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WIJSMAN Z,-INVARIANT CONVERGENCE OF DOUBLE
SEQUENCES OF SETS

SUKRU TORTOP, ERDINC DUNDAR

ABSTRACT. In this paper, we study the concepts of Wijsman invariant con-
vergence, Wijsman invariant statistical convergence, Wijsman Zs-invariant
convergence (I“ZVZ), Wijsman Zj-invariant convergence (Z*¥,), Wijsman p-
strongly invariant convergence ([W2Vs]p) of double sequence of sets and inves-
tigate the relationships among Wijsman invariant convergence, [WaV;|p, Z“}V2
and Z* sz' Also, we introduce the concepts of I“jvz—Cauchy double sequence
and Z* €V2—Cauchy double sequence of sets.

1. INTRODUCTION AND BACKGROUND

Throughout the paper N denotes the set of all positive integers and R denotes the
set of all real numbers. The concept of convergence of a sequence of real numbers has
been extended to statistical convergence independently by Fast [10] and Schoenberg
[35]. This concept was extended to the double sequences by Mursaleen and Edely
[20]. The idea of Z-convergence was introduced by Kostyrko, Salét and Wilczynski
[16] as a generalization of statistical convergence which is based on the structure of
the ideal Z of subset of N. Das et al. [?] introduced the concept of Z-convergence of
double sequences in a metric space and studied some properties of this convergence.
A lot of development have been made in this area after the various studies of
researchers [?,7, 7,5 61(8[22].

Nuray and Rhoades |23 extended the notion of convergence of set sequences to
statistical convergence and gave some basic theorems. Ulusu and Nuray [42] defined
the Wijsman lacunary statistical convergence of set sequences and considered its
relation with Wijsman statistical convergence which was defined by Nuray and
Rhoades. Kigi and Nuray [15] introduced a new convergence notion, for sequences
of sets, which is called Wijsman Z-convergence. Also, the concept of convergence
of sequences has been extended to convergence, statistical convergence and ideal
convergence of sequences of sets by several authors [36-38,43-46].

Several authors including Raimi [30], Schaefer [34], Mursaleen [21], Savas [31],
Pancaroglu and Nuray [27], and others have studied invariant convergent sequences
[19,25]. Savag and Nuray [33] introduced the concepts of o-statistical convergence
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and lacunary o-statistical convergence and gave some inclusion relations. Recently,
the concept of strong o-convergence was generalized by Savag [31]. Nuray et al. [26]
defined the concepts of o-uniform density of subsets A of the set N, Z,-convergence
and investigated relationships between Z,-convergence and invariant convergence
also Z,-convergence and [V,],-convergence. Ulusu and Nuray [41] investigated la-
cunary Z-invariant convergence and lacunary Z-invariant Cauchy sequence of real
numbers. Pancaroglu et al. [29] studied Wijsman Z-invariant convergence of se-
quences of sets. Also, Cakan et al. [4] investigated o-convergence and o-core of
double sequences.

2. DEFINITIONS AND NOTATIONS

Now, we recall the basic definitions and concepts (see [1-4,[16L|18]23],24,26/28|
30,32, 34, 41]).

A family of sets Z C 2N is called an ideal if and only if

(i) D € Z, (ii) For each A, B € T we have AUB € Z, (#ii) For each A € T and
each B C A we have B ¢ 7.

An ideal is called nontrivial if N ¢ Z. Nontrivial ideal is called admissible if
{n} € T for each n € N.

A family of sets F C 2N ig called a filter if and only if

(i) 0 ¢ F, (ii) For each A, B € F we have AN B € F, (iii) For each A € F
and each B O A we have B € F.

If 7 is a nontrivial ideal in X, X # (), then the class F(Z) ={M C X : (34 €
I)(M = X\A)} is a filter on X, called the filter associated with Z.

A nontrivial ideal Zy of N x N is called strongly admissible ideal if {i} x N and
N x {i} belong to Z, for each ¢ € N.

