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Abstract
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ships between them.
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1 INTRODUCTION

Throughout the paper N denotes the set of all positive integers and R the set of all

real numbers. The concept of convergence of a sequence of real numbers has been

extended to statistical convergence independently by Fast [10] and Schoenberg [23].

This concept was extended to the double sequences by Mursaleen and Edely

[16]. Çakan and Altay [5] presented multidimensional analogues of the results

presented by Fridy and Orhan [11].

Nuray and Ruckle [20] independently introduced the same with another name

generalized statistical convergence. The idea of I-convergence was introduced by

Kostyrko, S̆alát and Wilczyński [14] as a generalization of statistical convergence

which is based on the structure of the ideal I of subset of the set of natural numbers.

Das et al. [6] introduced the concept of I-convergence of double sequences in a

metric space and studied some properties of this convergence. A lot of development

have been made in this area after the works of [8, 15, 17].

The concept of convergence of sequences of numbers has been extended by

several authors to convergence of sequences of sets (see, [2, 3, 4, 19, 28, 29]). Nuray

and Rhoades [19] extended the notion of convergence of set sequences to statistical

convergence and gave some basic theorems. Ulusu and Nuray [26] defined the

Wijsman lacunary statistical convergence of sequence of sets and considered its

relation with Wiijsman statistical convergence, which was defined by Nuray and

Rhoades.

Kişi and Nuray [12] introduced a new convergence notion, for sequences of

sets, which is called Wijsman I-convergence. Sever et al. [24] studied the con-

cepts of Wijsman strongly lacunary convergence, Wijsman strongly I-lacunary

convergence, Wijsman strongly I∗-lacunary convergence and Wijsman strongly I-

lacunary Cauchy sequences of sets. Dündar et al. [7] examinated the ideas of Wijs-

man strongly lacunary Cauchy, Wijsman strongly I-lacunary Cauchy and Wijsman

strongly I∗-lacunary Cauchy sequences of sets. Nuray et al. [21] studied Wijsman
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statistical convergence, Hausdorff statistical convergence and Wijsman statistical

Cauchy double sequences of sets and investigate the relationships between them.

Nuray et al. [22] studied the concepts of Wijsman I, I∗-convergence and Wijsman

I, I∗-Cauchy double sequences of sets.

In this paper, we study the concepts of Wijsman strongly I2-lacunary conver-

gence, Wijsman strongly I∗
2 -lacunary convergence, Wijsman strongly I2-lacunary

Cauchy sequences and Wijsman strongly I∗
2 -lacunary Cauchy double sequences of

sets and investigate the properties and relationships between them.

2 DEFINITIONS AND NOTATIONS

Now, we recall the basic definitions and concepts (See [1, 2, 3, 4, 6, 7, 8, 9, 14, 18,

19, 22, 24, 26, 27, 28, 29]).

Throughout the paper, we let (X, ρ) be a metric space and A,Ak be any non-

empty closed subsets of X .

For any point x ∈ X , we define the distance from x to A by

d(x,A) = inf
a∈A

ρ(x, a).

We say that the sequence {Ak} is Wijsman convergent to A if limk→∞ d(x,Ak)

= d(x,A), for each x ∈ X . In this case we write W − limAk = A.

We say that the sequence {Ak} is Wijsman Cauchy sequence, if for ε > 0

and for each x ∈ X , there is a positive integer k0 such that for all m,n > k0,

|d(x,Am)− d(x,An)| < ε.

By a lacunary sequence we mean an increasing integer sequence θ = {kr}
such that k0 = 0 and hr = kr − kr−1 → ∞ as r → ∞. Throughout this paper the

intervals determined by θ will be denoted by Ir = (kr−1, kr], and ratio kr
kr−1

will be

abbreviated by qr.

Let θ = {kr} be a lacunary sequence. We say that the sequence {Ak} is
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Wijsman strongly lacunary convergent to A if for each x ∈ X,

lim
r→∞

1

hr

∑
k∈Ir

|d(x,Ak)− d(x,A)| = 0.

In this case we write Ak → A([WN ]θ) or Ak

[WN ]θ→ A.

A family of sets I ⊆ 2N is called an ideal if and only if

(i) ∅ ∈ I, (ii) For each A,B ∈ I we have A ∪ B ∈ I, (iii) For each A ∈ I
and each B ⊆ A we have B ∈ I.

