Volume 9 Issue 4(2018), Pages 90-100.

WIJSMAN \mathcal{I}_2 -INVARIANT CONVERGENCE OF DOUBLE SEQUENCES OF SETS

ŞÜKRÜ TORTOP, ERDİNÇ DÜNDAR

ABSTRACT. In this paper, we study the concepts of Wijsman invariant convergence, Wijsman invariant statistical convergence, Wijsman $\mathcal{I}_2\text{-invariant}$ convergence $(\mathcal{I}_{W_2}^*),$ Wijsman $\mathcal{I}_2^*\text{-invariant}$ convergence $(\mathcal{I}_{W_2}^*),$ Wijsman $\mathcal{I}_2^*\text{-invariant}$ convergence of sets and investigate the relationships among Wijsman invariant convergence, $[W_2V_\sigma]_p,\,\mathcal{I}_{W_2}^\sigma$ and $\mathcal{I}_{W_2}^{*\sigma}$. Also, we introduce the concepts of $\mathcal{I}_{W_2}^\sigma$ -Cauchy double sequence and $\mathcal{I}_{W_2}^{*\sigma}$ -Cauchy double sequence of sets.

1. Introduction and Background

Throughout the paper \mathbb{N} denotes the set of all positive integers and \mathbb{R} denotes the set of all real numbers. The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [10] and Schoenberg [35]. This concept was extended to the double sequences by Mursaleen and Edely [20]. The idea of \mathcal{I} -convergence was introduced by Kostyrko, Šalát and Wilczyński [16] as a generalization of statistical convergence which is based on the structure of the ideal \mathcal{I} of subset of \mathbb{N} . Das et al. [?] introduced the concept of \mathcal{I} -convergence of double sequences in a metric space and studied some properties of this convergence. A lot of development have been made in this area after the various studies of researchers [?,?,?,5,6,8,22].

Nuray and Rhoades [23] extended the notion of convergence of set sequences to statistical convergence and gave some basic theorems. Ulusu and Nuray [42] defined the Wijsman lacunary statistical convergence of set sequences and considered its relation with Wijsman statistical convergence which was defined by Nuray and Rhoades. Kişi and Nuray [15] introduced a new convergence notion, for sequences of sets, which is called Wijsman \mathcal{I} -convergence. Also, the concept of convergence of sequences has been extended to convergence, statistical convergence and ideal convergence of sequences of sets by several authors [36–38, 43–46].

Several authors including Raimi [30], Schaefer [34], Mursaleen [21], Savaş [31], Pancaroğlu and Nuray [27], and others have studied invariant convergent sequences [19,25]. Savaş and Nuray [33] introduced the concepts of σ -statistical convergence

 $^{2010\} Mathematics\ Subject\ Classification.\ 40 A 05,\ 40 A 35.$

Key words and phrases. Invariant convergence; \mathcal{I}_2 -convergence; Wijsman convergence; Double sequence of sets.

^{©2018} Ilirias Research Institute, Prishtinë, Kosovë.

Submitted January 17, 2018. Published August 20, 2018.

Communicated by Mikail Et.

and lacunary σ -statistical convergence and gave some inclusion relations. Recently, the concept of strong σ -convergence was generalized by Savaş [31]. Nuray et al. [26] defined the concepts of σ -uniform density of subsets A of the set \mathbb{N} , \mathcal{I}_{σ} -convergence and investigated relationships between \mathcal{I}_{σ} -convergence and invariant convergence also \mathcal{I}_{σ} -convergence and $[V_{\sigma}]_{p}$ -convergence. Ulusu and Nuray [41] investigated lacunary \mathcal{I} -invariant convergence and lacunary \mathcal{I} -invariant Cauchy sequence of real numbers. Pancaroğlu et al. [29] studied Wijsman \mathcal{I} -invariant convergence of sequences of sets. Also, Çakan et al. [4] investigated σ -convergence and σ -core of double sequences.

2. Definitions and Notations

Now, we recall the basic definitions and concepts (see [1-4, 16, 18, 23, 24, 26-28, 30, 32, 34, 41]).

A family of sets $\mathcal{I} \subseteq 2^{\mathbb{N}}$ is called an ideal if and only if

(i) $\emptyset \in \mathcal{I}$, (ii) For each $A, B \in \mathcal{I}$ we have $A \cup B \in \mathcal{I}$, (iii) For each $A \in \mathcal{I}$ and each $B \subseteq A$ we have $B \in \mathcal{I}$.

An ideal is called nontrivial if $\mathbb{N} \notin \mathcal{I}$. Nontrivial ideal is called admissible if $\{n\} \in \mathcal{I}$ for each $n \in \mathbb{N}$.

A family of sets $\mathcal{F} \subseteq 2^{\mathbb{N}}$ is called a filter if and only if

(i) $\emptyset \notin \mathcal{F}$, (ii) For each $A, B \in \mathcal{F}$ we have $A \cap B \in \mathcal{F}$, (iii) For each $A \in \mathcal{F}$ and each $B \supseteq A$ we have $B \in \mathcal{F}$.

If \mathcal{I} is a nontrivial ideal in X, $X \neq \emptyset$, then the class $\mathcal{F}(\mathcal{I}) = \{M \subset X : (\exists A \in \mathcal{I})(M = X \setminus A)\}$ is a filter on X, called the filter associated with \mathcal{I} .

A nontrivial ideal \mathcal{I}_2 of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible ideal if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to \mathcal{I}_2 for each $i \in \mathbb{N}$.

