
FACTA UNIVERSITATIS (NI�)

Ser. Math. Inform. Vol. 33, No 5 (2018), 705�719

https://doi.org/10.22190/FUMI1805705Y

STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES OF

FUNCTIONS AND SOME PROPERTIES IN 2-NORMED SPACES

Sevim Yegül and Erdinç Dündar
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1. Introdution and Bakground

Throughout the paper, N and R denote the set of all positive integers and the set of

all real numbers, respetively. The onept of onvergene of a sequene of real num-

bers has been extended to statistial onvergene independently by Fast [16℄ and

Shoenberg [35℄. Gökhan et al. [21℄ introdued the onepts of pointwise statistial

onvergene and statistial Cauhy sequene of real-valued funtions. Balerzak et

al. [5℄ studied statistial onvergene and ideal onvergene for sequene of fun-

tions. Duman and Orhan [7℄ studied µ-statistially onvergent funtion sequenes.

Gökhan et al. [22℄ introdued the notion of pointwise and uniform statistial onver-

gene of double sequenes of real-valued funtions. Dündar and Altay [8,9℄ studied

the onepts of pointwise and uniformly I-onvergene and I∗
-onvergene of dou-

ble sequenes of funtions and investigated some properties about them. Also, a lot

of development have been made about double sequenes of funtions (see [4,14,20℄).

The onept of 2-normed spaes was initially introdued by Gähler [18, 19℄ in

the 1960's. Gürdal and Pehlivan [25℄ studied statistial onvergene, statistial

Cauhy sequene and investigated some properties of statistial onvergene in 2-
normed spaes. Sharma and Kumar [32℄ introdued statistial onvergene, statis-

tial Cauhy sequene, statistial limit points and statistial luster points in prob-

abilisti 2-normed spae. Statistial onvergene and statistial Cauhy sequene

Reeived September 18, 2018; aepted Otober 29, 2018

2010 Mathematis Subjet Classi�ation. Primary 40A30, 40A35, Seondary 46A70

705



706 S. Yegül and E. Dündar

of funtions in 2-normed spae were studied by Yegül and Dündar [37℄. Sarabadan

and Talebi [31℄ presented various kinds of statistial onvergene and I-onvergene
for sequenes of funtions with values in 2-normed spaes and also de�ned the no-

tion of I-equistatistially onvergene and study I-equistatistially onvergene of

sequenes of funtions. Futhermore, a lot of development have been made in this

area (see [1�3,6, 15, 23, 24, 26�29,33, 34℄).

2. De�nitions and Notations

Now, we reall the onepts of double sequenes, density, statistial onvergene,

2-normed spae and some fundamental de�nitions and notations (See [5, 10�13,17,

19�21,23�25,30�32,36℄).

Let X be a real vetor spae of dimension d, where 2 ≤ d < ∞. A 2-norm on X

is a funtion ‖·, ·‖ : X ×X → R whih satis�es the following statements:

(i) ‖x, y‖ = 0 if and only if x and y are linearly dependent.

(ii) ‖x, y‖ = ‖y, x‖.

(iii) ‖αx, y‖ = |α|‖x, y‖, α ∈ R.

(iv) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖.

The pair (X, ‖·, ·‖) is then alled a 2-normed spae. As an example of a 2-normed

spae we may take X = R
2
being equipped with the 2-norm ‖x, y‖ := the area of

the parallelogram based on the vetors x and y whih may be given expliitly by

the formula

‖x, y‖ = |x1y2 − x2y1|; x = (x1, x2), y = (y1, y2) ∈ R
2.

In this study, we suppose X to be a 2-normed spae having dimension d; where

2 ≤ d < ∞.

Let (X, ‖., .‖) be a �nite dimensional 2-normed spae and u = {u1, · · · , ud} be

a basis of X . We an de�ne the norm ‖.‖∞ on X by ‖x‖∞ = max{‖x, ui‖ : i =
1, ..., d}.

Assoiated to the derived norm ‖.‖∞, we an de�ne the (losed) balls Bu(x, ε)
entered at x having radius ε by Bu(x, ε) = {y : ‖x− y‖∞ ≤ ε}, where ‖x− y‖∞ =
max{‖x− y, uj‖, j = 1, ..., d}.

Throughout the paper, we let X and Y be two 2-normed spaes, {fn}n∈N and

{gn}n∈N be two sequenes of funtions and f, g be two funtions from X to Y .

