STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES OF FUNCTIONS AND SOME PROPERTIES IN 2-NORMED SPACES

Sevim Yegül and Erdinç Dündar

Abstract

In this study, we introduced the concepts of pointwise and uniform convergence, statistical convergence and statistical Cauchy double sequences of functions in 2 -normed space. Also, were studied some properties about these concepts and investigated relationships between them for double sequences of functions in 2-normed spaces. Keywords: Uniform convergence, Statistical Convergence, Double sequences of Functions, Statistical Cauchy sequence, 2-normed Spaces.

1. Introduction and Background

Throughout the paper, \mathbb{N} and \mathbb{R} denote the set of all positive integers and the set of all real numbers, respectively. The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [16] and Schoenberg [35]. Gökhan et al. [21] introduced the concepts of pointwise statistical convergence and statistical Cauchy sequence of real-valued functions. Balcerzak et al. [5] studied statistical convergence and ideal convergence for sequence of functions. Duman and Orhan [7] studied μ-statistically convergent function sequences. Gökhan et al. [22] introduced the notion of pointwise and uniform statistical convergence of double sequences of real-valued functions. Dündar and Altay [8,9] studied the concepts of pointwise and uniformly \mathcal{I}-convergence and \mathcal{I}^{*}-convergence of double sequences of functions and investigated some properties about them. Also, a lot of development have been made about double sequences of functions (see [4,14,20]).

The concept of 2-normed spaces was initially introduced by Gähler $[18,19]$ in the 1960's. Gürdal and Pehlivan [25] studied statistical convergence, statistical Cauchy sequence and investigated some properties of statistical convergence in 2normed spaces. Sharma and Kumar [32] introduced statistical convergence, statistical Cauchy sequence, statistical limit points and statistical cluster points in probabilistic 2-normed space. Statistical convergence and statistical Cauchy sequence

[^0]of functions in 2-normed space were studied by Yegül and Dündar [37]. Sarabadan and Talebi [31] presented various kinds of statistical convergence and \mathcal{I}-convergence for sequences of functions with values in 2-normed spaces and also defined the notion of \mathcal{I}-equistatistically convergence and study \mathcal{I}-equistatistically convergence of sequences of functions. Futhermore, a lot of development have been made in this area (see $[1-3,6,15,23,24,26-29,33,34]$).

2. Definitions and Notations

Now, we recall the concepts of double sequences, density, statistical convergence, 2 -normed space and some fundamental definitions and notations (See [5, 10-13, 17, 19-21, 23-25, 30-32, 36]).

Let X be a real vector space of dimension d, where $2 \leq d<\infty$. A 2-norm on X is a function $\|\cdot, \cdot\|: X \times X \rightarrow \mathbb{R}$ which satisfies the following statements:
(i) $\|x, y\|=0$ if and only if x and y are linearly dependent.
(ii) $\|x, y\|=\|y, x\|$.
(iii) $\|\alpha x, y\|=|\alpha|\|x, y\|, \alpha \in \mathbb{R}$.
(iv) $\|x, y+z\| \leq\|x, y\|+\|x, z\|$.

The pair $(X,\|\cdot, \cdot\|)$ is then called a 2-normed space. As an example of a 2-normed space we may take $X=\mathbb{R}^{2}$ being equipped with the 2-norm $\|x, y\|:=$ the area of the parallelogram based on the vectors x and y which may be given explicitly by the formula

$$
\|x, y\|=\left|x_{1} y_{2}-x_{2} y_{1}\right| ; \quad x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}
$$

In this study, we suppose X to be a 2-normed space having dimension d; where $2 \leq d<\infty$.

Let $(X,\|.,\|$.$) be a finite dimensional 2-normed space and u=\left\{u_{1}, \cdots, u_{d}\right\}$ be a basis of X. We can define the norm $\|\cdot\|_{\infty}$ on X by $\|x\|_{\infty}=\max \left\{\left\|x, u_{i}\right\|: i=\right.$ $1, \ldots, d\}$.

Associated to the derived norm $\|\cdot\|_{\infty}$, we can define the (closed) balls $B_{u}(x, \varepsilon)$ centered at x having radius ε by $B_{u}(x, \varepsilon)=\left\{y:\|x-y\|_{\infty} \leq \varepsilon\right\}$, where $\|x-y\|_{\infty}=$ $\max \left\{\left\|x-y, u_{j}\right\|, j=1, \ldots, d\right\}$.

Throughout the paper, we let X and Y be two 2-normed spaces, $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ be two sequences of functions and f, g be two functions from X to Y.

The sequence of functions $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is said to be convergent to f if $f_{n}(x) \rightarrow$ $f(x)\left(\|.,\|_{Y}\right)$ for each $x \in X$. We write $f_{n} \rightarrow f\left(\|., .\|_{Y}\right)$. This can be expressed by the formula $(\forall y \in Y)(\forall x \in X)(\forall \varepsilon>0)\left(\exists n_{0} \in \mathbb{N}\right)\left(\forall n \geq n_{0}\right)\left\|f_{n}(x)-f(x), y\right\|<\varepsilon$.