Throughout the paper we take \mathcal{I}_2 as a strongly admissible ideal in $\mathbb{N} \times \mathbb{N}$.

It is evident that a strongly admissible ideal is admissible also.

 $\mathcal{I}_2^0 = \{A \subset \mathbb{N} \times \mathbb{N} : (\exists m(A) \in \mathbb{N}) (i, j \geq m(A) \Rightarrow (i, j) \notin A)\}$. Then \mathcal{I}_2^0 is a strongly admissible ideal and clearly an ideal \mathcal{I}_2 is strongly admissible if and only if $\mathcal{I}_2^0 \subset \mathcal{I}_2$.

Let (X, ρ) be a metric space. A sequence $x = (x_{mn})$ in X is said to be \mathcal{I}_2 -convergent to $L \in X$, if for any $\varepsilon > 0$, $A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn}, L) \ge \varepsilon\} \in \mathcal{I}_2$. In this case, we say that x is \mathcal{I}_2 -convergent and we write $\mathcal{I}_2 - \lim_{m,n \to \infty} x_{mn} = L$.

Let σ be a mapping of the positive integers into themselves. A continuous linear functional ϕ on ℓ_{∞} , the space of real bounded sequences, is said to be an invariant mean or a σ -mean if it satisfies following conditions:

- (1) $\phi(x) \geq 0$, when the sequence $x = (x_n)$ has $x_n \geq 0$ for all n,
- (2) $\phi(e) = 1$, where e = (1, 1, 1, ...) and
- (3) $\phi(x_{\sigma(n)}) = \phi(x_n)$ for all $x \in \ell_{\infty}$.

The mappings σ are assumed to be one-to-one and such that $\sigma^m(n) \neq n$ for all positive integers n and m, where $\sigma^m(n)$ denotes the m th iterate of the mapping σ at n. Thus, ϕ extends the limit functional on c, the space of convergent sequences, in the sense that $\phi(x) = \lim x$ for all $x \in c$. If σ is translation mappings that is, $\sigma(n) = n + 1$, then σ -mean is often called a Banach limit.

A bounded sequence $x = (x_k)$ is said to be strongly σ -convergent to L if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} |x_{\sigma^k(m)} - L| = 0 \text{ uniformly in } m$$

and in this case, we write $x_k \to L[V_{\sigma}]$. By $[V_{\sigma}]$, we denote the set of all strongly σ -convergent sequences.

In the case $\sigma(n) = n + 1$, the space $[V_{\sigma}]$ is the set of strongly almost convergent sequences $[\hat{c}]$.

The concept of strong σ -convergence was generalized by Savaş [31] as below:

$$[V_{\sigma}]_p = \Big\{ x = (x_k) : \lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^m |x_{\sigma^k(n)} - L|^p = 0 \text{ uniformly in } n \Big\},$$

where 0 . If <math>p = 1, then $[V_{\sigma}]_p = [V_{\sigma}]$. It is known that $[V_{\sigma}]_p \subset \ell_{\infty}$. A sequence $x = (x_k)$ is σ -statistically convergent to L if for every $\varepsilon > 0$,

$$\lim_{m \to \infty} \frac{1}{m} \left| \left\{ k \le m : |x_{\sigma^k(n)} - L| \ge \varepsilon \right\} \right| = 0,$$

uniformly in n. In this case we write $S_{\sigma} - \lim x = L$ or $x_k \to L(S_{\sigma})$.

A bounded double sequence $x = (x_{kj})$ of real numbers is said to be σ -convergent to a limit l if

$$\lim_{mn} \frac{1}{mn} \sum_{k=0}^{m} \sum_{j=0}^{n} x_{\sigma^{k}(s), \sigma^{j}(t)} = l$$

uniformly in s, t. In this case, we write $\sigma_2 - \lim x = l$.

Let $A \subseteq \mathbb{N}$ and

$$s_n := \min_{m} \left| A \cap \left\{ \sigma(m), \sigma^2(m), ..., \sigma^n(m) \right\} \right|$$

and

$$S_n := \max_{m} \left| A \cap \left\{ \sigma(m), \sigma^2(m), ..., \sigma^n(m) \right\} \right|.$$

If the limits $\underline{V}(A) := \lim_{n \to \infty} \frac{\underline{s}_n}{n}$ and $\overline{V}(A) := \lim_{n \to \infty} \frac{\underline{S}_n}{n}$ exist, then they are called a lower and an upper σ -uniform density of the set A, respectively. If $\underline{V}(A) = \overline{V}(A)$, then $V(A) = \underline{V}(A) = \overline{V}(A)$ is called the σ -uniform density of A.

Denote by \mathcal{I}_{σ} the class of all $A \subseteq \mathbb{N}$ with V(A) = 0.

A sequence (x_k) is said to be \mathcal{I}_{σ} -convergent to the number L if for every $\varepsilon > 0$, $A_{\varepsilon} = \{k : |x_k - L| \geq \varepsilon\} \in \mathcal{I}_{\sigma}$ that is, $V(A_{\varepsilon}) = 0$. In this case, we write $\mathcal{I}_{\sigma} - \lim x_k = L$.

Let (X, ρ) be a separable metric space. For any point $x \in X$ and any non-empty subset A of X, we define the distance from x to A by $d(x, A) = \inf_{a \in A} \rho(x, a)$.

Throughout the paper, let (X, ρ) be a separable metric space and A, A_{kj} be any non-empty closed subsets of X.