The sequene of funtions {fn}n∈N is said to be onvergent to f if fn(x) →
f(x)(‖., .‖Y ) for eah x ∈ X . We write fn → f(‖., .‖Y ). This an be expressed by

the formula (∀y ∈ Y )(∀x ∈ X)(∀ε > 0)(∃n0 ∈ N)(∀n ≥ n0)‖fn(x) − f(x), y‖ < ε.
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If K ⊆ N, then Kn denotes the set {k ∈ K : k ≤ n} and |Kn| denotes the

ardinality of Kn. The natural density of K is given by δ(K) = lim
n→∞

1
n
|Kn|, if it

exists.

The sequene {fn}n∈N is said to be (pointwise) statistial onvergent to f, if

for every ε > 0, lim
n→∞

1
n

∣

∣{n ∈ N : ‖fn(x) − f(x), z‖ ≥ ε}
∣

∣ = 0, for eah x ∈ X

and eah nonzero z ∈ Y . It means that for eah x ∈ X and eah nonzero z ∈ Y ,

‖fn(x) − f(x), z‖ < ε, a.a. (almost all) n. In this ase, we write

st− lim
n→∞

‖fn(x), z‖ = ‖f(x), z‖ or fn →st f(‖., .‖Y ).

The sequene of funtions {fn} is said to be statistially Cauhy sequene, if for

every ε > 0 and eah nonzero z ∈ Y, there exists a number k = k(ε, z) suh that

δ({n ∈ N : ‖fn(x) − fk(x), z‖ ≥ ε}) = 0, for eah x ∈ X , i.e., ‖fn(x) − fk(x), z‖ <

ε, a.a. n.

Let X be a 2-normed spae. A double sequene (xmn) in X is said to be

onvergent to L ∈ X , if for every z ∈ X , lim
m,n→∞

‖xmn − L, z‖ = 0. In this ase, we

write lim
n,m→∞

xmn = L and all L the limit of (xmn).

Let K ⊂ N× N. Let Kmn be the number of (j, k) ∈ K suh that j ≤ m, k ≤ n.

That is, Kmn = |{(j, k) : j ≤ m, k ≤ n}|, where |A| denotes the number of elements

in A. If the double sequene

{

Kmn

mn

}

has a limit then we say that K has double

natural density and is denoted by d2(K) = lim
m,n→∞

Kmn

mn
.

A double sequene x = (xmn) of real numbers is said to be statistially onver-

gent to L ∈ R, if for any ε > 0 we have d2(A(ε)) = 0, where A(ε) = {(m,n) ∈
N× N : |xmn − L| ≥ ε}.

Let {xmn} be a double sequene in 2-normed spae (X, ‖., .‖). The double

sequene (xmn) is said to be statistially onvergent to L, if for every ε > 0, the set
{(m,n) ∈ N×N : ‖xmn − L, z‖ ≥ ε} has natural density zero for eah nonzero z in

X , in other words (xmn) statistially onverges to L in 2-normed spae (X, ‖., .‖)
if lim

m,n→∞

1
mn

∣

∣{(m,n) : ‖xmn − L, z‖ ≥ ε}
∣

∣ = 0, for eah nonzero z in X . It

means that for eah z ∈ X , ‖xmn − L, z‖ < ε , a.a. (m,n). In this ase, we write

st− lim
m,n→∞

‖xmn, z‖ = ‖L, z‖.

A double sequene (xmn) in 2-normed spae (X, ‖., .‖) is said to be statistially

Cauhy sequene in X , if for every ε > 0 and every nonzero z ∈ X there exist two

number M = M(ε, z) and N = N(ε, z) suh that d2
(

{(m,n) ∈ N × N : ‖xmn −

xMN , z‖ ≥ ε}
)

= 0, i.e., for eah nonzero z ∈ X, ‖xmn − xMN , z‖ < ε, a.a. (m,n).

A double sequene of funtions {fmn} is said to be pointwise onvergent to f

on a set S ⊂ R, if for eah point x ∈ S and for eah ε > 0, there exists a positive

integer N = N(x, ε) suh that |fmn(x) − f(x)| < ε, for all m,n > N . In this ase

we write lim
m,n→∞

fmn(x) = f(x) or fmn → f, on S.