If $K \subseteq \mathbb{N}$, then K_{n} denotes the set $\{k \in K: k \leq n\}$ and $\left|K_{n}\right|$ denotes the cardinality of K_{n}. The natural density of K is given by $\delta(K)=\lim _{n \rightarrow \infty} \frac{1}{n}\left|K_{n}\right|$, if it exists.

The sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is said to be (pointwise) statistical convergent to f, if for every $\varepsilon>0, \lim _{n \rightarrow \infty} \frac{1}{n}\left|\left\{n \in \mathbb{N}:\left\|f_{n}(x)-f(x), z\right\| \geq \varepsilon\right\}\right|=0$, for each $x \in X$ and each nonzero $z \in Y$. It means that for each $x \in X$ and each nonzero $z \in Y$, $\left\|f_{n}(x)-f(x), z\right\|<\varepsilon$, a.a. (almost all) n. In this case, we write

$$
s t-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\| \quad \text { or } \quad f_{n} \rightarrow_{s t} f\left(\|., .\|_{Y}\right)
$$

The sequence of functions $\left\{f_{n}\right\}$ is said to be statistically Cauchy sequence, if for every $\varepsilon>0$ and each nonzero $z \in Y$, there exists a number $k=k(\varepsilon, z)$ such that $\delta\left(\left\{n \in \mathbb{N}:\left\|f_{n}(x)-f_{k}(x), z\right\| \geq \varepsilon\right\}\right)=0$, for each $x \in X$, i.e., $\left\|f_{n}(x)-f_{k}(x), z\right\|<$ ε, a.a. n.

Let X be a 2-normed space. A double sequence $\left(x_{m n}\right)$ in X is said to be convergent to $L \in X$, if for every $z \in X, \lim _{m, n \rightarrow \infty}\left\|x_{m n}-L, z\right\|=0$. In this case, we write $\lim _{n, m \rightarrow \infty} x_{m n}=L$ and call L the limit of $\left(x_{m n}\right)$.

Let $K \subset \mathbb{N} \times \mathbb{N}$. Let $K_{m n}$ be the number of $(j, k) \in K$ such that $j \leq m, k \leq n$. That is, $K_{m n}=|\{(j, k): j \leq m, k \leq n\}|$, where $|A|$ denotes the number of elements in A. If the double sequence $\left\{\frac{K_{m n}}{m n}\right\}$ has a limit then we say that K has double natural density and is denoted by $d_{2}(K)=\lim _{m, n \rightarrow \infty} \frac{K_{m n}}{m n}$.

A double sequence $x=\left(x_{m n}\right)$ of real numbers is said to be statistically convergent to $L \in \mathbb{R}$, if for any $\varepsilon>0$ we have $d_{2}(A(\varepsilon))=0$, where $A(\varepsilon)=\{(m, n) \in$ $\left.\mathbb{N} \times \mathbb{N}:\left|x_{m n}-L\right| \geq \varepsilon\right\}$.

Let $\left\{x_{m n}\right\}$ be a double sequence in 2-normed space $(X,\|.,\|$.$) . The double$ sequence $\left(x_{m n}\right)$ is said to be statistically convergent to L, if for every $\varepsilon>0$, the set $\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|x_{m n}-L, z\right\| \geq \varepsilon\right\}$ has natural density zero for each nonzero z in X, in other words $\left(x_{m n}\right)$ statistically converges to L in 2 -normed space ($X,\|.,$.$\|)$ if $\lim _{m, n \rightarrow \infty} \frac{1}{m n}\left|\left\{(m, n):\left\|x_{m n}-L, z\right\| \geq \varepsilon\right\}\right|=0$, for each nonzero z in X. It means that for each $z \in X,\left\|x_{m n}-L, z\right\|<\varepsilon, a . a$. (m, n). In this case, we write $s t-\lim _{m, n \rightarrow \infty}\left\|x_{m n}, z\right\|=\|L, z\|$.

A double sequence $\left(x_{m n}\right)$ in 2-normed space $(X,\|.,\|$.$) is said to be statistically$ Cauchy sequence in X, if for every $\varepsilon>0$ and every nonzero $z \in X$ there exist two number $M=M(\varepsilon, z)$ and $N=N(\varepsilon, z)$ such that $d_{2}\left(\left\{(m, n) \in \mathbb{N} \times \mathbb{N}: \| x_{m n}-\right.\right.$ $\left.\left.x_{M N}, z \| \geq \varepsilon\right\}\right)=0$, i.e., for each nonzero $z \in X,\left\|x_{m n}-x_{M N}, z\right\|<\varepsilon$, a.a. (m,n).

A double sequence of functions $\left\{f_{m n}\right\}$ is said to be pointwise convergent to f on a set $S \subset \mathbb{R}$, if for each point $x \in S$ and for each $\varepsilon>0$, there exists a positive integer $N=N(x, \varepsilon)$ such that $\left|f_{m n}(x)-f(x)\right|<\varepsilon$, for all $m, n>N$. In this case we write $\lim _{m, n \rightarrow \infty} f_{m n}(x)=f(x)$ or $f_{m n} \rightarrow f$, on S.

A double sequence of functions $\left\{f_{m n}\right\}$ is said to be uniformly convergent to f on a set $S \subset \mathbb{R}$, if for each $\varepsilon>0$, there exists a positive integer $N=N(\varepsilon)$ such that
for all $m, n>N$ implies $\left|f_{m n}(x)-f(x)\right|<\varepsilon$, for all $x \in S$. In this case we write $f_{m n} \rightrightarrows f$, on S.