Throughout the paper we take 75 as a strongly admissible ideal in N x N.

It is evident that a strongly admissible ideal is admissible also.

I8 = {A Cc NxN: (3m(A) € N)(i,j > m(A) = (i,j) ¢ A)}. Then Z7 is a
strongly admissible ideal and clearly an ideal Z is strongly admissible if and only
if Ig C L.

Let (X, p) be a metric space. A sequence x = (Zy,) in X is said to be Zr-
convergent to L € X, if for any € > 0, A(e) = {(m,n) € NxN: p(zpn,L) > €} €

Z5. In this case, we say that = is Zy-convergent and we write Zo — lim ., = L.
m,n— oo

Let o be a mapping of the positive integers into themselves. A continuous linear
functional ¢ on /., the space of real bounded sequences, is said to be an invariant
mean or a o-mean if it satisfies following conditions:

(1) ¢(x) > 0, when the sequence z = (x,,) has z,, > 0 for all n,
(2) ¢(e) =1, where e = (1,1,1,...) and
(3) d(ro(n)) = ¢(xy) for all x € {.

The mappings o are assumed to be one-to-one and such that ¢™(n) # n for all
positive integers n and m, where ¢ (n) denotes the m th iterate of the mapping o
at n. Thus, ¢ extends the limit functional on ¢, the space of convergent sequences,
in the sense that ¢(z) = limz for all € ¢. If o is translation mappings that is,
o(n) =n+ 1, then o-mean is often called a Banach limit.

A bounded sequence x = () is said to be strongly o-convergent to L if

n—1

nh—>Holo - kZ_O |Zgk (m) — L| = 0 uniformly in = m
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and in this case, we write xx — L[V,]. By [V,], we denote the set of all strongly
o-convergent sequences.

In the case o(n) = n+ 1, the space [V,] is the set of strongly almost convergent
sequences [¢].

The concept of strong o-convergence was generalized by Savag [31] as below:

Z [Tk (ny — L|P = 0 uniformly in n},

. 1
[Vo’]p = {CE = (ﬁk) . n'lgnoo E 2
where 0 < p < co. If p =1, then [V;], = [V,]. It is known that [V;], C le.

A sequence x = (z) is o-statistically convergent to L if for every € > 0,

1
i — < : . - > =
w}gnoo m‘{k <mTorpy — L] > 5}‘ 0,
uniformly in n . In this case we write S, — limz = L or x — L(S,).

A bounded double sequence = = (x;) of real numbers is said to be o-convergent
to a limit [ if

1 m n
e} D Tor(.oin =
k=0 j=0
uniformly in s,¢. In this case, we write o — limxz = [.
Let A C N and

$n = min |An {a(m),a?(m),....0"(m)} |

and
Sp 1= max AN {o(m),o*(m),...,a"(m)} |

If the limits V(A4) := 1i_>m 22 and V(4) := 1i_>m % exist, then they are called a

lower and an upper o-uniform density of the set A, respectively. If V(A) = V(A),
then V(A) = V(A) = V(A) is called the o-uniform density of A.

Denote by Z, the class of all A C N with V(A4) = 0.

A sequence (zy) is said to be Z,-convergent to the number L if for every ¢ >
0, A, = {k Dlag — L| > 5} € I, that is, V(A:) = 0. In this case, we write
T, —limx, = L.

Let (X, p) be a separable metric space. For any point 2 € X and any non-empty
subset A of X, we define the distance from z to A by d(z, A) = ggg p(x,a).

Throughout the paper, let (X, p) be a separable metric space and A, Ay; be any
non-empty closed subsets of X.

A double sequence of sets {Ay;} is Zy,-convergent to A if for each x € X and
for every € > 0, {(k,j) € Nx N:|d(z, Ag;) — d(z, A)| > €} € I,. In this case, we
write Zyy, — . ljiglC>O d(z, Agj) = d(z, A).