A double sequene of funtions {fmn} is said to be uniformly onvergent to f

on a set S ⊂ R, if for eah ε > 0, there exists a positive integer N = N(ε) suh that
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for all m,n > N implies |fmn(x) − f(x)| < ε, for all x ∈ S. In this ase we write

fmn ⇒ f, on S.

A double sequene of funtions {fmn} is said to be pointwise statistially on-

vergent to f on a set S ⊂ R, if for every ε > 0,

lim
i,j→∞

1

ij
|{(m,n),m ≤ i and n ≤ j : |fmn(x) − f(x)| ≥ ε}| = 0,

for eah (�xed) x ∈ S, i.e., for eah (�xed) x ∈ S, |fmn(x)− f(x)| < ε, a.a. (m,n).
In this ase, we write st− lim

m,n→∞
fmn(x) = f(x) or fmn →st f, on S.

A double sequene of funtions {fmn} is said to be uniformly statistially on-

vergent to f on a set S ⊂ R, if for every ε > 0,

lim
i,j→∞

1

ij
|{(m,n),m ≤ i and n ≤ j : |fmn(x) − f(x)| ≥ ε}| = 0,

for all x ∈ S, i.e., for all x ∈ S, |fmn(x) − f(x)| < ε, a.a. (m,n). In this ase we

write fmn ⇒ f, on S.

Let {fmn} be a double sequene of funtions de�ned on a set S. A double

sequene {fmn} is said to be statistially Cauhy if for every ε > 0 , there exist

N(= N(ε)) and M(= M(ε)) suh that |fmn(x) − fMN (x)| < ε a.a. (m,n) and for

eah (�xed) x ∈ S, i.e.,

lim
i,j→∞

1

ij
|{(m,n),m ≤ i and n ≤ j : |fmn(x)− fMN (x)| ≥ ε}| = 0

for eah (�xed)x ∈ S

Lemma 2.1. [9℄ Let f and fmn, m,n = 1, 2, ..., be ontinuous funtions on D =
[a, b] ⊂ R. Then fmn ⇒ f on D if and only if lim

m,n→∞
cmn = 0, where cmn =

max
x∈D

|fmn(x) − f(x)|.

3. Main Results

In this paper, we study onepts of onvergene, statistial onvergene and statis-

tial Cauhy sequene of double sequenes of funtions and investigate some prop-

erties and relationships between them in 2-normed spaes.

Throughout the paper, we letX and Y be two 2-normed spaes, {fmn}(m,n)∈N×N

and {gmn}(m,n)∈N×N be two double sequenes of funtions, f and g be two funtions

from X to Y .

De�nition 3.1. A double sequene {fmn} is said to be pointwise onvergent to

f if, for eah point x ∈ X and for eah ε > 0, there exists a positive integer

k0 = k0(x, ε) suh that for all m,n ≥ k0 implies ‖fmn(x) − f(x), z‖ < ε, for every

z ∈ Y . In this ase, we write fmn → f(‖., .‖Y ).
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De�nition 3.2. A double sequene {fmn} is said to be uniformly onvergent to

f, if for eah ε > 0, there exists a positive integer k0 = k0(ε) suh that for all

m,n > k0 implies ‖fmn(x) − f(x), z‖ < ε, for all x ∈ X and for every z ∈ Y . In

this ase, we write fmn ⇒ f(‖., .‖Y ).

Theorem 3.1. Let D be a ompat subset of X and f and fmn, (m,n = 1, 2, ...),
be ontinuous funtions on D. Then,

fmn ⇒ f(‖., .‖Y )

on D if and only if

lim
m,n→∞

cmn = 0,

where cmn = max
x∈D

‖fmn(x)− f(x), z‖.

Proof. Suppose that fmn ⇒ f(‖., .‖Y ) on D. Sine f and fmn are ontinuous

funtions on D, so (fmn(x) − f(x)) is ontinuous on D, for eah (m,n) ∈ N × N.

Sine fmn ⇒ f(‖., .‖Y ) on D then, for eah ε > 0, there is a positive integer

k0 = k0(ε) ∈ N suh that m,n > k0 implies

‖fmn(x) − f(x), z‖ <
ε

2

for all x ∈ D and every z ∈ Y . Thus, when m,n > k0 we have

cmn = max
x∈D

‖fmn(x) − f(x), z‖ <
ε

2
< ε.

This implies

lim
m,n→∞

cmn = 0.