A double sequence of functions $\left\{f_{m n}\right\}$ is said to be pointwise statistically convergent to f on a set $S \subset \mathbb{R}$, if for every $\varepsilon>0$,

$$
\left.\left.\lim _{i, j \rightarrow \infty} \frac{1}{i j} \right\rvert\,\left\{(m, n), m \leq i \text { and } n \leq j:\left|f_{m n}(x)-f(x)\right| \geq \varepsilon\right\} \right\rvert\,=0
$$

for each (fixed) $x \in S$, i.e., for each (fixed) $x \in S,\left|f_{m n}(x)-f(x)\right|<\varepsilon$, a.a. (m, n). In this case, we write $s t-\lim _{m, n \rightarrow \infty} f_{m n}(x)=f(x)$ or $f_{m n} \rightarrow_{s t} f$, on S.

A double sequence of functions $\left\{f_{m n}\right\}$ is said to be uniformly statistically convergent to f on a set $S \subset \mathbb{R}$, if for every $\varepsilon>0$,

$$
\left.\left.\lim _{i, j \rightarrow \infty} \frac{1}{i j} \right\rvert\,\left\{(m, n), m \leq i \text { and } n \leq j:\left|f_{m n}(x)-f(x)\right| \geq \varepsilon\right\} \right\rvert\,=0
$$

for all $x \in S$, i.e., for all $x \in S,\left|f_{m n}(x)-f(x)\right|<\varepsilon$, a.a. (m, n). In this case we write $f_{m n} \rightrightarrows f$, on S.

Let $\left\{f_{m n}\right\}$ be a double sequence of functions defined on a set S. A double sequence $\left\{f_{m n}\right\}$ is said to be statistically Cauchy if for every $\varepsilon>0$, there exist $N(=N(\varepsilon))$ and $M(=M(\varepsilon))$ such that $\left|f_{m n}(x)-f_{M N}(x)\right|<\varepsilon$ a.a. (m, n) and for each (fixed) $x \in S$, i.e.,

$$
\left.\left.\lim _{i, j \rightarrow \infty} \frac{1}{i j} \right\rvert\,\left\{(m, n), m \leq i \text { and } n \leq j:\left|f_{m n}(x)-f_{M N}(x)\right| \geq \varepsilon\right\} \right\rvert\,=0
$$

for each (fixed) $x \in S$
Lemma 2.1. [9] Let f and $f_{m n}, m, n=1,2, \ldots$, be continuous functions on $D=$ $[a, b] \subset \mathbb{R}$. Then $f_{m n} \rightrightarrows f$ on D if and only if $\lim _{m, n \rightarrow \infty} c_{m n}=0$, where $c_{m n}=$ $\max _{x \in D}\left|f_{m n}(x)-f(x)\right|$.

3. Main Results

In this paper, we study concepts of convergence, statistical convergence and statistical Cauchy sequence of double sequences of functions and investigate some properties and relationships between them in 2-normed spaces.

Throughout the paper, we let X and Y be two 2-normed spaces, $\left\{f_{m n}\right\}_{(m, n) \in \mathbb{N} \times \mathbb{N}}$ and $\left\{g_{m n}\right\}_{(m, n) \in \mathbb{N} \times \mathbb{N}}$ be two double sequences of functions, f and g be two functions from X to Y.

Definition 3.1. A double sequence $\left\{f_{m n}\right\}$ is said to be pointwise convergent to f if, for each point $x \in X$ and for each $\varepsilon>0$, there exists a positive integer $k_{0}=k_{0}(x, \varepsilon)$ such that for all $m, n \geq k_{0}$ implies $\left\|f_{m n}(x)-f(x), z\right\|<\varepsilon$, for every $z \in Y$. In this case, we write $f_{m n} \rightarrow f\left(\|., .\|_{Y}\right)$.

Definition 3.2. A double sequence $\left\{f_{m n}\right\}$ is said to be uniformly convergent to f, if for each $\varepsilon>0$, there exists a positive integer $k_{0}=k_{0}(\varepsilon)$ such that for all $m, n>k_{0}$ implies $\left\|f_{m n}(x)-f(x), z\right\|<\varepsilon$, for all $x \in X$ and for every $z \in Y$. In this case, we write $f_{m n} \rightrightarrows f\left(\|., .\|_{Y}\right)$.

Theorem 3.1. Let D be a compact subset of X and f and $f_{m n},(m, n=1,2, \ldots)$, be continuous functions on D. Then,

$$
f_{m n} \rightrightarrows f\left(\|., \cdot\|_{Y}\right)
$$

on D if and only if

$$
\lim _{m, n \rightarrow \infty} c_{m n}=0
$$

where $c_{m n}=\max _{x \in D}\left\|f_{m n}(x)-f(x), z\right\|$.
Proof. Suppose that $f_{m n} \rightrightarrows f\left(\|., .\|_{Y}\right)$ on D. Since f and $f_{m n}$ are continuous functions on D, so $\left(f_{m n}(x)-f(x)\right)$ is continuous on D, for each $(m, n) \in \mathbb{N} \times \mathbb{N}$. Since $f_{m n} \rightrightarrows f\left(\|., .\|_{Y}\right)$ on D then, for each $\varepsilon>0$, there is a positive integer $k_{0}=k_{0}(\varepsilon) \in \mathbb{N}$ such that $m, n>k_{0}$ implies

$$
\left\|f_{m n}(x)-f(x), z\right\|<\frac{\varepsilon}{2}
$$

for all $x \in D$ and every $z \in Y$. Thus, when $m, n>k_{0}$ we have

$$
c_{m n}=\max _{x \in D}\left\|f_{m n}(x)-f(x), z\right\|<\frac{\varepsilon}{2}<\varepsilon .
$$