A double sequence of sets {Ay;} is Iy, -convergent to A if there exists a set
Ms € F(Iy) (i.e., Nx N\My = H € T,) such that for each x € X

lim d(z, Ag;) = d(z, A).
k,j—o0
(k,j)€M2

In this case, we write Zy, — klim d(z, Agj) = d(z, A).
3] —> 00
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A double sequence of sets {Ag;} is Zo-Cauchy sequence if for each z € X and
for every € > 0, there exists (p,¢) in N X N such that

{(k,7) e Nx N: |d(x, A;) — d(x, Apg)| > €} € Io.

A double sequence of sets {A;} is Zyy, -Cauchy if there exists a set My € F(Z5)
(NxN\M;, = H € T,) such that foreachz € X, lim |d(z, Ap;)—d(z, Apg)| =0,

k,j,p,q—c0
for (kvj)v (pa Q) € M2~

A double sequence {Ay;} is said to be bounded if supd(z, Ay;) < oo, for each
k.j

x € X. The set of all bounded double sequences of sets will be denoted by L2, .
A sequence {Ay} is said to be Wijsman invariant convergent to A if for each
T e X,

RS . .
nh_)rrgo - ,; d(x, Agr(m)) = d(z, A), uniformly in m.

A sequence {Ay} is said to be Wijsman strongly invariant convergent to A if for
each r € X,

1y . .
nh_)rréo - kz_l |d(, Agk () — d(z, A)| = 0, uniformly in m.

A sequence {A;} is said to be Wijsman invariant statistical convergent to A if
for every € > 0 and for each x € X,

1
lim —[{0 <k <n:|d(x, Asrm)) — d(z, A)| > e} = 0, uniformly in m.

n—o00 N

A sequence {Ay} is said to be Wijsman p-strongly invariant convergent to A if
for each x € X,

1 n
1 . _ p_ : .
nh—I;go - kg_l |d(z, Agk(m)) — d(z, A)|” = 0, uniformly in m,

where 0 < p < oc0.

A sequence { Ay} is said to be Wijsman Z-invariant convergent or ZV -convergent
to A if for every € > 0, A, = {k : |d(x, Ay) — d(z, A)| > e} € I, that is, V(A,) =
0. In this case, we write A, — A(ZY) and the set of all Wijsman Z-invariant
convergent sequences of sets will be denoted Z)V.

An admissible ideal T, C 2% satisfies the property (AP2) if for every countable
family of mutually disjoint sets { E1, Es, ...} belonging to Zs, there exists a countable
family of sets { F1, Fb, ...} such that E;AF; € 19, i.e., E;AFj is included in the finite
union of rows and columns in N x N for each j € N and F = U;’il F; € I, (hence,
F; € I, for each j € N).

3. MAIN RESULTS

In this section, we study the concepts of Wijsman invariant convergence, Wi-
jsman invariant statistical convergence, Wijsman Zs-invariant convergence, Wijs-
man Z5-invariant convergence, Wijsman p-strongly invariant convergence double
sequence of sets and investigate the relationships among Wijsman invariant con-
vergence, [WaV,],, I, and Z*7,. Also, we introduce the concepts of Zf}, -Cauchy
double sequence and Z*{y, -Cauchy double sequence of sets.
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Definition 3.1. Let A C N x N and
Smn = I}Cl,ljn |A N {(U(k)7a(]))’ (GQ(k)7U2(j))7 XY (Um(k)’ Oﬂ(.]))} |
and

Srn 1= Hlﬁx |A N {(a(k), U(j)), (02(k), az(j)), ey (am(k),a"(j))} |

If the following limits exists

Va(A) := lim Smn - ind Va(A) ;= lim Stan

m,n—o0 Mn m,n—oo Mn

then they are called a lower and an upper o-uniform density of the set A, respec-
tively. If Va(A) = Vo(A), then Vo(A) = Va(A) = Va(A) is called the o-uniform
density of A.

Denote by I9 the class of all A C N x N with V5(A) = 0.