Now, suppose that

lim
m,n→∞

cmn = 0.

Then, for eah ε > 0, there is a positive integer k0 = k0(ε) ∈ N suh that

0 ≤ cmn = max
x∈D

‖fmn(x)− f(x), z‖ < ε,

for m,n > k0 and every z ∈ Y . This implies that ‖fmn(x) − f(x), z‖ < ε, for all

x ∈ D, every z ∈ Y and m,n > k0. Hene, we have

fmn ⇒ f(‖., .‖Y ),

for all x ∈ D and every z ∈ Y .

De�nition 3.3. A double sequene {fmn} is said to be (pointwise) statistial

onvergent to f, if for every ε > 0,

lim
i,j→∞

1

ij

∣

∣{(m,n),m ≤ i, n ≤ j : ‖fmn(x) − f(x), z‖ ≥ ε}
∣

∣ = 0,
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for eah (�xed) x ∈ X and eah nonzero z ∈ Y. It means that for eah (�xed) x ∈ X

and eah nonzero z ∈ Y,

‖fmn(x) − f(x), z‖ < ε, a.a. (m,n).

In this ase, we write

st− lim
m,n→∞

‖fmn(x) − z‖ = ‖f(x), z‖ or fmn −→st f(‖., .‖Y ).

Remark 3.1. {fmn} is any double sequene of funtions and f is any funtion from X

to Y , then set

{(m,n) ∈ N× N : ‖fmn(x)− f(x), z‖ ≥ ε, for each x ∈ X and each z ∈ Y } = Ø,

sine if z =
−→
0 (0 vektor), ‖fmn(x)− f(x), z‖ = 0 6≥ ε so the above set is empty.

Theorem 3.2. If for eah x ∈ X and eah nonzero z ∈ Y,

st− lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖ and st− lim
m,n→∞

‖fmn(x), z‖ = ‖g(x), z‖

then, for eah x ∈ X and eah nonzero z ∈ Y

‖fmn(x), z‖ = ‖gmn(x), z‖

(i.e., f = g).

Proof. Assume f 6= g. Then, f − g 6=
−→
0 , so there exists a z ∈ Y suh that f, g and

z are linearly independent (suh a z exists sine d ≥ 2). Therefore, for eah x ∈ X

and eah nonzero z ∈ Y,

‖f(x)− g(x), z‖ = 2ε, with ε > 0.

Now, for eah x ∈ X and eah nonzero z ∈ Y, we get

2ε = ‖f(x)− g(x), z‖ = ‖(f(x)− fmn(x)) + (fmn(x)− g(x)), z‖

≤ ‖fmn(x)− g(x), z‖+ ‖fmn(x) − f(x), z‖

and so

{(m,n) ∈ N×N : ‖fmn(x)−g(x), z‖ < ε} ⊆ {(m,n) ∈ N×N : ‖fmn(x)−f(x), z‖ ≥ ε}.

But, for eah x ∈ X and eah nonzero z ∈ Y,

d2 ({(m,n) ∈ N× N : ‖fmn(x)− g(x), z‖ < ε}) = 0,

then ontraditing the fat that fmn −→st g(‖., .‖Y ).

Theorem 3.3. If {gmn} is a onvergent sequene of double sequenes of funtions

suh that fmn = gmn, a.a. (m,n) then, {fmn} is statistially onvergent.
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Proof. Suppose that for eah x ∈ X and eah nonzero z ∈ Y,

d2({(m,n) ∈ N×N : fmn(x) 6= gmn(x)}) = 0 and lim
m,n→∞

‖gmn(x), z‖ = ‖f(x), z‖,

then for every ε > 0,

{(m,n) ∈ N× N : ‖fmn(x)− f(x), z‖ ≥ ε}

⊆ {(m,n) ∈ N× N : ‖gmn(x)− f(x), z‖ ≥ ε}

∪{(m,n) ∈ N× N : fmn(x) 6= gmn(x)}.

Therefore,

d2({(m,n) ∈ N× N : ‖fmn(x)− f(x), z‖ ≥ ε})(3.1)

≤ d2({(m,n) ∈ N× N : ‖gmn(x)− f(x), z‖ ≥ ε)

+d2({(m,n) ∈ N× N : fmn(x) 6= gmn}).