An ideal is called non-trivial if N /∈ I and non-trivial ideal is called admissible

if {n} ∈ I for each n ∈ N.

A family of sets F ⊆ 2N is called a filter if and only if

(i) ∅ /∈ F, (ii) For each A,B ∈ F we have A ∩B ∈ F, (iii) For each A ∈ F

and each B ⊇ A we have B ∈ F.

I is a non-trivial ideal in N, then the set F(I) = {M ⊂ X : (∃A ∈ I)(M =

X\A)} is a filter in N, called the filter associated with I.

Let θ be lacunary sequence and I ⊆ 2N be an admissible ideal. We say that

the sequence {Ak} is said to be Wijsman strongly I-lacunary convergent to A or

Nθ [IW ]-convergent to A if for every ε > 0 and for each x ∈ X, the set

A(ε, x) =

{
r ∈ N :

1

hr

∑
k∈Ir

|d(x,Ak)− d(x,A)| ≥ ε

}

belongs to I. In this case, we write Ak → A (Nθ [IW ]) .

Let (X, ρ) be a separable metric space and I ⊆ 2N be an admissible ideal. We

say that the sequence {Ak} is Wijsman strongly I∗-lacunary convergent to A if and

only if there exists a set M = {m1 < m2 < · · · < mk < · · · } ⊂ N such that

M ′ = {r ∈ N : mk ∈ Ir} ∈ F (I) for each x ∈ X,

lim
r→∞

1

hr

∑
k∈Ir

|d(x,Amk
)− d(x,A)| = 0.

In this case, we write Ak → A (Nθ [I∗
W ]) .
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Let θ be lacunary sequence. The sequence {Ak} is Wijsman strongly lacunary

Cauchy if for every ε > 0 and for each x ∈ X, there exists k0 = k0(ε) ∈ N such

that
1

hr

∑
k,p∈Ir

|d(x,Ak)− d(x,Ap)| < ε,

for every k, p ≥ k0.

Let θ be lacunary sequence and I ⊆ 2N be an admissible ideal. The sequence

{Ak} is Wijsman strongly I-lacunary Cauchy sequence if for every ε > 0 and for

each x ∈ X , there exists k0 = k0(ε) ∈ N such that

A(ε, x) =

{
r ∈ N :

1

hr

∑
k∈Ir

|d(x,Ak)− d(x,Ak0)| ≥ ε

}
∈ I.

Let (X, ρ) be a separable metric space, θ be lacunary sequence and I ⊆ 2N be

an admissible ideal. The sequence {Ak} is Wijsman strongly I∗-lacunary Cauchy

sequence if for every ε > 0 and for each x ∈ X , there exists a set M = {m1 <

m2 < · · · < mk < · · · } ⊂ N such that M ′ = {r ∈ N : mk ∈ Ir} ∈ F(I) and there

exists k0 = k0(ε) ∈ N such that

1

hr

∑
k,p∈Ir

|d(x,Amk
)− d(x,Amp)| < ε

for every k, p ≥ k0.

The double sequence {Akj} is Wijsman convergent to A if

P − lim
k,j→∞

d(x,Akj) = d(x,A) or lim
k,j→∞

d(x,Akj) = d(x,A)

for each x ∈ X . In this case, we write W2 − limAkj = A.

The double sequence θ = {(kr, js)} is called double lacunary sequence if there

exist two increasing sequence of integers such that

k0 = 0, hr = kr−kr−1 → ∞ and j0 = 0, h̄u = ju−ju−1 → ∞ as r, u → ∞.
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We use the following notations in the sequel:

kru = krju, hru = hrh̄u, Iru = {(k, j) : kr−1 < k ≤ kr and ju−1 < j ≤ ju},

qr =
kr
kr−1

and qu =
ju
ju−1

.

Let θ = {(kr, js)} be a double lacunary sequence. The double sequence {Akj} is

Wijsman strongly lacunary convergent to A if for each x ∈ X,

lim
r,u→∞

1

hrh̄u

kr∑
k=kr−1+1

ju∑
j=ju−1+1

|d(x,Akj)− d(x,A)| = 0.