This implies

$$
\lim _{m, n \rightarrow \infty} c_{m n}=0
$$

Now, suppose that

$$
\lim _{m, n \rightarrow \infty} c_{m n}=0
$$

Then, for each $\varepsilon>0$, there is a positive integer $k_{0}=k_{0}(\varepsilon) \in \mathbb{N}$ such that

$$
0 \leq c_{m n}=\max _{x \in D}\left\|f_{m n}(x)-f(x), z\right\|<\varepsilon
$$

for $m, n>k_{0}$ and every $z \in Y$. This implies that $\left\|f_{m n}(x)-f(x), z\right\|<\varepsilon$, for all $x \in D$, every $z \in Y$ and $m, n>k_{0}$. Hence, we have

$$
f_{m n} \rightrightarrows f\left(\|\cdot, .\|_{Y}\right)
$$

for all $x \in D$ and every $z \in Y$.
Definition 3.3. A double sequence $\left\{f_{m n}\right\}$ is said to be (pointwise) statistical convergent to f, if for every $\varepsilon>0$,

$$
\lim _{i, j \rightarrow \infty} \frac{1}{i j}\left|\left\{(m, n), m \leq i, n \leq j:\left\|f_{m n}(x)-f(x), z\right\| \geq \varepsilon\right\}\right|=0
$$

for each (fixed) $x \in X$ and each nonzero $z \in Y$. It means that for each (fixed) $x \in X$ and each nonzero $z \in Y$,

$$
\left\|f_{m n}(x)-f(x), z\right\|<\varepsilon, \quad \text { a.a. }(m, n) .
$$

In this case, we write

$$
s t-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x)-z\right\|=\|f(x), z\| \quad \text { or } \quad f_{m n} \longrightarrow_{s t} f\left(\|., .\|_{Y}\right) .
$$

Remark 3.1. $\left\{f_{m n}\right\}$ is any double sequence of functions and f is any function from X to Y, then set

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq \varepsilon, \text { for each } x \in X \text { and each } z \in Y\right\}=\varnothing \text {, }
$$

since if $z=\overrightarrow{0}$ (0 vektor), $\left\|f_{m n}(x)-f(x), z\right\|=0 \nsupseteq \varepsilon$ so the above set is empty.
Theorem 3.2. If for each $x \in X$ and each nonzero $z \in Y$,
$s t-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|$ and $s t-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|g(x), z\|$
then, for each $x \in X$ and each nonzero $z \in Y$

$$
\left\|f_{m n}(x), z\right\|=\left\|g_{m n}(x), z\right\|
$$

(i.e., $f=g$).

Proof. Assume $f \neq g$. Then, $f-g \neq \overrightarrow{0}$, so there exists a $z \in Y$ such that f, g and z are linearly independent (such a z exists since $d \geq 2$). Therefore, for each $x \in X$ and each nonzero $z \in Y$,

$$
\|f(x)-g(x), z\|=2 \varepsilon, \quad \text { with } \quad \varepsilon>0
$$

Now, for each $x \in X$ and each nonzero $z \in Y$, we get

$$
\begin{aligned}
2 \varepsilon=\|f(x)-g(x), z\| & =\left\|\left(f(x)-f_{m n}(x)\right)+\left(f_{m n}(x)-g(x)\right), z\right\| \\
& \leq\left\|f_{m n}(x)-g(x), z\right\|+\left\|f_{m n}(x)-f(x), z\right\|
\end{aligned}
$$

and so
$\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-g(x), z\right\|<\varepsilon\right\} \subseteq\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq \varepsilon\right\}$.
But, for each $x \in X$ and each nonzero $z \in Y$,

$$
d_{2}\left(\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-g(x), z\right\|<\varepsilon\right\}\right)=0,
$$

then contradicting the fact that $f_{m n} \longrightarrow_{s t} g\left(\|., .\|_{Y}\right)$.
Theorem 3.3. If $\left\{g_{m n}\right\}$ is a convergent sequence of double sequences of functions such that $f_{m n}=g_{m n}$, a.a. (m, n) then, $\left\{f_{m n}\right\}$ is statistically convergent.