Sine lim
m,n→∞

‖gmn(x), z‖ = ‖f(x), z‖, for eah x ∈ X and eah nonzero z ∈ Y, the

set {(m,n) ∈ N × N : ‖gmn(x) − f(x), z‖ ≥ ε} ontains �nite number of integers

and so

d2({(m,n) ∈ N× N : ‖gmn(x)− f(x), z‖ ≥ ε}) = 0.

Using inequality (3.1) we get for every ε > 0

d2({(m,n) ∈ N× N : ‖fmn(x) − f(x), z‖ ≥ ε}) = 0,

for eah x ∈ X and eah nonzero z ∈ Y and so onsequently

st− lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖.

Theorem 3.4. If st − lim ‖fmn(x), z‖ = ‖f(x), z‖ for eah x ∈ X and eah

nonzero z ∈ Y , then {fmn} has a subsequene of funtion {fmini
} suh that

lim
i→∞

‖fmini
(x), z‖ = ‖f(x), z‖

for eah x ∈ X and eah nonzero z ∈ Y .

Proof. Proof of this Theorem is as an immediate onsequene of Theorem 3.3.

Theorem 3.5. Let α ∈ R. If for eah x ∈ X and eah nonzero z ∈ Y ,

st− lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖ and st− lim
m,n→∞

‖gmn(x), z‖ = ‖g(x), z‖,

then

(i) st− lim
m,n→∞

‖fmn(x) + gmn(x), z‖ = ‖f(x) + g(x), z‖ and

(ii) st− lim
m,n→∞

‖αfmn(x), z‖ = ‖αf(x), z‖.
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Proof. (i) Suppose that

st− lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖ and st− lim
m,n→∞

‖gmn(x), z‖ = ‖g(x), z‖

for eah x ∈ X and eah nonzero z ∈ Y . Then, δ(K1) = 0 and δ(K2) = 0 where

K1 = K1(ε, z) :
{

(m,n) ∈ N× N : ‖fmn(x) − f(x), z‖ ≥
ε

2

}

and

K2 = K2(ε, z) :
{

(m,n) ∈ N× N : ‖gmn(x) − g(x), z‖ ≥
ε

2

}

for every ε > 0, eah x ∈ X and eah nonzero z ∈ Y . Let

K = K(ε, z) = {(m,n) ∈ N× N : ‖(fmn(x) + gmn(x))− (f(x) + g(x)), z‖ ≥ ε}.

To prove that δ(K) = 0, it su�es to show that K ⊂ K1 ∪K2. Let (m0, n0) ∈ K

then, for eah x ∈ X and eah nonzero z ∈ Y,

‖(fm0n0
(x) + gm0n0

(x)) − (f(x) + g(x)), z‖ ≥ ε.(3.2)

Suppose to the ontrary, that (m0, n0) 6∈ K1 ∪ K2. Then, (m0, n0) 6∈ K1 and

(m0, n0) 6∈ K2. If (m0, n0) 6∈ K1 and (m0, n0) 6∈ K2 then, for eah x ∈ X and eah

nonzero z ∈ Y,

‖fm0n0
(x)− f(x), z‖ <

ε

2
and ‖gm0n0

(x) − g(x), z‖ <
ε

2
.

Then, we get

‖(fm0n0
(x) + gm0n0

(x))− (f(x) + g(x)), z‖

≤ ‖fm0n0
(x)− f(x), z‖+ ‖gm0n0

(x)− g(x), z‖

<
ε

2
+

ε

2
= ε,

for eah x ∈ X and eah nonzero z ∈ Y, whih ontradits (3.2). Hene, (m0, n0) ∈
K1 ∪K2 and so K ⊂ K1 ∪K2.

(ii) Let α ∈ R (α 6= 0) and for eah x ∈ X and eah nonzero z ∈ Y,

st− lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖.

Then, we get

d2

({

(m,n) ∈ N× N : ‖fmn(x)− f(x), z‖ ≥
ε

|α|

})

= 0.

Therefore, for eah x ∈ X and eah nonzero z ∈ Y, we have

{(m,n) ∈ N× N : ‖αfmn(x)− αf(x), z‖ ≥ ε}

= {(m,n) ∈ N× N : |α|‖fmn(x) − f(x), z‖ ≥ ε}

=

{

(m,n) ∈ N× N : ‖fmn(x) − f(x), z‖ ≥
ε

|α|

}

.
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Hene, density of the right hand side of above equality equals 0. Therefore, for eah
x ∈ X and eah nonzero z ∈ Y, we have

st− lim
m,n→∞

‖αfmn(x), z‖ = ‖αf(x), z‖.