Definition 3.2. A double sequence {Ay;} is said to be Wijsman invariant conver-
gent to A if for each x € X,
m,n

: 1 ) .
m,lériloo — ) zzl 1 d(x, Aok (s),0i(t)) = d(x, A), uniformly in s,t.
J=1,

Definition 3.3. A double sequence {Ay;} is said to be Wijsman Is-invariant con-
vergent or Iy, -convergent to A, if for every e >0,

A<E?$) = {(ka]) : |d(l‘7Ak]) - d(.’I},A)‘ > 6} € Ig
that is, Va(A(e,x)) = 0. In this case, we write Ay; — A(Zfy,) and the set of all

Wigsman Zs-invariant convergent double sequences of sets will be denoted by Iy, .

Definition 3.4. Let g C 2"*N be a strongly admissible ideal. A double sequence
{Ax;} is Wijsman I3 -invariant convergent or Iy -convergent to A if and only if
there exists a set My € F(Z9) (N x N\My = H € IJ) such that for each x € X,
lim d(z, Ag;) = d(z, A).
k,j—oc0
(k,j)EM2

In this case, T}, — klim d(z, Ayj) = d(z, A)
=00

Theorem 3.1. Let Zg C 2N be a strongly admissible ideal. If a sequence {Ay;}
is Iy, -convergent to A, then this sequence is Iy}, -convergent to A.

Proof. Since Zy7, — k’g_iinoo d(z, Ayj) = d(z, A), there exists a set My € F(Z3) (N x
N\M; = H € ZJ) such that for each z € X,

k%igloo d(z, Agj) = d(z, A).

(k.j)eMs
Let € > 0. Then, there exists ko € N such that for each z € X,

|d(z, Ag;) —d(x, A)| < e,
for all (k,j) € My and k,j > ko. Hence, for every € > 0 and each x € X, we have
T(e,z) = {(k,j) e NxN:|d(z, A;) —d(z,A)| > e}

c HU (M2 A (({1,2, . (ko — 1)} x N) U (N x {1,2, ..., (o — 1)}))).
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Since Zg € 2N is a strongly admissible ideal,
HU (M2 A (({1,2, 0y (ko — 1)} x N)U (N x {1,2, ., (ko — 1)}))) €13,
so we have T'(e,z) € Z§ that is Vo(T'(¢,x)) = 0. Hence,
W, — kglgloo d(z, Agj) = d(z, A).
(]

Theorem 3.2. Let Z§ C 2N be a strongly admissible ideal with the property
(AP2). If {Ay;} is Iy, -convergent to A, then {Ay;} is Lyj7, -convergent to A.

Proof. Suppose that 7§ satisfies the property (AP2). Let {Ay;} is Zf}, -convergent
to A. Then,
T(e,z) =T, ={(k,j) e NxN:|d(x, Ay;) —d(z,A)| > e} € I3
for every € > 0 and for each x € X. Put
T =T(1,z) ={(k,j) e NxN:|d(z, Ax;) — d(z, A)| > 1}
and
. 1 1
T, =T(v,z) = {(k’,j) eNxN: - <l|d(z, Axj) —d(z, A)| < },

v—1

for v > 2 and v € N. Obviously T; N T; = 0 for i # j and T; € Z3 for each i € N.
By the property (AP2) there exits a sequence of sets {£,}, .y such that T;AE; is

included in finite union of rows and columns in Nx N for each i and £ = |J E; € Z3.

i=1
We shall prove that for Ms = N x N\E we have
lim d(z, Ag;) = d(z, A).

k,j—o0
(k,j)EM>

Let n > 0 be given. Choose v € N such that % < n . Then,

{(k,j) € NxN:|d(z, Ag;) — d(x,A)| > n} | T
i=1
Since T;AE;, i = 1,2, ... are included in finite union of rows and columns, there
exists ng € N such that
(UTZ> ﬂ{(k7])k2no/\]2no} = (UEZ> ﬁ{(k,j)k‘zno/\jzno}
i=1 i=1
If k,j5 > ng and (k,j) ¢ E, then
(k,) ¢ |J Bi and (k,5) ¢ | T
i=1 i=1
This implies that
1
|d(z, Ag;) —d(z, A)| < - <.

