\right\}$ is Wijsman strongly \mathcal{I}_{2}-lacunary convergent to A, then $\left\{A_{k j}\right\}$ is Wijsman strongly \mathcal{I}_{2}^{*}-lacunary convergent to A.

Proof. Suppose that $\left\{A_{k j}\right\}$ is Wijsman strongly \mathcal{I}_{2}-lacunary convergent to A. Then, for every $\varepsilon>0$ and for each $x \in X$

$$
T(\varepsilon, x)=\left\{(r, u) \in \mathbb{N} \times \mathbb{N}: \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right| \geq \varepsilon\right\} \in \mathcal{I}_{2} .
$$

Put

$$
T_{1}=\left\{(r, u) \in \mathbb{N} \times \mathbb{N}: \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right| \geq 1\right\}
$$

and

$$
T_{p}=\left\{(r, u) \in \mathbb{N} \times \mathbb{N}: \frac{1}{p} \leq \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|<\frac{1}{p-1}\right\}
$$

for $p \geq 2$ and $p \in \mathbb{N}$. It is clear that $T_{i} \cap T_{j}=\emptyset$ for $i \neq j$ and $T_{i} \in \mathcal{I}_{2}$ for each $i \in \mathbb{N}$. By property $(A P 2)$ there exits a sequence of sets $\left\{V_{p}\right\}_{p \in \mathbb{N}}$ such that
$T_{j} \Delta V_{j}$ is included in finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each j and $V=\bigcup_{j=1}^{\infty} V_{j} \in \mathcal{I}_{2}$. We prove that for each $x \in X$

$$
\lim _{r, u \rightarrow \infty} \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|=0,
$$

for $M=\mathbb{N} \times \mathbb{N} \backslash V \in F\left(\mathcal{I}_{2}\right)$. Let $\delta>0$ be given. Choose $q \in \mathbb{N}$ such that $\frac{1}{q}<\delta$. Then, for each $x \in X$.

$$
\left\{(r, u) \in \mathbb{N} \times \mathbb{N}: \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right| \geq \delta\right\} \subset \bigcup_{j=1}^{q-1} T_{j} .
$$

Since $T_{j} \Delta V_{j}$ is a finite set for $j \in\{1,2, \cdots, q-1\}$, there exists $n_{0} \in \mathbb{N}$ such that

$$
\begin{aligned}
& \left(\bigcup_{j=1}^{q-1} T_{j}\right) \cap\left\{(k, j) \in \mathbb{N} \times \mathbb{N}: k \geq n_{0} \wedge j \geq n_{0}\right\} \\
& \quad=\left(\bigcup_{j=1}^{q-1} V_{j}\right) \cap\left\{(k, j) \in \mathbb{N} \times \mathbb{N}: k \geq n_{0} \wedge j \geq n_{0}\right\}
\end{aligned}
$$

If $k, j \geq n_{0}$ and $(k, j) \notin V$, then

$$
(k, j) \notin \bigcup_{j=1}^{q-1} V_{j} \text { and so }(k, j) \notin \bigcup_{j=1}^{q-1} T_{j} .
$$

Thus, for each $x \in X$ we have

$$
\frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|<\frac{1}{q}<\delta .
$$

This implies that

$$
\lim _{r, u \rightarrow \infty} \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|=0 .
$$

Hence, for each $x \in X$ we have $A_{k j} \rightarrow A\left(N_{\theta}\left[\mathcal{I}_{W_{2}}^{*}\right]\right)$. This completes the proof.

Definition 3.7. The sequence $\left\{A_{k j}\right\}$ is Wijsman strongly lacunary Cauchy if for every $\varepsilon>0$ and for each $x \in X$, there exists $k_{0}=k_{0}(\varepsilon, x) \in \mathbb{N}$ such that

$$
\frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j),(s, t) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d\left(x, A_{s t}\right)\right|<\varepsilon,
$$

for every $k, j, s, t \geq k_{0}$.
Definition 3.8. The sequence $\left\{A_{k j}\right\}$ is Wijsman strongly \mathcal{I}_{2}-lacunary Cauchy sequence iffor each $\varepsilon>0$ and $x \in X$, there exists numbers $s=s(\varepsilon, x), t=t(\varepsilon, x) \in$ \mathbb{N} such that

$$
A(\varepsilon, x)=\left\{(r, u) \in \mathbb{N} \times \mathbb{N}: \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d\left(x, A_{s t}\right)\right| \geq \varepsilon\right\} \in \mathcal{I}_{2} .
$$

Theorem 3.9. If $\left\{A_{k j}\right\}$ is Wijsman strongly lacunary Cauchy sequence, then $\left\{A_{k j}\right\}$ is Wijsman strongly \mathcal{I}_{2}-lacunary Cauchy sequence of sets.