Proof. Suppose that for each $x \in X$ and each nonzero $z \in Y$,
$d_{2}\left(\left\{(m, n) \in \mathbb{N} \times \mathbb{N}: f_{m n}(x) \neq g_{m n}(x)\right\}\right)=0$ and $\lim _{m, n \rightarrow \infty}\left\|g_{m n}(x), z\right\|=\|f(x), z\|$, then for every $\varepsilon>0$,

$$
\begin{aligned}
&\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq \varepsilon\right\} \\
& \subseteq\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|g_{m n}(x)-f(x), z\right\| \geq \varepsilon\right\} \\
& \cup\left\{(m, n) \in \mathbb{N} \times \mathbb{N}: f_{m n}(x) \neq g_{m n}(x)\right\}
\end{aligned}
$$

Therefore,

$$
\begin{align*}
d_{2}(\{(m, n) \in \mathbb{N} \times & \left.\left.\mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq \varepsilon\right\}\right) \tag{3.1}\\
\leq & d_{2}\left(\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|g_{m n}(x)-f(x), z\right\| \geq \varepsilon\right)\right. \\
& +d_{2}\left(\left\{(m, n) \in \mathbb{N} \times \mathbb{N}: f_{m n}(x) \neq g_{m n}\right\}\right)
\end{align*}
$$

Since $\lim _{m, n \rightarrow \infty}\left\|g_{m n}(x), z\right\|=\|f(x), z\|$, for each $x \in X$ and each nonzero $z \in Y$, the set $\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|g_{m n}(x)-f(x), z\right\| \geq \varepsilon\right\}$ contains finite number of integers and so

$$
d_{2}\left(\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|g_{m n}(x)-f(x), z\right\| \geq \varepsilon\right\}\right)=0
$$

Using inequality (3.1) we get for every $\varepsilon>0$

$$
d_{2}\left(\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq \varepsilon\right\}\right)=0
$$

for each $x \in X$ and each nonzero $z \in Y$ and so consequently

$$
s t-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|
$$

Theorem 3.4. If st $-\lim \left\|f_{m n}(x), z\right\|=\|f(x), z\|$ for each $x \in X$ and each nonzero $z \in Y$, then $\left\{f_{m n}\right\}$ has a subsequence of function $\left\{f_{m_{i} n_{i}}\right\}$ such that

$$
\lim _{i \rightarrow \infty}\left\|f_{m_{i} n_{i}}(x), z\right\|=\|f(x), z\|
$$

for each $x \in X$ and each nonzero $z \in Y$.
Proof. Proof of this Theorem is as an immediate consequence of Theorem 3.3.
Theorem 3.5. Let $\alpha \in \mathbb{R}$. If for each $x \in X$ and each nonzero $z \in Y$,

$$
s t-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\| \text { and } \text { st }-\lim _{m, n \rightarrow \infty}\left\|g_{m n}(x), z\right\|=\|g(x), z\|,
$$

then
(i) $s t-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x)+g_{m n}(x), z\right\|=\|f(x)+g(x), z\|$ and
(ii) $s t-\lim _{m, n \rightarrow \infty}\left\|\alpha f_{m n}(x), z\right\|=\|\alpha f(x), z\|$.

Proof. (i) Suppose that

$$
s t-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\| \text { and } \text { st }-\lim _{m, n \rightarrow \infty}\left\|g_{m n}(x), z\right\|=\|g(x), z\|
$$

for each $x \in X$ and each nonzero $z \in Y$. Then, $\delta\left(K_{1}\right)=0$ and $\delta\left(K_{2}\right)=0$ where

$$
K_{1}=K_{1}(\varepsilon, z):\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq \frac{\varepsilon}{2}\right\}
$$

and

$$
K_{2}=K_{2}(\varepsilon, z):\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|g_{m n}(x)-g(x), z\right\| \geq \frac{\varepsilon}{2}\right\}
$$

for every $\varepsilon>0$, each $x \in X$ and each nonzero $z \in Y$. Let

$$
K=K(\varepsilon, z)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|\left(f_{m n}(x)+g_{m n}(x)\right)-(f(x)+g(x)), z\right\| \geq \varepsilon\right\} .
$$

To prove that $\delta(K)=0$, it suffices to show that $K \subset K_{1} \cup K_{2}$. Let $\left(m_{0}, n_{0}\right) \in K$ then, for each $x \in X$ and each nonzero $z \in Y$,

$$
\begin{equation*}
\left\|\left(f_{m_{0} n_{0}}(x)+g_{m_{0} n_{0}}(x)\right)-(f(x)+g(x)), z\right\| \geq \varepsilon \tag{3.2}
\end{equation*}
$$

Suppose to the contrary, that $\left(m_{0}, n_{0}\right) \notin K_{1} \cup K_{2}$. Then, $\left(m_{0}, n_{0}\right) \notin K_{1}$ and $\left(m_{0}, n_{0}\right) \notin K_{2}$. If $\left(m_{0}, n_{0}\right) \notin K_{1}$ and $\left(m_{0}, n_{0}\right) \notin K_{2}$ then, for each $x \in X$ and each nonzero $z \in Y$,

$$
\left\|f_{m_{0} n_{0}}(x)-f(x), z\right\|<\frac{\varepsilon}{2} \quad \text { and } \quad\left\|g_{m_{0} n_{0}}(x)-g(x), z\right\|<\frac{\varepsilon}{2}
$$