A double sequence of sets $\{A_{kj}\}$ is \mathcal{I}_{W_2} -convergent to A if for each $x \in X$ and for every $\varepsilon > 0$, $\{(k,j) \in \mathbb{N} \times \mathbb{N} : |d(x,A_{kj}) - d(x,A)| \ge \varepsilon\} \in \mathcal{I}_2$. In this case, we write $\mathcal{I}_{W_2} - \lim_{k,j \to \infty} d(x,A_{kj}) = d(x,A)$.

A double sequence of sets $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^*$ -convergent to A if there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2$) such that for each $x \in X$

$$\lim_{\substack{k,j\to\infty\\(k,j)\in M_2}} d(x,A_{kj}) = d(x,A).$$

In this case, we write $\mathcal{I}_{W_2}^* - \lim_{k,j \to \infty} d(x, A_{kj}) = d(x, A)$.

A double sequence of sets $\{A_{kj}\}$ is \mathcal{I}_2 -Cauchy sequence if for each $x \in X$ and for every $\varepsilon > 0$, there exists (p, q) in $\mathbb{N} \times \mathbb{N}$ such that

$$\{(k,j) \in \mathbb{N} \times \mathbb{N} : |d(x,A_{kj}) - d(x,A_{pq})| \ge \varepsilon\} \in \mathcal{I}_2.$$

A double sequence of sets $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^*$ -Cauchy if there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2)$ $(\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2)$ such that for each $x \in X$, $\lim_{k,j,p,q \to \infty} |d(x,A_{kj}) - d(x,A_{pq})| = 0$, for $(k,j),(p,q) \in M_2$.

A double sequence $\{A_{kj}\}$ is said to be bounded if $\sup_{k,j} d(x, A_{kj}) < \infty$, for each $x \in X$. The set of all bounded double sequences of sets will be denoted by L^2_{∞} .

A sequence $\{A_k\}$ is said to be Wijsman invariant convergent to A if for each $x \in X$,

$$\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n d(x, A_{\sigma^k(m)}) = d(x, A), \text{ uniformly in m.}$$

A sequence $\{A_k\}$ is said to be Wijsman strongly invariant convergent to A if for each $x \in X$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} |d(x, A_{\sigma^{k}(m)}) - d(x, A)| = 0, \text{ uniformly in m.}$$

A sequence $\{A_k\}$ is said to be Wijsman invariant statistical convergent to A if for every $\varepsilon > 0$ and for each $x \in X$,

$$\lim_{n\to\infty} \frac{1}{n} |\{0 \le k \le n : |d(x, A_{\sigma^k(m)}) - d(x, A)| \ge \varepsilon\}| = 0, \text{ uniformly in m.}$$

A sequence $\{A_k\}$ is said to be Wijsman *p*-strongly invariant convergent to A if for each $x \in X$,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n|d(x,A_{\sigma^k(m)})-d(x,A)|^p=0, \text{ uniformly in m},$$

where 0 .

A sequence $\{A_k\}$ is said to be Wijsman \mathcal{I} -invariant convergent or \mathcal{I}_{σ}^W -convergent to A if for every $\varepsilon > 0$, $A_{\varepsilon} = \{k : |d(x,A_k) - d(x,A)| \ge \varepsilon\} \in \mathcal{I}_{\sigma}$ that is, $V(A_{\varepsilon}) = 0$. In this case, we write $A_k \to A(\mathcal{I}_{\sigma}^W)$ and the set of all Wijsman \mathcal{I} -invariant convergent sequences of sets will be denoted \mathcal{I}_{σ}^W .

An admissible ideal $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ satisfies the property (AP2) if for every countable

An admissible ideal $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ satisfies the property (AP2) if for every countable family of mutually disjoint sets $\{E_1, E_2, ...\}$ belonging to \mathcal{I}_2 , there exists a countable family of sets $\{F_1, F_2, ...\}$ such that $E_j \Delta F_j \in \mathcal{I}_2^0$, i.e., $E_j \Delta F_j$ is included in the finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $F = \bigcup_{j=1}^{\infty} F_j \in \mathcal{I}_2$ (hence, $F_j \in \mathcal{I}_2$ for each $j \in \mathbb{N}$).

3. Main Results

In this section, we study the concepts of Wijsman invariant convergence, Wijsman invariant statistical convergence, Wijsman \mathcal{I}_2 -invariant convergence, Wijsman \mathcal{I}_2^* -invariant convergence, Wijsman p-strongly invariant convergence double sequence of sets and investigate the relationships among Wijsman invariant convergence, $[W_2V_\sigma]_p$, $\mathcal{I}_{W_2}^\sigma$ and $\mathcal{I}_{W_2}^{*\sigma}$. Also, we introduce the concepts of $\mathcal{I}_{W_2}^\sigma$ -Cauchy double sequence and $\mathcal{I}_{W_2}^{*\sigma}$ -Cauchy double sequence of sets.