Proof. The proof is routine verification so we omit it.
Theorem 3.10. If $\left\{A_{k j}\right\}$ is Wijsman strongly \mathcal{I}_{2}-lacunary convergent then $\left\{A_{k j}\right\}$ is Wijsman strongly \mathcal{I}_{2}-lacunary Cauchy sequence.

Proof. Let $\left\{A_{k j}\right\}$ is Wijsman strongly \mathcal{I}_{2}-lacunary convergent to A. Then, for every $\varepsilon>0$ and for each $x \in X$, we have

$$
T\left(\frac{\varepsilon}{2}, x\right)=\left\{(r, u) \in \mathbb{N} \times \mathbb{N}: \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right| \geq \frac{\varepsilon}{2}\right\} \in \mathcal{I}_{2} .
$$

Since \mathcal{I}_{2} is a strongly admissible ideal, the set

$$
T^{c}\left(\frac{\varepsilon}{2}, x\right)=\left\{(r, u) \in \mathbb{N} \times \mathbb{N}: \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|<\frac{\varepsilon}{2}\right\}
$$

is non-empty and belongs to $F\left(\mathcal{I}_{2}\right)$. So, we can choose positive integers r, u such that $(r, u) \notin T\left(\frac{\varepsilon}{2}, x\right)$, we have

$$
\frac{1}{h_{r} \bar{h}_{u}} \sum_{\left(k_{0}, j_{0}\right) \in I_{r u}}\left|d\left(x, A_{k_{0} j_{0}}\right)-d(x, A)\right|<\frac{\varepsilon}{2} .
$$

Now, we define the set

$$
B(\varepsilon, x)=\left\{(r, u) \in \mathbb{N} \times \mathbb{N}: \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j),\left(k_{0}, j_{0}\right) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d\left(x, A_{k_{0} j_{0}}\right)\right| \geq \varepsilon\right\}
$$

We show that $B(\varepsilon, x) \subset T\left(\frac{\varepsilon}{2}, x\right)$. Let $(r, u) \in B(\varepsilon, x)$ then, we have

$$
\begin{aligned}
\varepsilon & \leq \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j),\left(k_{0}, j_{0}\right) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d\left(x, A_{k_{0} j_{0}}\right)\right| \\
& \leq \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|+\frac{1}{h_{r} \bar{h}_{u}} \sum_{\left(k_{0}, j_{0}\right) \in I_{r u}}\left|d\left(x, A_{k_{0} j_{0}}\right)-d(x, A)\right| \\
& <\frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|+\frac{\varepsilon}{2} .
\end{aligned}
$$

This implies that

$$
\frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|>\frac{\varepsilon}{2}
$$

and therefore $(r, u) \in T\left(\frac{\varepsilon}{2}, x\right)$. Hence, we have $B(\varepsilon, x) \subset T\left(\frac{\varepsilon}{2}, x\right)$. This shows that $\left\{A_{k j}\right\}$ is Wijsman strongly \mathcal{I}_{2}-lacunary Cauchy sequence.