In this case, we write Akj
[W2Nθ]−→ A.

Throughout the paper we take I2 as a nontrivial admissible ideal in N× N.

A nontrivial ideal I2 of N × N is called strongly admissible if {i} × N and

N× {i} belong to I2 for each i ∈ N .

It is evident that a strongly admissible ideal is admissible also.

I0
2 = {A ⊂ N× N : (∃m(A) ∈ N)(i, j ≥ m(A) ⇒ (i, j) ̸∈ A)}. Then, I0

2 is

a nontrivial strongly admissible ideal and clearly an ideal I2 is strongly admissible

if and only if I0
2 ⊂ I2.

We say that an admissible ideal I2 ⊂ 2N×N satisfies the property (AP2) if for

every countable family of mutually disjoint sets {A1, A2, ...} belonging to I2, there

exists a countable family of sets {B1, B2, ...} such that Aj∆Bj ∈ I0
2 , i.e., Aj∆Bj

is included in the finite union of rows and columns in N × N, for each j ∈ N and

B =
∪∞

j=1Bj ∈ I2 (hence Bj ∈ I2 for each j ∈ N).
Throughout the paper, we let I ⊆ 2N be an admissible ideal, (X, ρ) be a

separable metric space and A,Ak be any non-empty closed subsets of X .

We say that a double sequence of sets {Akj} is Wijsman I2-convergent to A, if

for each x ∈ X and for every ε > 0, {(k, j) ∈ N× N : |d(x,Akj)− d(x,A)| ≥ ε} ∈
I2. In this case, we write IW2 − lim

k,j→∞
d(x,Akj) = d(x,A).
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We say that the double sequence of sets {Akj} is Wijsman I∗
2 -convergent to A,

if there exists a set M2 ∈ F(I2) (i.e., N × N\M2 = H ∈ I2) such that for each

x ∈ X

lim
k,j→∞
(k,j)∈M2

d(x,Akj) = d(x,A).

In this case, we write I∗
W2

− lim
k,j→∞

d(x,Akj) = d(x,A).

Lemma 2.1.(8], Theorem 3.3). Let {Pi}∞i=1 be a countable collection of subsets

of N × N such that Pi ∈ F (I2) for each i, where F(I2) is a filter associate with

a strongly admissible ideal I2 with the property (AP2). Then, there exists a set

P ⊂ N× N such that P ∈ F(I2) and the set P\Pi is finite for all i.

3 MAIN RESULTS

Throughout the paper we take (X, ρ) be a separable metric space, θ = {krj} be a

double lacunary sequence, I2 ⊆ 2N×N be a strongly admissible ideal and A,Akj be

non-empty closed subsets of X .

Definition 3.1. The sequence {Akj} is said to be Wijsman strongly I2-lacunary

convergent to A or Nθ [IW2 ]-convergent to A if for every ε > 0 and for each x ∈ X,

the set

A(ε, x) =

{
(r, u) ∈ N× N :

1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)| ≥ ε

}
∈ I2.

In this case, we write Akj → A (Nθ [IW2 ]) .

Theorem 3.2. If {Akj} is Wijsman strongly lacunary convergent to A, then it is

Wijsman strongly I2-lacunary convergent to A.

Proof. Let {Akj} is Wijsman strongly lacunary convergent to A. For every ε > 0

and for each x ∈ X there exists k0 = k0(ε, x) ∈ N such that
1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)| < ε,
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for all k, j ≥ k0. Then, we have

T (x, ε) =

{
(r, u) ∈ N× N :

1

hrhu

∑
(k,j)∈Iru

|d (x,Akj)− d (x,A)| ≥ ε

}

⊂ {1, 2, · · · , k0 − 1} .

Since I2 is a strongly admissible ideal we have {1, 2, · · · , k0 − 1} ∈ I2 and so

T (x, ε) ∈ I2. This completes the proof.

Definition 3.3. The sequence {Akj} is Wijsman I∗
2 -lacunary convergent to A if and

only if there exists a set M = {(k, j) ∈ N× N} such that M ′ = {(r, u) ∈ N× N :

(k, j) ∈ Iru} ∈ F(I2) for each x ∈ X,

lim
r,u→∞

1

hrhu

∑
(k,j)∈Iru

d(x,Akj) = d(x,A).