Definition 3.1. Let $A \subseteq \mathbb{N} \times \mathbb{N}$ and

$$s_{mn} := \min_{k,j} \left| A \cap \left\{ \left(\sigma(k), \sigma(j) \right), \left(\sigma^2(k), \sigma^2(j) \right), ..., \left(\sigma^m(k), \sigma^n(j) \right) \right\} \right|$$

and

$$S_{mn} := \max_{k,j} \left| A \cap \left\{ \left(\sigma(k), \sigma(j) \right), \left(\sigma^2(k), \sigma^2(j) \right), ..., \left(\sigma^m(k), \sigma^n(j) \right) \right\} \right|.$$

If the following limits exists

$$\underline{V_2}(A) := \lim_{m,n \to \infty} \frac{s_{mn}}{mn} \quad and \quad \overline{V_2}(A) := \lim_{m,n \to \infty} \frac{S_{mn}}{mn}$$

then they are called a lower and an upper σ -uniform density of the set A, respectively. If $\underline{V_2}(A) = \overline{V_2}(A)$, then $V_2(A) = \underline{V_2}(A) = \overline{V_2}(A)$ is called the σ -uniform density of \overline{A} .

Denote by \mathcal{I}_2^{σ} the class of all $A \subseteq \mathbb{N} \times \mathbb{N}$ with $V_2(A) = 0$.

Definition 3.2. A double sequence $\{A_{kj}\}$ is said to be Wijsman invariant convergent to A if for each $x \in X$,

$$\lim_{m,n\to\infty} \frac{1}{mn} \sum_{k,j=1,1}^{m,n} d(x, A_{\sigma^k(s),\sigma^j(t)}) = d(x, A), \text{ uniformly in } s, t.$$

Definition 3.3. A double sequence $\{A_{kj}\}$ is said to be Wijsman \mathcal{I}_2 -invariant convergent or $\mathcal{I}_{W_2}^{\sigma}$ -convergent to A, if for every $\varepsilon > 0$,

$$A(\varepsilon, x) = \{(k, j) : |d(x, A_{kj}) - d(x, A)| \ge \varepsilon\} \in \mathcal{I}_2^{\sigma}$$

that is, $V_2(A(\varepsilon,x)) = 0$. In this case, we write $A_{kj} \to A(\mathcal{I}_{W_2}^{\sigma})$ and the set of all Wijsman \mathcal{I}_2 -invariant convergent double sequences of sets will be denoted by $\mathcal{I}_{W_2}^{\sigma}$.

Definition 3.4. Let $\mathcal{I}_2^{\sigma} \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $\{A_{kj}\}$ is Wijsman \mathcal{I}_2^* -invariant convergent or $\mathcal{I}_{W_2}^{*\sigma}$ -convergent to A if and only if there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2^{\sigma})$ ($\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2^{\sigma}$) such that for each $x \in X$,

$$\lim_{\substack{k,j\to\infty\\(k,j)\in M_2}}d(x,A_{kj})=d(x,A).$$

In this case, $\mathcal{I}_{W_2}^{*\sigma} - \lim_{k,j \to \infty} d(x, A_{kj}) = d(x, A)$

Theorem 3.1. Let $\mathcal{I}_2^{\sigma} \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. If a sequence $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^{*\sigma}$ -convergent to A, then this sequence is $\mathcal{I}_{W_2}^{\sigma}$ -convergent to A.

Proof. Since $\mathcal{I}_{W_2}^{*\sigma} - \lim_{k,j\to\infty} d(x,A_{kj}) = d(x,A)$, there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2^{\sigma})$ ($\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2^{\sigma}$) such that for each $x \in X$,

$$\lim_{\substack{k,j\to\infty\\(k,j)\in M_2}} d(x,A_{kj}) = d(x,A).$$

Let $\varepsilon > 0$. Then, there exists $k_0 \in \mathbb{N}$ such that for each $x \in X$,

$$|d(x, A_{ki}) - d(x, A)| < \varepsilon,$$

for all $(k,j) \in M_2$ and $k,j \geq k_0$. Hence, for every $\varepsilon > 0$ and each $x \in X$, we have

$$T(\varepsilon,x) = \{(k,j) \in \mathbb{N} \times \mathbb{N} : |d(x,A_{kj}) - d(x,A)| \ge \varepsilon\}$$

$$\subset H \cup \Big(M_2 \cap \big((\{1,2,...,(k_0-1)\} \times \mathbb{N}) \cup (\mathbb{N} \times \{1,2,...,(k_0-1)\})\big)\Big).$$

Since $\mathcal{I}_2^{\sigma} \subset 2^{\mathbb{N} \times \mathbb{N}}$ is a strongly admissible ideal,

$$H \cup (M_2 \cap ((\{1, 2, ..., (k_0 - 1)\} \times \mathbb{N}) \cup (\mathbb{N} \times \{1, 2, ..., (k_0 - 1)\}))) \in \mathcal{I}_2^{\sigma},$$

so we have $T(\varepsilon, x) \in \mathcal{I}_2^{\sigma}$ that is $V_2(T(\varepsilon, x)) = 0$. Hence,

$$\mathcal{I}_{W_2}^{\sigma} - \lim_{k,j \to \infty} d(x, A_{kj}) = d(x, A).$$

Theorem 3.2. Let $\mathcal{I}_2^{\sigma} \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal with the property (AP2). If $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^{\sigma}$ -convergent to A, then $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^{*\sigma}$ -convergent to A.