Then, we get

$$
\begin{aligned}
&\left\|\left(f_{m_{0} n_{0}}(x)+g_{m_{0} n_{0}}(x)\right)-(f(x)+g(x)), z\right\| \\
& \leq\left\|f_{m_{0} n_{0}}(x)-f(x), z\right\|+\left\|g_{m_{0} n_{0}}(x)-g(x), z\right\| \\
&<\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
&=\varepsilon
\end{aligned}
$$

for each $x \in X$ and each nonzero $z \in Y$, which contradicts (3.2). Hence, $\left(m_{0}, n_{0}\right) \in$ $K_{1} \cup K_{2}$ and so $K \subset K_{1} \cup K_{2}$.
(ii) Let $\alpha \in \mathbb{R}(\alpha \neq 0)$ and for each $x \in X$ and each nonzero $z \in Y$,

$$
s t-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|
$$

Then, we get

$$
d_{2}\left(\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq \frac{\varepsilon}{|\alpha|}\right\}\right)=0
$$

Therefore, for each $x \in X$ and each nonzero $z \in Y$, we have

$$
\begin{aligned}
\{(m, n) \in \mathbb{N} \times \mathbb{N}: \| \alpha & \left.f_{m n}(x)-\alpha f(x), z \| \geq \varepsilon\right\} \\
& =\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:|\alpha|\left\|f_{m n}(x)-f(x), z\right\| \geq \varepsilon\right\} \\
& =\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq \frac{\varepsilon}{|\alpha|}\right\}
\end{aligned}
$$

Hence, density of the right hand side of above equality equals 0 . Therefore, for each $x \in X$ and each nonzero $z \in Y$, we have

$$
s t-\lim _{m, n \rightarrow \infty}\left\|\alpha f_{m n}(x), z\right\|=\|\alpha f(x), z\| .
$$

Theorem 3.6. A double sequence of functions $\left\{f_{m n}\right\}$ is pointwise statistically convergent to a function f if and only if there exists a subset $K_{x}=\{(m, n)\} \subseteq \mathbb{N} \times \mathbb{N}$, $m, n=1,2, \ldots$ for each (fixed) $x \in X d_{2}\left(K_{x}\right)=1$ and $\lim _{m \rightarrow \infty}\left\|f_{m n}(x), z\right\|=$ $\|f(x), z\|$ for each (fixed) $x \in X$ and each nonzero $z \in Y$.

Proof. Let $s t_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|$. For $r=1,2, \ldots$ put

$$
K_{r, x}=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x), z\right\| \geq \frac{1}{r}\right\}
$$

and

$$
M_{r, x}=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x), z\right\|<\frac{1}{r}\right\}
$$

for each (fixed) $x \in X$ and each nonzero $z \in Y$. Then, $d_{2}\left(K_{r, x}\right)=0$ and

$$
\begin{equation*}
M_{1, x} \supset M_{2, x} \supset \ldots \supset M_{i, x} \supset M_{i+1, x} \supset \ldots \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{2}\left(M_{r, x}\right)=1, \quad r=1,2, \ldots \tag{3.4}
\end{equation*}
$$

for each (fixed) $x \in X$ and each nonzero $z \in Y$.
Now, we have to show that for $(m, n) \in M_{r, x},\left\{f_{m n}\right\}$ is convergent to f. Suppose that $\left\{f_{m n}\right\}$ is not convergent to f. Therefore, there is $\varepsilon>0$ such that

$$
\left\|f_{m n}(x), z\right\|=\|f(x), z\| \geq \varepsilon
$$

for infinitely many terms and some $x \in X$ and each nonzero $z \in Y$. Let

$$
M_{\varepsilon, x}=\left\{(m, n):\left\|f_{m n}(x)-f(x), z\right\|<\varepsilon\right\}
$$

and $\varepsilon>\frac{1}{r}(r=1,2, \ldots)$. Then, $d_{2}\left(M_{\varepsilon, x}\right)=0$ and by (3.3) $M_{r, x} \subset\left(M_{\varepsilon, x}\right)$. Hence, $d_{2}\left(M_{r, x}\right)=0$ which contradicts (3.4). Therefore, $\left\{f_{m n}\right\}$ is convergent to f.

Conversely, suppose that there exists a subset $K_{x}=\{(m, n)\} \subseteq \mathbb{N} \times \mathbb{N}$ for each (fixed) $x \in X$ and each nonzero $z \in Y$ such that $d_{2}\left(K_{x}\right)=1$ and $\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=$ $\|f(x), z\|$, i.e., there exist an $N(x, \varepsilon)$ such that for each (fixed) $x \in X$, each nonzero $z \in Y$ and each $\varepsilon>0, m, n \geq N$ implies $\left\|f_{m n}(x), z\right\|=\|f(x), z\|<\varepsilon$. Now,

$$
K_{\varepsilon, x}=\left\{(m, n):\left\|f_{m n}(x), z\right\| \geq \varepsilon\right\} \subseteq \mathbb{N} \times \mathbb{N}-\left\{\left(m_{N+1}, n_{N+1}\right),\left(m_{N+2}, n_{N+2}\right), \ldots\right\}
$$

for each (fixed) $x \in X$ and each nonzero $z \in Y$. Therefore, $d_{2}\left(K_{\varepsilon, x}\right) \leq 1-1=0$ for each (fixed) $x \in X$ and each nonzero $z \in Y$. Hence, $\left\{f_{m n}\right\}$ is pointwise statistically convergent to f.