Theorem 3.6. A double sequene of funtions {fmn} is pointwise statistially on-

vergent to a funtion f if and only if there exists a subset Kx = {(m,n)} ⊆ N×N,

m,n = 1, 2, ... for eah (�xed) x ∈ X d2(Kx) = 1 and lim
m,n→∞

‖fmn(x), z‖ =

‖f(x), z‖ for eah (�xed) x ∈ X and eah nonzero z ∈ Y .

Proof. Let st2 − lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖. For r = 1, 2, ... put

Kr,x = {(m,n) ∈ N× N : ‖fmn(x), z‖ ≥
1

r
}

and

Mr,x = {(m,n) ∈ N× N : ‖fmn(x), z‖ <
1

r
}

for eah (�xed) x ∈ X and eah nonzero z ∈ Y . Then, d2(Kr,x) = 0 and

M1,x ⊃ M2,x ⊃ ... ⊃ Mi,x ⊃ Mi+1,x ⊃ ...(3.3)

and

d2(Mr,x) = 1, r = 1, 2, ...(3.4)

for eah (�xed) x ∈ X and eah nonzero z ∈ Y .

Now, we have to show that for (m,n) ∈ Mr,x, {fmn} is onvergent to f . Suppose

that {fmn} is not onvergent to f . Therefore, there is ε > 0 suh that

‖fmn(x), z‖ = ‖f(x), z‖ ≥ ε

for in�nitely many terms and some x ∈ X and eah nonzero z ∈ Y . Let

Mε,x = {(m,n) : ‖fmn(x) − f(x), z‖ < ε}

and ε > 1
r
(r = 1, 2, ...). Then, d2(Mε,x) = 0 and by (3.3) Mr,x ⊂ (Mε,x). Hene,

d2(Mr,x) = 0 whih ontradits (3.4). Therefore, {fmn} is onvergent to f .

Conversely, suppose that there exists a subset Kx = {(m,n)} ⊆ N× N for eah

(�xed) x ∈ X and eah nonzero z ∈ Y suh that d2(Kx) = 1 and lim
m,n→∞

‖fmn(x), z‖ =

‖f(x), z‖, i.e., there exist an N(x, ε) suh that for eah (�xed) x ∈ X , eah nonzero

z ∈ Y and eah ε > 0, m,n ≥ N implies ‖fmn(x), z‖ = ‖f(x), z‖ < ε. Now,

Kε,x = {(m,n) : ‖fmn(x), z‖ ≥ ε} ⊆ N× N− {(mN+1, nN+1), (mN+2, nN+2), ...}

for eah (�xed) x ∈ X and eah nonzero z ∈ Y . Therefore, d2(Kε,x) ≤ 1− 1 = 0 for

eah (�xed) x ∈ X and eah nonzero z ∈ Y . Hene, {fmn} is pointwise statistially
onvergent to f .
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De�nition 3.4. A double sequene of funtions {fmn} is said to uniformly statis-

tially onvergent to f , if for every ε > 0 and for eah nonzero z ∈ Y ,

lim
i,j→∞

1

ij
|{(m,n),m ≤ i, n ≤ j : ‖fmn(x) − f(x), z‖ ≥ ε}| = 0,

for all x ∈ X. That is, for all x ∈ X and for eah nonzero z ∈ Y

‖fmn(x)− f(x), z‖ < ε, a.a (m,n).(3.5)

In this ase, we write fmn ⇒st f(‖., .‖Y ).

Theorem 3.7. Let D be a ompat subset of X and f and {fmn}, m,n = 1, 2, ...
be ontinuous funtions on D. Then,

fmn ⇒st f(‖., .‖Y )

on D if and only if

st2 − lim
m,n→∞

‖cmn(x), z‖ = 0,

where cmn = max
x∈S

‖fmn(x)− f(x), z‖.

Proof. Suppose that {fmn} uniformly statistially onvergent to f on D. Sine f

and {fmn} are ontinuous funtions on D, so (fmn(x) − f(x)) is ontinuous on D,

for eah m,n ∈ N. By statistially onvergene for ε > 0

d2({(m,n) ∈ N× N : ‖fmn(x) − f(x), z‖ ≥ ε}) = 0,

for eah x ∈ D and for eah nonzero z ∈ Y . Hene, for ε > 0 it is lear that

cmn = max
x∈D

‖fmn(x) − f(x), z‖ ≥ ‖fmn(x) − f(x), z‖ ≥
ε

2

for eah x ∈ D and for eah nonzero z ∈ Y. Thus we have

st− lim
m,n→∞

cmn = 0.