Proof. Suppose that \mathcal{I}_2^{σ} satisfies the property (AP2). Let $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^{\sigma}$ -convergent to A. Then,

$$T(\varepsilon, x) = T_{\varepsilon} = \{(k, j) \in \mathbb{N} \times \mathbb{N} : |d(x, A_{kj}) - d(x, A)| \ge \varepsilon\} \in \mathcal{I}_{2}^{\sigma}$$

for every $\varepsilon > 0$ and for each $x \in X$. Put

$$T_1 = T(1, x) = \{(k, j) \in \mathbb{N} \times \mathbb{N} : |d(x, A_{kj}) - d(x, A)| \ge 1\}$$

and

$$T_v = T(v, x) = \left\{ (k, j) \in \mathbb{N} \times \mathbb{N} : \frac{1}{v} \le |d(x, A_{kj}) - d(x, A)| < \frac{1}{v - 1} \right\},$$

for $v \geq 2$ and $v \in \mathbb{N}$. Obviously $T_i \cap T_j = \emptyset$ for $i \neq j$ and $T_i \in \mathcal{I}_2^{\sigma}$ for each $i \in \mathbb{N}$. By the property (AP2) there exits a sequence of sets $\{E_v\}_{v \in \mathbb{N}}$ such that $T_i \Delta E_i$ is included in finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each i and $E = \bigcup_{i=1}^{\infty} E_i \in \mathcal{I}_2^{\sigma}$.

We shall prove that for $M_2 = \mathbb{N} \times \mathbb{N} \backslash E$ we have

$$M_2 = \mathbb{N} \times \mathbb{N} \setminus E$$
 we have
$$\lim_{\substack{k,j \to \infty \\ (k,j) \in M_2}} d(x,A_{kj}) = d(x,A).$$

Let $\eta>0$ be given. Choose $v\in\mathbb{N}$ such that $\frac{1}{v}<\eta$. Then,

$$\{(k,j) \in \mathbb{N} \times \mathbb{N} : |d(x,A_{kj}) - d(x,A)| \ge \eta\} \subset \bigcup_{i=1}^{v} T_i.$$

Since $T_i \Delta E_i$, i = 1, 2, ... are included in finite union of rows and columns, there exists $n_0 \in \mathbb{N}$ such that

$$\left(\bigcup_{i=1}^{v} T_i\right) \cap \left\{(k,j) : k \ge n_0 \land j \ge n_0\right\} = \left(\bigcup_{i=1}^{v} E_i\right) \cap \left\{(k,j) : k \ge n_0 \land j \ge n_0\right\}.$$

If $k, j > n_0$ and $(k, j) \notin E$, then

$$(k,j) \notin \bigcup_{i=1}^{v} E_i \text{ and } (k,j) \notin \bigcup_{i=1}^{v} T_i.$$

This implies that

$$|d(x, A_{kj}) - d(x, A)| < \frac{1}{v} < \eta.$$

Hence, we have

$$\lim_{\substack{k,j\to\infty\\(k,j)\in M_2}}d(x,A_{kj})=d(x,A).$$

Now, we define the concepts of Wijsman \mathcal{I}_2^{σ} -invariant Cauchy and Wijsman $\mathcal{I}_2^{*\sigma}$ -invariant Cauchy double sequence of sets.

Definition 3.5. A double sequence $\{A_{kj}\}$ is said to be Wijsman \mathcal{I}_2 -invariant Cauchy sequence or $\mathcal{I}_{W_2}^{\sigma}$ -Cauchy sequence, if for every $\varepsilon > 0$ and for each $x \in X$, there exist numbers $r = r(\varepsilon, x), s = s(\varepsilon, x) \in \mathbb{N}$ such that

$$A(\varepsilon, x) = \{(k, j) : |d(x, A_{kj}) - d(x, A_{rs})| \ge \varepsilon\} \in \mathcal{I}_2^{\sigma},$$

that is, $V_2(A(\varepsilon, x)) = 0$.

Definition 3.6. A double sequence $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^{*\sigma}$ -Cauchy if there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2^{\sigma})$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2^{\sigma}$) such that for every $x \in X$ and $(k, j), (p, q) \in M_2$

$$\lim_{k,j,p,q \to \infty} |d(x, A_{kj}) - d(x, A_{pq})| = 0.$$

We give following theorems which show relationships between $\mathcal{I}_{W_2}^{\sigma}$ -convergence, $\mathcal{I}_{W_2}^{\sigma}$ -Cauchy sequence and $\mathcal{I}_{W_2}^{*\sigma}$ -Cauchy sequence. The proof of them are similar to the proof of Theorems in [8,24], so we omit them.

Theorem 3.3. If a double sequence $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^{\sigma}$ -convergent, then $\{A_{kj}\}$ is an $\mathcal{I}_{W_2}^{\sigma}$ -Cauchy double sequence of sets.

Theorem 3.4. If a double sequence $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^{*\sigma}$ -Cauchy double sequence, then $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^{\sigma}$ -Cauchy double sequence of sets.

Theorem 3.5. Let \mathcal{I}_2^{σ} has property (AP2). Then, the concepts $\mathcal{I}_{W_2}^{\sigma}$ -Cauchy sequence and $\mathcal{I}_{W_2}^{*\sigma}$ -Cauchy sequence of sets coincide.

Definition 3.7. A double sequence $\{A_{kj}\}$ is said to be Wijsman strongly invariant convergent to A, if for each $x \in X$,

$$\lim_{m,n\to\infty} \frac{1}{mn} \sum_{k,j=1,1}^{m,n} \left| d(x, A_{\sigma^k(s),\sigma^j(t)}) - d(x, A) \right| = 0, \text{ uniformly in } s,t.$$

Definition 3.8. A double sequence $\{A_{kj}\}$ is said to be Wijsman p-strongly invariant convergent to A, if for each $x \in X$,

$$\lim_{m,n\to\infty} \frac{1}{mn} \sum_{k,j=1,1}^{m,n} \left| d(x, A_{\sigma^k(s),\sigma^j(t)}) - d(x,A) \right|^p = 0, \text{ uniformly in } s,t.$$

where $0 . In this case, we write <math>A_{kj} \to A([W_2V_{\sigma}]_p)$. Also, the set of all Wijsman p-strongly invariant convergent sequences of sets will be denoted by $[W_2V_{\sigma}]_p$.