Definition 3.11. The sequence $\left\{A_{k j}\right\}$ is Wijsman strongly \mathcal{I}_{2}^{*}-lacunary Cauchy sequence if for every $\varepsilon>0$ and for each $x \in X$, there exists a set $M=\{(k, j) \in$ $\mathbb{N} \times \mathbb{N}\}$ such that $M^{\prime}=\left\{(r, u) \in \mathbb{N} \times \mathbb{N}:(k, j) \in I_{r u}\right\} \in \mathcal{F}\left(\mathcal{I}_{2}\right)$ and a number $N=N(\varepsilon, x) \in \mathbb{N}$ such that

$$
\frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j),(s, t) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d\left(x, A_{s t}\right)\right|<\varepsilon
$$

for every $k, j, s, t \geq N$.
Theorem 3.12. If the double sequence $\left\{A_{k j}\right\}$ is a Wijsman strongly \mathcal{I}_{2}^{*}-lacunary Cauchy sequence then $\left\{A_{k j}\right\}$ is a Wijsman strongly \mathcal{I}_{2}-lacunary Cauchy sequence of sets.

Proof. Suppose that $\left\{A_{k j}\right\}$ is a Wijsman strongly \mathcal{I}_{2}^{*}-lacunary Cauchy sequence. Then, for every $\varepsilon>0$ and for each $x \in X$, there exists a set $M=\{(k, j) \in \mathbb{N} \times \mathbb{N}\}$ such that $M^{\prime}=\left\{(r, u) \in \mathbb{N} \times \mathbb{N}:(k, j) \in I_{r u}\right\} \in \mathcal{F}\left(\mathcal{I}_{2}\right)$ and a number $k_{0}=$ $k_{0}(\varepsilon, x) \in \mathbb{N}$ such that

$$
\frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j),(s, t) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d\left(x, A_{s t}\right)\right|<\varepsilon
$$

for every $k, j, s, t \geq k_{0}$.
Let $H=\mathbb{N} \times \mathbb{N} \backslash M^{\prime}$. It is obvious that $H \in \mathcal{I}_{2}$ and

$$
\begin{aligned}
& T(\varepsilon, x)=\left\{(r, u) \in \mathbb{N} \times \mathbb{N}: \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j),(s, t) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d\left(x, A_{s t}\right)\right| \geq \varepsilon\right\} \\
& \subset H \cup\left(M^{\prime} \cap\left(\left(\left\{1,2, \ldots,\left(k_{0}-1\right)\right\} \times \mathbb{N}\right) \cup\left(\mathbb{N} \times\left\{1,2, \ldots,\left(k_{0}-1\right)\right\}\right)\right)\right) .
\end{aligned}
$$

As \mathcal{I}_{2} be a strongly admissible ideal then,

$$
H \cup\left(M^{\prime} \cap\left(\left(\left\{1,2, \ldots,\left(k_{0}-1\right)\right\} \times \mathbb{N}\right) \cup\left(\mathbb{N} \times\left\{1,2, \ldots,\left(k_{0}-1\right)\right\}\right)\right)\right) \in \mathcal{I}_{2}
$$

Therefore, we have $T(\varepsilon, x) \in \mathcal{I}_{2}$, that is, $\left\{A_{k j}\right\}$ is a Wijsman strongly \mathcal{I}_{2}-lacunary Cauchy sequence of sets.

Combining Theorem 3.5 and Theorem 3.10, we have following Theorem:
Theorem 3.13. If the double sequence $\left\{A_{k j}\right\}$ is a Wijsman strongly \mathcal{I}_{2}^{*}-lacunary convergence then $\left\{A_{k j}\right\}$ is a Wijsman strongly \mathcal{I}_{2}-lacunary Cauchy sequence of sets.

Theorem 3.14. If $\mathcal{I}_{2} \subset 2^{\mathbb{N} \times \mathbb{N}}$ is an admissible ideal with the property (AP2) then the concepts Wijsman strongly \mathcal{I}_{2}-lacunary Cauchy double sequence and Wijsman strongly \mathcal{I}_{2}^{*}-lacunary Cauchy double sequence of sets coincide in X.

Proof. If a sequence is Wijsman strongly \mathcal{I}_{2}^{*}-lacunary Cauchy sequence, then it is Wijsman strongly \mathcal{I}_{2}-lacunary Cauchy sequence of sets by Theorem 3.12, where \mathcal{I}_{2} need not have the property $(A P 2)$.