Now, suppose that st− lim
m,n→∞

cmn = 0. We let following set

A(ε) = {(m,n) ∈ N× N : max
x∈D

‖fmn(x) − f(x), z‖ ≥ ε},

for ε > 0 and for eah nonzero z ∈ Y . Then, by hypothesis we have d2(A(ε)) = 0.
Sine for ε > 0

max
x∈D

‖fmn(x) − f(x), z‖ ≥ ‖fmn(x) − f(x), z‖ ≥ ε

we have

{(m,n) ∈ N× N : ‖fmn(x) − f(x), z‖ ≥ ε} ⊂ A(ε)

and so

d2({(m,n) ∈ N× N : ‖fmn(x) − f(x), z‖ ≥ ε}) = 0,

for eah x ∈ D and for eah nonzero z ∈ Y. This proves the theorem.
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Now, we an give the relations between well-known onvergene models and our

studied models as the following result.

Corollary 3.1. (i) fmn ⇒ f(‖., .‖Y ) ⇒ fmn −→ f(‖., .‖Y ) ⇒ fmn −→st f(‖., .‖Y ).

(ii)fmn ⇒ f(‖., .‖Y ) ⇒ fmn ⇒st f(‖., .‖Y ) ⇒ fmn −→st f(‖., .‖Y ).

Now, we give the onept of statistial Cauhy sequene and investigate rela-

tionships between statistial Cauhy sequene and statistial onvergene of double

sequenes of funtions in 2-normed spae.

De�nition 3.5. The double sequenes of funtions {fmn} is said to be statistially
Cauhy sequene, if for every ε > 0 and eah nonzero z ∈ Y, there exist two numbers

k = k(ε, z) , t = t(ε, z) suh that

d2({(m,n) ∈ N× N : ‖fmn(x) − fkt(x), z‖ ≥ ε}) = 0, for eah (�xed) x ∈ X,

i.e., for eah nonzero z ∈ Y,

‖fnm(x) − fkt(x), z‖ < ε, a.a. (m,n).

Theorem 3.8. Let {fmn} be a statistially Cauhy sequene of double sequene of

funtions in a �nite dimensional 2-normed spae (X, ‖., .‖). Then, there exists a

onvergent sequene of double sequenes of funtions {gmn} in (X, ‖., .‖) suh that

fmn = gmn, for a.a. (m,n).

Proof. First note that {fmn} is a statistially Cauhy sequene of funtions in

(X, ‖.‖∞). Choose a natural number k(1) and j(1) suh that the losed ball B1
u =

Bu(fk(1)j(1)(x), 1) ontains fmn(x) for a.a. (m,n) and for eah x ∈ X . Then, hoose

a natural number k(2) and j(2) suh that the losed ball B2 = Bu(fk(2)j(2)(x),
1
2 )

ontains fmn(x) for a.a. (m,n) and for eah x ∈ X . Note that B2
u = B1

u ∩B2 also

ontains fmn(x) for a.a. (m,n) and for eah x ∈ X . Thus, by ontinuing of this

proess, we an obtain a sequene {Br
u}r≥1 of nested losed balls suh that diam

(Br
u) ≤

1
2r . Therefore,

∞
⋂

r=1

Br
u = {h(x)},

where h is a funtion from X to Y. Sine eah Br
u ontains fmn(x) for a.a. (m,n)

and for eah x ∈ X , we an hoose a sequene of stritly inreasing natural numbers

{Sr}r≥1 suh that for eah x ∈ X ,

1

mn
|{(m,n) ∈ N× N : fmn(x) 6∈ Br

u}| <
1

r
, if m, n > Sr.