Definition 3.4. A double sequence of functions $\left\{f_{m n}\right\}$ is said to uniformly statistically convergent to f, if for every $\varepsilon>0$ and for each nonzero $z \in Y$,

$$
\lim _{i, j \rightarrow \infty} \frac{1}{i j}\left|\left\{(m, n), m \leq i, n \leq j:\left\|f_{m n}(x)-f(x), z\right\| \geq \varepsilon\right\}\right|=0
$$

for all $x \in X$. That is, for all $x \in X$ and for each nonzero $z \in Y$

$$
\begin{equation*}
\left\|f_{m n}(x)-f(x), z\right\|<\varepsilon, \quad \text { a.a } \quad(m, n) . \tag{3.5}
\end{equation*}
$$

In this case, we write $f_{m n} \rightrightarrows_{s t} f\left(\|., .\|_{Y}\right)$.
Theorem 3.7. Let D be a compact subset of X and f and $\left\{f_{m n}\right\}, m, n=1,2, \ldots$ be continuous functions on D. Then,

$$
f_{m n} \rightrightarrows s t=f\left(\|., .\|_{Y}\right)
$$

on D if and only if

$$
s t_{2}-\lim _{m, n \rightarrow \infty}\left\|c_{m n}(x), z\right\|=0
$$

where $c_{m n}=\max _{x \in S}\left\|f_{m n}(x)-f(x), z\right\|$.
Proof. Suppose that $\left\{f_{m n}\right\}$ uniformly statistically convergent to f on D. Since f and $\left\{f_{m n}\right\}$ are continuous functions on D, so $\left(f_{m n}(x)-f(x)\right)$ is continuous on D, for each $m, n \in \mathbb{N}$. By statistically convergence for $\varepsilon>0$

$$
d_{2}\left(\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq \varepsilon\right\}\right)=0
$$

for each $x \in D$ and for each nonzero $z \in Y$. Hence, for $\varepsilon>0$ it is clear that

$$
c_{m n}=\max _{x \in D}\left\|f_{m n}(x)-f(x), z\right\| \geq\left\|f_{m n}(x)-f(x), z\right\| \geq \frac{\varepsilon}{2}
$$

for each $x \in D$ and for each nonzero $z \in Y$. Thus we have

$$
s t-\lim _{m, n \rightarrow \infty} c_{m n}=0
$$

Now, suppose that $s t-\lim _{m, n \rightarrow \infty} c_{m n}=0$. We let following set

$$
A(\varepsilon)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}: \max _{x \in D}\left\|f_{m n}(x)-f(x), z\right\| \geq \varepsilon\right\}
$$

for $\varepsilon>0$ and for each nonzero $z \in Y$. Then, by hypothesis we have $d_{2}(A(\varepsilon))=0$. Since for $\varepsilon>0$

$$
\max _{x \in D}\left\|f_{m n}(x)-f(x), z\right\| \geq\left\|f_{m n}(x)-f(x), z\right\| \geq \varepsilon
$$

we have

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq \varepsilon\right\} \subset A(\varepsilon)
$$

and so

$$
d_{2}\left(\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq \varepsilon\right\}\right)=0
$$

for each $x \in D$ and for each nonzero $z \in Y$. This proves the theorem.

Now, we can give the relations between well-known convergence models and our studied models as the following result.

Corollary 3.1. (i) $f_{m n} \rightrightarrows f\left(\|., .\|_{Y}\right) \Rightarrow f_{m n} \longrightarrow f\left(\|., .\|_{Y}\right) \Rightarrow f_{m n} \longrightarrow_{s t} f\left(\|., .\|_{Y}\right)$.
(ii) $f_{m n} \rightrightarrows f\left(\|., .\|_{Y}\right) \Rightarrow f_{m n} \rightrightarrows s t=\left(\|.,\|_{Y}\right) \Rightarrow f_{m n} \longrightarrow_{s t} f\left(\|., .\|_{Y}\right)$.

Now, we give the concept of statistical Cauchy sequence and investigate relationships between statistical Cauchy sequence and statistical convergence of double sequences of functions in 2-normed space.

Definition 3.5. The double sequences of functions $\left\{f_{m n}\right\}$ is said to be statistically Cauchy sequence, if for every $\varepsilon>0$ and each nonzero $z \in Y$, there exist two numbers $k=k(\varepsilon, z), t=t(\varepsilon, z)$ such that
$d_{2}\left(\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f_{k t}(x), z\right\| \geq \varepsilon\right\}\right)=0$, for each (fixed) $x \in X$,
i.e., for each nonzero $z \in Y$,

$$
\left\|f_{n m}(x)-f_{k t}(x), z\right\|<\varepsilon, \quad \text { a.a. }(m, n)
$$

Theorem 3.8. Let $\left\{f_{m n}\right\}$ be a statistically Cauchy sequence of double sequence of functions in a finite dimensional 2-normed space ($X,\|.,$.$\|). Then, there exists a$ convergent sequence of double sequences of functions $\left\{g_{m n}\right\}$ in $(X,\|.,\|$.$) such that$ $f_{m n}=g_{m n}$, for a.a. (m, n).