In this case, we write Akj → A
(
Nθ

(
I∗
W2

))
.

Definition 3.4. The sequence {Akj} is Wijsman strongly I∗
2 -lacunary convergent to

A if and only if there exists a set M = {(k, j) ∈ N× N} such that M ′ = {(r, u) ∈
N× N : (k, j) ∈ Iru} ∈ F(I2) for each x ∈ X,

lim
r,u→∞

1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)| = 0.

In this case, we write Akj → A
(
Nθ

[
I∗
W2

])
.

Theorem 3.5. If the sequence {Akj} is Wijsman strongly I∗
2 -lacunary convergent

to A, then {Akj} is Wijsman strongly I2-lacunary convergent to A.

Proof. Suppose that {Akj} is Wijsman strongly I∗
2 -lacunary convergent to A. Then,

there exists a set M = {(k, j) ∈ N×N} such that M ′ = {(r, u) ∈ N×N : (k, j) ∈
Iru} ∈ F(I2) for each x ∈ X,

1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)| < ε,
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for every ε > 0 and for all k, j ≥ k0 = k0(ε, x) ∈ N. Hence, for every ε > 0 and

for each x ∈ X we have

T (ε, x) =

{
(r, u) ∈ N× N :

1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)| ≥ ε

}

⊂ H ∪
(
M ′ ∩

(
({1, 2, ..., (k0 − 1)} × N) ∪ (N× {1, 2, ..., (k0 − 1)})

))
,

for N× N\M ′ = H ∈ I2. Since I2 is an admissible ideal we have

H ∪
(
M ′ ∩

(
({1, 2, ..., (k0 − 1)} × N) ∪ (N× {1, 2, ..., (k0 − 1)})

))
∈ I2

and so T (ε, x) ∈ I2. Hence, this completes the proof.

Theorem 3.6. Let I2 ⊆ 2N×N be a strongly admissible ideal with property (AP2).

If {Akj} is Wijsman strongly I2-lacunary convergent to A, then {Akj} is Wijsman

strongly I∗
2 -lacunary convergent to A.

Proof. Suppose that {Akj} is Wijsman strongly I2-lacunary convergent to A. Then,

for every ε > 0 and for each x ∈ X

T (ε, x) =

{
(r, u) ∈ N× N :

1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)| ≥ ε

}
∈ I2.

Put

T1 =

{
(r, u) ∈ N× N :

1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)| ≥ 1

}

and

Tp =

{
(r, u) ∈ N× N :

1

p
≤ 1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)| < 1

p− 1

}
,

for p ≥ 2 and p ∈ N. It is clear that Ti ∩ Tj = ∅ for i ̸= j and Ti ∈ I2 for

each i ∈ N. By property (AP2) there exits a sequence of sets {Vp}p∈N such that
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Tj∆Vj is included in finite union of rows and columns in N × N for each j and

V =
∞∪
j=1

Vj ∈ I2. We prove that for each x ∈ X

lim
r,u→∞

1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)| = 0,

for M = N × N\V ∈ F (I2). Let δ > 0 be given. Choose q ∈ N such that
1

q
< δ.

Then, for each x ∈ X .{
(r, u) ∈ N× N :

1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)| ≥ δ

}
⊂

q−1∪
j=1

Tj .

Since Tj∆Vj is a finite set for j ∈ {1, 2, · · · , q − 1}, there exists n0 ∈ N such that(
q−1∪
j=1

Tj

)
∩ {(k, j) ∈ N× N : k ≥ n0 ∧ j ≥ n0}

=

(
q−1∪
j=1

Vj

)
∩ {(k, j) ∈ N× N : k ≥ n0 ∧ j ≥ n0} .

If k, j ≥ n0 and (k, j) /∈ V, then

(k, j) /∈
q−1∪
j=1

Vj and so (k, j) /∈
q−1∪
j=1

Tj .

Thus, for each x ∈ X we have

1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)| < 1

q
< δ.

This implies that

lim
r,u→∞

1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)| = 0.