Now, it is sufficient to prove that a sequence $\left\{A_{k j}\right\}$ in X is a Wijsman strongly \mathcal{I}_{2}^{*}-lacunary Cauchy sequence under assumption that it is a Wijsman strongly \mathcal{I}_{2} lacunary Cauchy sequence. Let $\left\{A_{k j}\right\}$ in X be a Wijsman strongly \mathcal{I}_{2}-lacunary Cauchy sequence. Then, for every $\varepsilon>0$ and for each $x \in X$, there exists numbers $s=s(\varepsilon, x), t=t(\varepsilon, x) \in \mathbb{N}$ such that

$$
A(\varepsilon, x)=\left\{(r, u) \in \mathbb{N} \times \mathbb{N}: \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d\left(x, A_{s t}\right)\right| \geq \varepsilon\right\} \in \mathcal{I}_{2} .
$$

Let

$$
\begin{array}{r}
P_{i}=\left\{(r, u) \in \mathbb{N} \times \mathbb{N}: \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d\left(x, A_{s_{i} t_{i}}\right)\right|<\frac{1}{i}\right\} \\
(i=1,2, \ldots)
\end{array}
$$

where $s_{i}=s(1 \backslash i), t_{i}=t(1 \backslash i)$. It is clear that $P_{i} \in \mathcal{F}\left(\mathcal{I}_{2}\right), \quad(i=1,2, \cdots)$. Since \mathcal{I}_{2} has the property $(A P 2)$, then by Lemma 2.1 there exists a set $P \subset \mathbb{N} \times \mathbb{N}$ such that $P \in \mathcal{F}\left(\mathcal{I}_{2}\right)$ and $P \backslash P_{i}$ is finite for all i. Now, we show that

$$
\lim _{k, n, s, t \rightarrow \infty} \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j),(s, t) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d\left(x, A_{s t}\right)\right|=0,
$$

for each $x \in X$ and for $(k, j),(s, t) \in P$. To prove this, let $\varepsilon>0$ and $m \in \mathbb{N}$ such that $m>2 / \varepsilon$. If $(k, j),(s, t) \in P$ then $P \backslash P_{m}$ is a finite set, so there exists $v=v(m)$ such that $(k, j),(s, t) \in P_{m}$ for all $k, j, s, t>v(m)$. Therefore, for each x in X,

$$
\frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d\left(x, A_{s_{m} t_{m}}\right)\right|<\frac{1}{m}
$$

and

$$
\frac{1}{h_{r} \bar{h}_{u}} \sum_{(s, t) \in I_{r u}}\left|d\left(x, A_{s t}\right)-d\left(x, A_{s_{m} t_{m}}\right)\right|<\frac{1}{m},
$$

for all $k, j, s, t>v(m)$. Hence, it follows that

$$
\begin{aligned}
\frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j),(s, t) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d\left(x, A_{s t}\right)\right| \leq & \frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d\left(x, A_{s_{m} t_{m}}\right)\right| \\
& +\frac{1}{h_{r} \bar{h}_{u}} \sum_{(s, t) \in I_{r u}}\left|d\left(x, A_{s t}\right)-d\left(x, A_{s_{m} t_{m}}\right)\right| \\
< & \frac{1}{m}+\frac{1}{m}=\frac{2}{m} \\
< & \varepsilon,
\end{aligned}
$$

for all $k, j, s, t>v(m)$ and for each x in X. Thus, for any $\varepsilon>0$ there exists $v=v(\varepsilon)$ such that for $k, j, s, t>v(\varepsilon)$ and $(k, j),(s, t) \in P \in \mathcal{F}\left(\mathcal{I}_{2}\right)$

$$
\frac{1}{h_{r} \bar{h}_{u}} \sum_{(k, j),(s, t) \in I_{r u}}\left|d\left(x, A_{k j}\right)-d\left(x, A_{s t}\right)\right|<\varepsilon,
$$

for each x in X. This shows that the sequence $\left\{A_{k j}\right\}$ in X is Wijsman strongly \mathcal{I}_{2}^{*}-lacunary Cauchy sequence of sets.