Put Tr = {(m,n) ∈ N × N : m,n > Sr, fmn(x) 6∈ Br
u} for eah x ∈ X , for all

r ≥ 1 and R =
⋃∞

r=1 Rr. Now, for eah x ∈ X , de�ne the sequene of funtions

{gmn} as following

gmn(x) =

{

h(x) , if (m,n) ∈ R×R

fmn(x) , otherwise.
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Note that, lim
m,n→∞

gmn(x) = h(x), for eah x ∈ X . In fat, for eah ε > 0 and

for eah x ∈ X , hoose a natural number m suh that ε > 1
r
> 0. Then, for eah

m,n > Sr and for eah x ∈ X , gmn(x) = h(x) or gmn(x) = fmn(x) ∈ Br
u and so in

eah ase

‖gmn(x) − h(x)‖∞ ≤ diam(Br
u) ≤

1

2r−1
.

Sine, for eah x ∈ X ,

{(m,n) ∈ N× N : gmn(x) 6= fn(x)} ⊆ {(m,n) ∈ N× N : fmn(x) 6∈ Br
u},

we have

1

mn
|{(m,n) ∈ N× N : gmn(x) 6= fmn(x)}|

≤
1

mn
|{(n,m) ∈ N× N : fmn(x) 6∈ Br

u}|

<
1

r
,

and so

d2({(m,n) ∈ N× N : gmn(x) 6= fmn(x)}) = 0.

Thus, gmn(x) = fmn(x) for a.a. m,n and for eah x ∈ X in (X, ‖.‖∞). Suppose

that {u1, ..., ud} is a basis for (X, ‖., .‖). Sine, for eah x ∈ X ,

lim
m,n→∞

‖gmn(x) − h(x)‖∞ = 0 and ‖gmn(x)− h(x), ui‖ ≤ ‖gmn(x) − h(x)‖∞

for all 1 ≤ i ≤ d, then we have

lim
m,n→∞

‖gmn(x)− h(x), z‖∞ = 0,

for eah x ∈ X and eah nonzero z ∈ X. It ompletes the proof.

Theorem 3.9. The sequene {fmn} is statistially onvergent if and only if {fmn}
is a statistially Cauhy sequene of double sequene of funtions.

Proof. Assume that f be funtion from X to Y and st − lim
m,n→∞

‖fmn(x), z‖ =

‖f(x), z‖ for eah x ∈ X and eah nonzero z ∈ Y and ε > 0. Then, for eah x ∈ X

and eah nonzero z ∈ Y , we have

‖fmn(x)− f(x), z‖ <
ε

2
, a.a. (m,n).

If k = k(ε, z) and t = t(ε, z) are hosen so that for eah x ∈ X and eah nonzero

z ∈ Y ,

‖fkt(x)− f(x), z‖ <
ε

2
,
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and so we have

‖fmn(x)− fkt(x), z‖ ≤ ‖fmn(x) − f(x), z‖+ ‖f(x)− fkt(x), z‖

<
ε

2
+

ε

2
= ε, a.a. (m,n).

Hene, {fmn} is statistially Cauhy sequene of double sequene of funtions.

Now, assume that {fmn} is statistially Cauhy sequene of double sequene of

funtion. By Theorem 3.8, there exists a onvergent sequene {gmn} from X to Y

suh that fmn = gmn for a.a. (m,n). By Theorem 3.3, we have

st− lim ‖fmn(x), z‖ = ‖f(x), z‖,

for eah x ∈ X and eah nonzero z ∈ Y .

Theorem 3.10. Let {fmn} be a double sequene of funtions. The following state-

ments are equivalent

(i) {fmn} is (pointwise) statistially onvergent to f(x),

(ii) {fmn} is statistially Cauhy,

(iii) There exisits a subsequene {gmn} of {fmn} suh that lim
m,n→∞

‖gmn(x), z‖ =

‖f(x), z‖.

Proof. Proof of this Theorem is as an immediate onsequene of Theorem 3.6 and

Theorem 3.9.

De�nition 3.6. Let D be a ompat subset of X and {fmn} be a double sequene
of funtions on D. {fmn} is said to be statistially uniform Cauhy if for every ε > 0
and eah nonzero z ∈ Y , there exists k = k(ε, z), t = t(ε, z) suh that

d2({(m,n) ∈ N× N : ‖fmn(x) − fkt(x), z‖ ≥ ε}) = 0

for all x ∈ X .

Theorem 3.11. Let D be a ompat subset of X and {fmn}, be a sequene of

bounded funtions on D. Then, {fmn} is uniformly statistially onvergent if and

only if it is uniformly statistially Cauhy on D.

Proof. Proof of this theorem is similar the Theorem 3.9. So, we omit it.
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