Hence, for each x ∈ X we have Akj → A
(
Nθ

[
I∗
W2

])
. This completes the proof.
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Definition 3.7. The sequence {Akj} is Wijsman strongly lacunary Cauchy if for

every ε > 0 and for each x ∈ X, there exists k0 = k0(ε, x) ∈ N such that

1

hrhu

∑
(k,j),(s,t)∈Iru

|d(x,Akj)− d(x,Ast)| < ε,

for every k, j, s, t ≥ k0.

Definition 3.8. The sequence {Akj} is Wijsman strongly I2-lacunary Cauchy se-

quence if for each ε > 0 and x ∈ X , there exists numbers s = s(ε, x), t = t(ε, x) ∈
N such that

A(ε, x) =

{
(r, u) ∈ N× N :

1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,Ast)| ≥ ε

}
∈ I2.

Theorem 3.9. If {Akj} is Wijsman strongly lacunary Cauchy sequence, then {Akj}
is Wijsman strongly I2-lacunary Cauchy sequence of sets.

Proof. The proof is routine verification so we omit it.

Theorem 3.10. If {Akj} is Wijsman strongly I2-lacunary convergent then {Akj} is

Wijsman strongly I2-lacunary Cauchy sequence.

Proof. Let {Akj} is Wijsman strongly I2-lacunary convergent to A. Then, for every

ε > 0 and for each x ∈ X , we have

T
(ε
2
, x
)
=

{
(r, u) ∈ N× N :

1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)| ≥ ε

2

}
∈ I2.

Since I2 is a strongly admissible ideal, the set

T c
(ε
2
, x
)
=

{
(r, u) ∈ N× N :

1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)| < ε

2

}
is non-empty and belongs to F (I2). So, we can choose positive integers r, u such

that (r, u) /∈ T ( ε
2
, x), we have

1

hrhu

∑
(k0,j0)∈Iru

|d(x,Ak0j0)− d(x,A)| < ε

2
.
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Now, we define the set

B(ε, x) =

{
(r, u) ∈ N× N :

1

hrhu

∑
(k,j),(k0,j0)∈Iru

|d(x,Akj)− d(x,Ak0j0)| ≥ ε

}
.

We show that B(ε, x) ⊂ T ( ε
2
, x). Let (r, u) ∈ B(ε, x) then, we have

ε ≤ 1

hrhu

∑
(k,j),(k0,j0)∈Iru

|d(x,Akj)− d(x,Ak0j0)|

≤ 1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)|+ 1

hrhu

∑
(k0,j0)∈Iru

|d(x,Ak0j0)− d(x,A)|

<
1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)|+ ε

2
.

This implies that

1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,A)| > ε

2

and therefore (r, u) ∈ T ( ε
2
, x). Hence, we have B(ε, x) ⊂ T ( ε

2
, x). This shows that

{Akj} is Wijsman strongly I2-lacunary Cauchy sequence.

Definition 3.11. The sequence {Akj} is Wijsman strongly I∗
2 -lacunary Cauchy se-

quence if for every ε > 0 and for each x ∈ X , there exists a set M = {(k, j) ∈
N × N} such that M ′ = {(r, u) ∈ N × N : (k, j) ∈ Iru} ∈ F(I2) and a number

N = N(ε, x) ∈ N such that

1

hrhu

∑
(k,j),(s,t)∈Iru

|d(x,Akj)− d(x,Ast)| < ε

for every k, j, s, t ≥ N.

Theorem 3.12. If the double sequence {Akj} is a Wijsman strongly I∗
2 -lacunary

Cauchy sequence then {Akj} is a Wijsman strongly I2-lacunary Cauchy sequence

of sets.
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Proof. Suppose that {Akj} is a Wijsman strongly I∗
2 -lacunary Cauchy sequence.

Then, for every ε > 0 and for each x ∈ X , there exists a set M = {(k, j) ∈ N×N}
such that M ′ = {(r, u) ∈ N × N : (k, j) ∈ Iru} ∈ F(I2) and a number k0 =

k0(ε, x) ∈ N such that

1

hrhu

∑
(k,j),(s,t)∈Iru

|d(x,Akj)− d(x,Ast)| < ε

for every k, j, s, t ≥ k0.