Hence, we have
lim d(z, Ag;) = d(z, A).
k,j—o0
(kaj)€M2
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Now, we define the concepts of Wijsman Z§-invariant Cauchy and Wijsman
Z5%-invariant Cauchy double sequence of sets.

Definition 3.5. A double sequence {Ay;} is said to be Wijsman Zy-invariant
Cauchy sequence or Iy, -Cauchy sequence, if for every e > 0 and for each x € X,
there exist numbers r = r(e,x),s = s(e,x) € N such that

Ale,2) = {(k.j) ¢ [d(z, Ary) — d(z, Ary)| > €} € I3,
that is, Vo(A(e,z)) = 0.
Definition 3.6. A double sequence { Ax;} is Iyy7, -Cauchy if there exists a set My €
F(Zg) (i.e., NxN\Msy = H € I3 ) such that for every x € X and (k, j), (p,q) € Ma
lim  |d(z, Axj) — d(z, Apg)| = 0.

k,j,p,q—o0
We give following theorems which show relationships between Zy, -convergence,
Tyy,,-Cauchy sequence and Zy;7 -Cauchy sequence. The proof of them are similar to
the proof of Theorems in [8,24], so we omit them.

Theorem 3.3. If a double sequence {Ay;} is Ify, -convergent, then {Ag;} is an
I3y, -Cauchy double sequence of sets.

Theorem 3.4. If a double sequence {Ay;} is Iy7, -Cauchy double sequence, then
{Ag;} is Ify, -Cauchy double sequence of sets.

Theorem 3.5. Let Z§ has property (AP2). Then, the concepts Ty, -Cauchy se-
quence and L3y -Cauchy sequence of sets coincide.

Definition 3.7. A double sequence {Ay;} is said to be Wijsman strongly invariant
convergent to A, if for each x € X,

N e . .
m’lrllrgoo oo ) Zl 1 |d(x, Agk(s),09 (1)) — d(, A)| =0, uniformly in s,t.
G=1,

Definition 3.8. A double sequence {Ay;} is said to be Wijsman p-strongly invari-
ant convergent to A, if for each © € X,

. 1 m,n ) . .
m’lérgoo — ) z; 1 |d(:177 Agk(s),09(t)) — d(z, A)| =0, uniformly in s,t.
J=1,

where 0 < p < oo. In this case, we write Ax; — A([W2V,]p). Also, the set of
all Wijsman p-strongly invariant convergent sequences of sets will be denoted by

[WQVa}p-

Theorem 3.6. Let {Ay;} be bounded sequence. If {Ay;} is Ify, -convergent to A,
then {Ax;} is Wijsman invariant convergent to A.

Proof. Let m,n € N be arbitrary and € > 0. For each x € X, we estimate

m,n

1
U(s,t,m,n, .I‘) = ‘,nm Z d(xaAU’“(s),o'j(t)) - d(x7A) :
k,j=1,1

Then, for each z € X we have

u(s, t,m,n,z) <u'(s,t,m,n,z) +u?(s,t,m,n,)
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where
1 m,n
1 _ .
u (s, t,m,n,x) = — kz 1 |d(, Aok (s),09 (1)) — d(, A)]
J=1,
|d(r7Aak(s)ﬁgj(t))fd(va)‘Zs
and
1 m,n
U‘Q(Svt»manvx) = % Z |d($7Aa’€(s),rrf(t)) _d(va”
k,j=1,1
1d(@,A & (g, 0 (1y) —dx,A) | <e
Therefore, we have
u?(s, t,m,m,x) <&,
for each € X and for every s,t = 1,2,... . The boundedness of {Ay;} implies

that there exists L > 0 such that
|d(13, Aa'k(s),aj(t)) - d(l‘, A)| < L7 (k7 s, 5,t=1,2,... )7
then this implies that