References

[1] Aubin, J.-P. and Frankowska, H., Set-valued analysis, Birkhauser, Boston, (1990).
[2] Baronti, M. and Papini, P., Convergence of sequences of sets, In: Methods of functional analysis in approximation theory, ISNM 76, Birkhauser-Verlag, Basel, pp. 133155, (1986).
[3] Beer, G., On convergence of closed sets in a metric space and distance functions, Bull. Aust. Math. Soc. 31 (1985), 421-432.
[4] Beer, G., Wijsman convergence: A survey, Set-Valued Var. Anal. 2 (1994), 77-94.
[5] Çakan, C. and Altay, B., Statistically boundedness and statistical core of double sequences, J. Math. Anal. Appl. 317 (2006) 690-697.
[6] Das, P., Kostyrko, P., Wilczyński, W. and Malik, P., I and I*-convergence of double sequences, Math. Slovaca, 58 (5) (2008), 605-620.
[7] Dündar, E. and Sever, Y., On strongly I-lacunary Cauchy sequences of sets, Contemporary Analysis and Applied Mathematics, 2(1) (2014), 127-135.
[8] Dündar, E. and Altay, B., \mathcal{I}_{2}-convergence and \mathcal{I}_{2}-Cauchy of double sequences, Acta Mathematica Scientia 34B(2) (2014), 343-353.
[9] Dündar, E. and Altay, B., On some properties of \mathcal{I}_{2}-convergence and \mathcal{I}_{2}-Cauchy of double sequences, Gen. Math. Notes 7(1) (2011), 1-12.
[10] Fast, H., Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244.
[11] Fridy, J. A. and Orhan, C., Lacunary statistical convergence, Pacific J. Math. 160(1) (1993), 43-51.
[12] Kişi, Ö. and Nuray, F. A new convergence for sequences of sets, Abstract and Applied Analysis, vol. 2013, Article ID 852796, 6 pages. http://dx.doi.org/10.1155/2013/852796.
[13] Kişi, Ö., Savaş, E. and Nuray, F., On I-asymptotically lacunary statistical equivalence of sequences of sets. (submitted for publication).
[14] Kostyrko, P., S̆alát T. and Wilczyński, W., I-convergence, Real Anal. Exchange, 26 (2) (2000), 669-686.
[15] Kumar, V., On I and I*-convergence of double sequences, Math. Commun. 12 (2007), 171-181.
[16] Mursaleen and Edely, O. H. H., Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003) 223-231.
[17] Nabiev, A., Pehlivan, S. and Gürdal, M., On I-Cauchy sequence, Taiwanese J. Math. 11 (2) (2007), 569-576.
[18] Nuray, F., Ulusu, U. and Dündar, E., On Cesàro summability of double sequences of sets, Gen. Math. Notes, Vol. 25, No. 1, November 2014, pp. 8-18.
[19] Nuray, F. and Rhoades, B. E., Statistical convergence of sequences of sets, Fasc. Math. 49 (2012), 87-99.
[20] Nuray, F. and Ruckle, W.H., Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000), 513-527.
[21] Nuray, F., Dündar, E. and Ulusu, U., Wijsman statistical convergence of double sequences of sets, (under communication).
[22] Nuray, F., Dündar, E. and Ulusu, U., Wijsman I_{2}-convergence of double sequences of closed sets, Pure and Applied Mathematics Letters, 2(2014), 31-35.
[23] Schoenberg, I.J., The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959) 361-375.
[24] Sever, Y., Ulusu, U. and Dündar, E., On Strongly I and I^{*}-Lacunary Convergence of Sequences of Sets, AIP Conference Proceedings, 1611, 357 (2014); doi: 10.1063/1.4893860, 7 page.
[25] Tripathy, B.C, Hazarika, B. and Choudhary, B., Lacunary I-convergent sequences. Kyungpook Math. J., (2012). 52, 473-482.
[26] Ulusu, U. and Nuray, F., Lacunary statistical convergence of sequence of sets, Progress in Applied Mathematics, 4(2) (2012), 99-109.
[27] Ulusu, U. and Nuray, F. On strongly lacunary summability of sequence of sets. Journal of Applied Mathematics \& Bioinformatics, (2013).3(3), 75-88.
[28] Wijsman, R. A., Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc. 70 (1964), 186-188.
[29] Wijsman, R. A., Convergence of Sequences of Convex sets, Cones and Functions II, Trans. Amer. Math. Soc. 123 (1) (1966), 32-45.