Let H = N× N\M ′. It is obvious that H ∈ I2 and

T (ε, x) =

{
(r, u) ∈ N× N : 1

hrhu

∑
(k,j),(s,t)∈Iru

|d(x,Akj)− d(x,Ast)| ≥ ε

}
⊂ H ∪

(
M ′ ∩

(
({1, 2, ..., (k0 − 1)} × N) ∪ (N× {1, 2, ..., (k0 − 1)})

))
.

As I2 be a strongly admissible ideal then,

H ∪
(
M ′ ∩

(
({1, 2, ..., (k0 − 1)} × N) ∪ (N× {1, 2, ..., (k0 − 1)})

))
∈ I2.

Therefore, we have T (ε, x) ∈ I2, that is, {Akj} is a Wijsman strongly I2-lacunary

Cauchy sequence of sets.

Combining Theorem 3.5 and Theorem 3.10, we have following Theorem:

Theorem 3.13. If the double sequence {Akj} is a Wijsman strongly I∗
2 -lacunary

convergence then {Akj} is a Wijsman strongly I2-lacunary Cauchy sequence of

sets.

Theorem 3.14. If I2 ⊂ 2N×N is an admissible ideal with the property (AP2) then

the concepts Wijsman strongly I2-lacunary Cauchy double sequence and Wijsman

strongly I∗
2 -lacunary Cauchy double sequence of sets coincide in X .

Proof. If a sequence is Wijsman strongly I∗
2 -lacunary Cauchy sequence, then it is

Wijsman strongly I2-lacunary Cauchy sequence of sets by Theorem 3.12, where I2

need not have the property (AP2).
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Now, it is sufficient to prove that a sequence {Akj} in X is a Wijsman strongly

I∗
2 -lacunary Cauchy sequence under assumption that it is a Wijsman strongly I2-

lacunary Cauchy sequence. Let {Akj} in X be a Wijsman strongly I2-lacunary

Cauchy sequence. Then, for every ε > 0 and for each x ∈ X , there exists numbers

s = s(ε, x), t = t(ε, x) ∈ N such that

A(ε, x) =

{
(r, u) ∈ N× N :

1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,Ast)| ≥ ε

}
∈ I2.

Let

Pi =

{
(r, u) ∈ N× N : 1

hrhu

∑
(k,j)∈Iru |d(x,Akj)− d(x,Asiti)| < 1

i

}
;

(i = 1, 2, . . .),

where si = s(1\i), ti = t(1\i). It is clear that Pi ∈ F(I2), (i = 1, 2, · · · ). Since

I2 has the property (AP2), then by Lemma 2.1 there exists a set P ⊂ N× N such

that P ∈ F(I2) and P\Pi is finite for all i. Now, we show that

lim
k,n,s,t→∞

1

hrhu

∑
(k,j),(s,t)∈Iru

|d(x,Akj)− d(x,Ast)| = 0,

for each x ∈ X and for (k, j), (s, t) ∈ P . To prove this, let ε > 0 and m ∈ N
such that m > 2/ε. If (k, j), (s, t) ∈ P then P\Pm is a finite set, so there exists

v = v(m) such that (k, j), (s, t) ∈ Pm for all k, j, s, t > v(m). Therefore, for each

x in X ,

1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,Asmtm)| <
1

m

and

1

hrhu

∑
(s,t)∈Iru

|d(x,Ast)− d(x,Asmtm)| <
1

m
,



Strongly I2-Lacunary convergence and I2-Lacunary cauchy double · · · 15

for all k, j, s, t > v(m). Hence, it follows that

1

hrhu

∑
(k,j),(s,t)∈Iru

|d(x,Akj)− d(x,Ast)| ≤ 1

hrhu

∑
(k,j)∈Iru

|d(x,Akj)− d(x,Asmtm)|

+
1

hrhu

∑
(s,t)∈Iru

|d(x,Ast)− d(x,Asmtm)|

<
1

m
+

1

m
=

2

m
< ε,

for all k, j, s, t > v(m) and for each x in X . Thus, for any ε > 0 there exists v = v(ε)

such that for k, j, s, t > v(ε) and (k, j), (s, t) ∈ P ∈ F(I2)

1

hrhu

∑
(k,j),(s,t)∈Iru

|d(x,Akj)− d(x,Ast)| < ε,

for each x in X . This shows that the sequence {Akj} in X is Wijsman strongly I∗
2 -lacunary

Cauchy sequence of sets.
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