Theorem 3.6. Let $\{A_{kj}\}$ be bounded sequence. If $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^{\sigma}$ -convergent to A, then $\{A_{kj}\}$ is Wijsman invariant convergent to A.

Proof. Let $m, n \in \mathbb{N}$ be arbitrary and $\varepsilon > 0$. For each $x \in X$, we estimate

$$u(s, t, m, n, x) = \left| \frac{1}{mn} \sum_{k=1}^{m, n} d(x, A_{\sigma^{k}(s), \sigma^{j}(t)}) - d(x, A) \right|.$$

Then, for each $x \in X$ we have

$$u(s, t, m, n, x) \le u^{1}(s, t, m, n, x) + u^{2}(s, t, m, n, x)$$

where

$$u^{1}(s,t,m,n,x) = \frac{1}{mn} \sum_{\substack{k,j=1,1\\|d(x,A_{\sigma^{k}(s),\sigma^{j}(t)})-d(x,A)| \geq \varepsilon}}^{m,n} |d(x,A_{\sigma^{k}(s),\sigma^{j}(t)}) - d(x,A)|$$

and

$$u^{2}(s,t,m,n,x) = \frac{1}{mn} \sum_{\substack{k,j=1,1\\|d(x,A_{\sigma^{k}(s)},\sigma^{j}(t))-d(x,A)|<\varepsilon}}^{m,n} |d(x,A_{\sigma^{k}(s)},\sigma^{j}(t)) - d(x,A)|.$$

Therefore, we have

$$u^2(s, t, m, n, x) < \varepsilon,$$

for each $x \in X$ and for every $s, t = 1, 2, \ldots$. The boundedness of $\{A_{kj}\}$ implies that there exists L > 0 such that

$$|d(x, A_{\sigma^k(s), \sigma^j(t)}) - d(x, A)| \le L, \quad (k, s, j, t = 1, 2, ...),$$

then this implies that

$$\begin{split} u^{1}(s,t,m,n,x) & \leq \frac{L}{mn} | \{ 1 \leq k \leq m, 1 \leq j \leq n : |d(x,A_{\sigma^{k}(s),\sigma^{j}(t)}) - d(x,A)| \geq \varepsilon \} | \\ & = \max_{s,t} | \{ 1 \leq k \leq m, 1 \leq j \leq n : |d(x,A_{\sigma^{k}(s),\sigma^{j}(t)}) - d(x,A)| \geq \varepsilon \} | \\ & \leq L \frac{S_{mn}}{mn}. \end{split}$$

Hence $\{A_{kj}\}$ is Wijsman invariant convergent to A.

Theorem 3.7. Let $\mathcal{I}_2^{\sigma} \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal and 0 .

- (i): If $A_{kj} \to A([W_2V_{\sigma}]_p)$, then $A_{kj} \to A(\mathcal{I}_{W_2}^{\sigma})$.
- (ii): If $\{A_{kj}\}\in L^2_{\infty}$ and $A_{kj}\to A(\mathcal{I}^{\sigma}_{W_2})$, then $A_{kj}\to A([W_2V_{\sigma}]_p)$. (iii): If $\{A_{kj}\}\in L^2_{\infty}$, then $\{A_{kj}\}$ is $\mathcal{I}^{\sigma}_{W_2}$ -convergent to A if and only if $A_{ki} \to A([W_2V_{\sigma}]_n).$

Proof. (i): Assume that $A_{kj} \to A([W_2V_{\sigma}]_p)$, for every $\varepsilon > 0$ and for each $x \in X$. Then, we can write

$$\sum_{k,j=1,1}^{m,n} |d(x, A_{\sigma^{k}(s),\sigma^{j}(t)}) - d(x, A)|^{p}$$

$$\geq \sum_{k,j=1,1}^{m,n} |d(x, A_{\sigma^{k}(s),\sigma^{j}(t)}) - d(x, A)|^{p}$$

$$|d(x, A_{\sigma^{k}(s),\sigma^{j}(t)}) - d(x, A)| \geq \varepsilon$$

$$\geq \varepsilon^{p} |\{k \leq m, j \leq n : |d(x, A_{\sigma^{k}(s),\sigma^{j}(t)}) - d(x, A)| \geq \varepsilon\}|$$

$$\geq \varepsilon^{p} \min_{s,t} |\{k \leq m, j \leq n : |d(x, A_{\sigma^{k}(s),\sigma^{j}(t)}) - d(x, A)| \geq \varepsilon\}|$$

and

$$\frac{1}{mn} \sum_{k,j=1,1}^{m,n} \left| d(x, A_{\sigma^k(s),\sigma^j(t)}) - d(x, A) \right|^p$$

$$\geq \varepsilon^p \frac{\min_{s,t} \left| \left\{ k \le m, j \le n : \left| d(x, A_{\sigma^k(s),\sigma^j(t)}) - d(x, A) \right| \ge \varepsilon \right\} \right|}{mn}$$

$$= \varepsilon^p \frac{s_{mn}}{mn}$$

for every $s, t = 1, 2, \ldots$. This implies

$$\lim_{m,n\to\infty} \frac{s_{mn}}{mn} = 0$$

and so $\{A_{kj}\}$ is $(\mathcal{I}_{W_2}^{\sigma})$ -convergent to A.