L .
ul(s,t,m,n,x) < %Hl <k< m,1<j<n: |d(vao"€(s),aJ'(t)) - d(:E?A)| 2 €}|

matx|{1 <k< m, 1< .7 <n: |d(x7Aok(s),aJ'(t)) - d(l‘,A)| > 5}|

<L
mn
— LSmn .
mn
Hence {Ay;} is Wijsman invariant convergent to A. O

Theorem 3.7. Let I C 2N be a strongly admissible ideal and 0 < p < .
(i): If Ar; — A(WaVslp), then Ay; — A(I{,TVZ)).
(ii): If {Ax;} € L% and Ayj — A(I{/’Vz), then Ag; — A([WaV,]p).
(iii): If {Ar;} € L%, then {A;} is If,-convergent to A if and only if

&<}

Ay — A([W2Vslp).

Proof. (i) : Assume that Ay; — A([W2V;],), for every € > 0 and for each z € X.
Then, we can write

m,n
Z |d([l), Ao”“(s),o'j(t)) - d(.T, A) |p
kj=1,1
2 Z d(z, Ak (s),09 (1)) — d(z, A)P
kj=1,1

\d(w,Aok(S)’aj(t))fd(w,A)|2€
> €p|{k < m?.j <n: |d(‘r’Aak(s),(ﬂ(t)) - d(wa)‘ > 6}‘

> eP mitn {k<m,j<mn: |d(2, Agr(s),09 (1)) — d(z, A)| > €}
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and
= ni: (. Ay o (ey) — dla, A)[?
mn 4 y Lok (s),09 (t) y
k,j=1,1
mlnHk < m7j <n: |d(x7A0'k(s),Uj(t)) - d(va)| > 5}|
Z gp s,t
mn
— gpsﬂ
mn
for every s,t = 1,2,... . This implies

lim 2™ _
m,n—o00 Mn
and so {Ay;} is (Z7,)-convergent to A.

(i) : Suppose that {Ay;} € L2, and Ax; — A(Z{,). Let 0 < p < oo and € > 0.
By assumption we have Va(A(e,z)) = 0. Since {Ay;} is bounded, {Ay;} implies
that there exists L > 0 such that for each x € X,

ld(z, Aok (s),0i (1)) — d(x, A) < L
for all k,s,j and t. Then, we have

1

m,n

P
% Z |d(1‘7 Ao”"(s)pj(t)) - d(xv A)|
k,j=1,1
1 m,n
= % Z ‘d('raAU’“(s),oj(t)) _d(xaA)‘p
k,j=1,1
‘d(w:A,k(S),aJ’(t))fd(w»A”ZE
1 m,n
+% Z ‘d(x,Agk(s)p.j(t)) —d(l‘,A)|p
kj=1,1
\d(%Aak(s),(,j(t))—d(x7A)|<5
max [{k <m, j <n:l|d(@, Ayrs) o)) — d(z, A)| = e}
s,t ’
<L + e
mn
S LM + 6177
mn
for each x € X. Hence, for each x € X we obtain
1 m,n
. D . .
m,ligloo — Z |d(l‘,Ao-k(S)7o-j(t)) —d(z, 4)|" = 0, uniformly in s,t.
k,j=1,1
(¢i7) : This is immediate consequence of (¢) and (ii). O

Now, we define Wijsman invariant statistical convergence of double sequences of
sets. We shall state a theorem that gives a relation between W55, and I{},z without
proof.

Definition 3.9. A double sequence {Ay;} is said to be Wijsman invariant statistical
convergent or WS, -convergent to A, if for every e > 0 and for each x € X,

1
lim —{k <m,j <n:l|d@, Asrs),0i@)—d(z, A)| > e} = 0, uniformly in s,t.

m,n—o00 MmN
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Theorem 3.8. A sequence {Ay;} is WaS,-convergent to A if and only if it is
W, -convergent to A.
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