(ii): Suppose that $\{A_{kj}\} \in L^2_{\infty}$ and $A_{kj} \to A(\mathcal{I}^{\sigma}_{W_2})$. Let $0 and <math>\varepsilon > 0$. By assumption we have $V_2(A(\varepsilon, x)) = 0$. Since $\{A_{kj}\}$ is bounded, $\{A_{kj}\}$ implies that there exists L > 0 such that for each $x \in X$,

$$|d(x, A_{\sigma^k(s), \sigma^j(t)}) - d(x, A)| \le L$$

for all k, s, j and t. Then, we have

$$\frac{1}{mn} \sum_{k,j=1,1}^{m,n} \left| d(x, A_{\sigma^{k}(s), \sigma^{j}(t)}) - d(x, A) \right|^{p}$$

$$= \frac{1}{mn} \sum_{\substack{k,j=1,1 \\ |d(x, A_{\sigma^{k}(s), \sigma^{j}(t)}) - d(x, A)| \ge \varepsilon}} |d(x, A_{\sigma^{k}(s), \sigma^{j}(t)}) - d(x, A)|^{p}$$

$$+ \frac{1}{mn} \sum_{\substack{k,j=1,1 \\ |d(x, A_{\sigma^{k}(s), \sigma^{j}(t)}) - d(x, A)| < \varepsilon}} |d(x, A_{\sigma^{k}(s), \sigma^{j}(t)}) - d(x, A)|^{p}$$

$$= \sum_{\substack{k,j=1,1 \\ |d(x, A_{\sigma^{k}(s), \sigma^{j}(t)}) - d(x, A)| < \varepsilon}} |d(x, A_{\sigma^{k}(s), \sigma^{j}(t)}) - d(x, A)| \ge \varepsilon} |d(x, A_{\sigma^{k}(s), \sigma^{j}(t)}) - d(x, A_{\sigma^{k}(s), \sigma^{j}(t)}) - d(x, A)| \ge \varepsilon} |d(x, A_{\sigma^{k}(s), \sigma^{j}(t)}) - d(x, A_{\sigma$$

for each $x \in X$. Hence, for each $x \in X$ we obtain

$$\lim_{m,n\to\infty} \frac{1}{mn} \sum_{k,j=1,1}^{m,n} \left| d(x, A_{\sigma^k(s),\sigma^j(t)}) - d(x,A) \right|^p = 0, \text{ uniformly in s,t.}$$

$$(iii)$$
: This is immediate consequence of (i) and (ii) .

Now, we define Wijsman invariant statistical convergence of double sequences of sets. We shall state a theorem that gives a relation between W_2S_{σ} and $\mathcal{I}_{W_2}^{\sigma}$ without proof.

Definition 3.9. A double sequence $\{A_{kj}\}$ is said to be Wijsman invariant statistical convergent or W_2S_{σ} -convergent to A, if for every $\varepsilon > 0$ and for each $x \in X$,

$$\lim_{m,n\to\infty}\frac{1}{mn}|\{k\leq m,j\leq n: |d(x,A_{\sigma^k(s),\sigma^j(t)})-d(x,A)|\geq \varepsilon\}|=0, \ \ uniformly \ in \ s,t.$$

Theorem 3.8. A sequence $\{A_{kj}\}$ is W_2S_{σ} -convergent to A if and only if it is $\mathcal{I}_{W_2}^{\sigma}$ -convergent to A.

References

- [1] M. Baronti, and P. Papini, Convergence of sequences of sets, In: Methods of functional analysis in approximation theory, ISNM 76, Birkhauser-Verlag, Basel, pp. 133-155, (1986).
- [2] G. Beer, On convergence of closed sets in a metric space and distance functions, Bull. Aust. Math. Soc. 31 (1985), 421–432.
- [3] G. Beer, Wijsman convergence: A survey, Set-Valued Var. Anal. 2 (1994), 77–94.
- [4] C. Çakan, B. Altay, M. Mursaleen, The σ-convergence and σ-core of double sequences, Applied Mathematics Letters, 19 (2006), 1122–1128.
- [5] M.Crnjac, F. Čunjalo, H.I. Miller, Subsequence characterizations of statistical convergence of double sequences, Rad. Mat. 12 (2004), 163–175.
- [6] F. Čunjalo, Almost convergences of double subsequences, Filomat, 22 (2008), 87–93.
- [7] P. Das, P. Kostyrko, W. Wilczyński, P. Malik, I and I*-convergence of double sequences, Math. Slovaca, 58 (5) (2008), 605–620.
- [8] E. Dündar, B. Altay, \$I_2\$-convergence and \$I_2\$-Cauchy of double sequences, Acta Mathematica Scientia, 34B(2) (2014), 343-353.
- [9] M. Et, H. Şengl, On pointwise lacunary statistical convergence of order α of sequences of function, Proc. Nat. Acad. Sci. India Sect. A 85(2) (2015), 253–258.
- [10] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
- [11] M. Gürdal, M.B. Huban, On I-convergence of double sequences in the Topology induced by random 2-norms, Matematicki Vesnik. **66**(1) (2014), 73–83.
- [12] M. Gürdal, A. Şahiner, Extremal I-Limit Points of Double Sequences, Applied Mathematics E-Notes. 8 (2008), 131–137.
- [13] E. E. Kara, M. Datan, M. İlkhan, On almost ideal convergence with respect to an Orlicz function, Konural Journal of Mathematics, 4(2) (2016), 87–94.
- [14] E. E. Kara, M. Datan, M. İlkhan, On Lacunary ideal convergence of some sequences, New Trends in Mathematical Sciences, 5(1) (2017), 234–242.
- [15] Ö. Kişi, and F. Nuray, A new convergence for sequences of sets, Abstract and Applied Analysis, vol. 2013, Article ID 852796, 6 pages. http://dx.doi.org/10.-1155/2013/852796.
- [16] P. Kostyrko, T. Šalát, W. Wilczyński, *I-Convergence*, Real Anal. Exchange 26(2) (2000), 669–686.
- [17] V. Kumar, On I and I*-convergence of double sequences, Math. Commun. 12 (2007), 171– 181.
- [18] G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190.
- [19] M. Mursaleen, O. H. H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett. 22 (2009), 1700–1704.
- [20] M. Mursaleen, O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), 223–231.
- [21] M. Mursaleen, On finite matrices and invariant means, Indian J. Pure and Appl. Math. 10 (1979), 457–460.
- [22] A. Nabiev, S. Pehlivan, M. Gürdal, On I-Cauchy sequences, Taiwanese J. Math. 11(2) (2007), 569–5764.
- [23] F. Nuray, B. E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math. 49 (2012), 87–99.
- [24] F. Nuray, E. Dündar, U. Ulusu, Wijsman I2-convergence of double sequences of closed sets, Pure and Applied Mathematics Letters, 2 (2014), 35-39.
- [25] F. Nuray, E. Savaş, Invariant statistical convergence and A-invariant statistical convergence, Indian J. Pure Appl. Math. 10 (1994), 267–274.
- [26] F. Nuray, H. Gök, U. Ulusu, \mathcal{I}_{σ} -convergence, Math. Commun. 16 (2011), 531–538.
- [27] N. Pancaroğlu, F. Nuray, Statistical lacunary invariant summability, Theoretical Mathematics and Applications 3(2) (2013), 71–78.
- [28] N. Pancaroğlu, F. Nuray, On Invariant Statistically Convergence and Lacunary Invariant Statistically Convergence of Sequences of Sets, Progress in Applied Mathematics, 5(2) (2013), 23–29.

- [29] N. Pancaroğlu, E. Dündar and F. Nuray, Wijsman I-Invariant Convergence of Sequences of Sets, (Under Communication).
- [30] R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963), 81–94.
- [31] E. Savaş, Some sequence spaces involving invariant means, Indian J. Math. 31 (1989), 1-8.
- [32] E. Savaş, Strong σ -convergent sequences, Bull. Calcutta Math. 81 (1989), 295–300.
- [33] E. Savas, F. Nuray, On σ-statistically convergence and lacunary σ-statistically convergence, Math. Slovaca 43(3) (1993), 309–315.
- [34] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), 104–110.
- [35] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361–375.
- [36] Y. Sever, U. Ulusu and E. Dündar, On Strongly I and I*-Lacunary Convergence of Sequences of Sets, AIP Conference Proceedings, 1611, 357 (2014); doi: 10.1063/1.4893860, 7 pages.
- [37] Y. Sever, Ö. Talo, On Statistical Convergence of Double Sequences of Closed Sets, Filomat 30(3) (2016), 533–539, DOI 10.2298/FIL1603533S.
- [38] Y. Sever, Ö. Talo, B. Altay, On convergence of double sequences of closed sets, Contemp. Anal. Appl. Math. 3 (2015), 30–49.
- [39] H. Şengül, M. Et, On I-lacunary statistical convergence of order α of sequences of sets, Filomat 31(8) (2017), 2403–2412.
- [40] H. Şengül, M. Et, On (λ, I)-Statistical Convergence of Order α of Sequences of Function, Proc. Nat. Acad. Sci. India Sect. A 88(2) (2018), 181–186.
- [41] U. Ulusu, F. Nuray, Lacunary \mathcal{I}_{σ} -convergence, (Under Comminication).
- [42] U. Ulusu, F. Nuray, Lacunary statistical convergence of sequence of sets, Progress in Applied Mathematics, 4(2) (2012), 99–109.
- [43] U. Ulusu and E. Dündar, *I-Lacunary Statistical Convergence of Sequences of Sets*, Filomat, 28(8) (2013), 1567–1574.
- [44] U. Ulusu, F. Nuray, On Strongly Lacunary Summability of Sequences of Sets, Journal of Applied Mathematics and Bioinformatics, 3(3) (2013), 75-88.
- [45] R. A. Wijsman, Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc. 70 (1964), 186–188.
- [46] R. A. Wijsman, Convergence of Sequences of Convex sets, Cones and Functions II, Trans. Amer. Math. Soc. 123(1) (1966), 32–45.

ŞÜKRÜ TORTOP

Department of Mathematics, Afyon Kocatepe University, Afyonkarahisar, Turkey $E\text{-}mail\ address:}$ stortop@aku.edu.tr

Erdinç Dündar

DEPARTMENT OF MATHEMATICS, AFYON KOCATEPE UNIVERSITY, AFYONKARAHISAR, TURKEY E-mail address: edundar@aku.edu.tr, erdincdundar79@gmail.com