Proof. First note that $\left\{f_{m n}\right\}$ is a statistically Cauchy sequence of functions in $\left(X,\|\cdot\|_{\infty}\right)$. Choose a natural number $k(1)$ and $j(1)$ such that the closed ball $B_{u}^{1}=$ $B_{u}\left(f_{k(1) j(1)}(x), 1\right)$ contains $f_{m n}(x)$ for a.a. (m, n) and for each $x \in X$. Then, choose a natural number $k(2)$ and $j(2)$ such that the closed ball $B_{2}=B_{u}\left(f_{k(2) j(2)}(x), \frac{1}{2}\right)$ contains $f_{m n}(x)$ for a.a. (m, n) and for each $x \in X$. Note that $B_{u}^{2}=B_{u}^{1} \cap B_{2}$ also contains $f_{m n}(x)$ for a.a. (m, n) and for each $x \in X$. Thus, by continuing of this process, we can obtain a sequence $\left\{B_{u}^{r}\right\}_{r \geq 1}$ of nested closed balls such that diam $\left(B_{u}^{r}\right) \leq \frac{1}{2^{r}}$. Therefore,

$$
\bigcap_{r=1}^{\infty} B_{u}^{r}=\{h(x)\}
$$

where h is a function from X to Y. Since each B_{u}^{r} contains $f_{m n}(x)$ for a.a. (m, n) and for each $x \in X$, we can choose a sequence of strictly increasing natural numbers $\left\{S_{r}\right\}_{r \geq 1}$ such that for each $x \in X$,

$$
\frac{1}{m n}\left|\left\{(m, n) \in \mathbb{N} \times \mathbb{N}: f_{m n}(x) \notin B_{u}^{r}\right\}\right|<\frac{1}{r}, \text { if } m, n>S_{r}
$$

Put $T_{r}=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}: m, n>S_{r}, f_{m n}(x) \notin B_{u}^{r}\right\}$ for each $x \in X$, for all $r \geq 1$ and $R=\bigcup_{r=1}^{\infty} R_{r}$. Now, for each $x \in X$, define the sequence of functions $\left\{g_{m n}\right\}$ as following

$$
g_{m n}(x)=\left\{\begin{array}{ccc}
h(x) & , \quad \text { if } \quad(m, n) \in R \times R \\
f_{m n}(x) & , \quad \text { otherwise }
\end{array}\right.
$$

Note that, $\lim _{m, n \rightarrow \infty} g_{m n}(x)=h(x)$, for each $x \in X$. In fact, for each $\varepsilon>0$ and for each $x \in X$, choose a natural number m such that $\varepsilon>\frac{1}{r}>0$. Then, for each $m, n>S_{r}$ and for each $x \in X, g_{m n}(x)=h(x)$ or $g_{m n}(x)=f_{m n}(x) \in B_{u}^{r}$ and so in each case

$$
\left\|g_{m n}(x)-h(x)\right\|_{\infty} \leq \operatorname{diam}\left(B_{u}^{r}\right) \leq \frac{1}{2^{r-1}}
$$

Since, for each $x \in X$,

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}: g_{m n}(x) \neq f_{n}(x)\right\} \subseteq\left\{(m, n) \in \mathbb{N} \times \mathbb{N}: f_{m n}(x) \notin B_{u}^{r}\right\}
$$

we have

$$
\begin{aligned}
\left.\frac{1}{m n} \right\rvert\,\{(m, n) \in \mathbb{N} & \left.\times \mathbb{N}: g_{m n}(x) \neq f_{m n}(x)\right\} \mid \\
& \leq \frac{1}{m n}\left|\left\{(n, m) \in \mathbb{N} \times \mathbb{N}: f_{m n}(x) \notin B_{u}^{r}\right\}\right| \\
& <\frac{1}{r}
\end{aligned}
$$

and so

$$
d_{2}\left(\left\{(m, n) \in \mathbb{N} \times \mathbb{N}: g_{m n}(x) \neq f_{m n}(x)\right\}\right)=0 .
$$

Thus, $g_{m n}(x)=f_{m n}(x)$ for a.a. m, n and for each $x \in X$ in $\left(X,\|\cdot\|_{\infty}\right)$. Suppose that $\left\{u_{1}, \ldots, u_{d}\right\}$ is a basis for $(X,\|.\|$,$) . Since, for each x \in X$,

$$
\lim _{m, n \rightarrow \infty}\left\|g_{m n}(x)-h(x)\right\|_{\infty}=0 \text { and }\left\|g_{m n}(x)-h(x), u_{i}\right\| \leq\left\|g_{m n}(x)-h(x)\right\|_{\infty}
$$

for all $1 \leq i \leq d$, then we have

$$
\lim _{m, n \rightarrow \infty}\left\|g_{m n}(x)-h(x), z\right\|_{\infty}=0
$$

for each $x \in X$ and each nonzero $z \in X$. It completes the proof.
Theorem 3.9. The sequence $\left\{f_{m n}\right\}$ is statistically convergent if and only if $\left\{f_{m n}\right\}$ is a statistically Cauchy sequence of double sequence of functions.

Proof. Assume that f be function from X to Y and $s t-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=$ $\|f(x), z\|$ for each $x \in X$ and each nonzero $z \in Y$ and $\varepsilon>0$. Then, for each $x \in X$ and each nonzero $z \in Y$, we have

$$
\left\|f_{m n}(x)-f(x), z\right\|<\frac{\varepsilon}{2}, \quad \text { a.a. } \quad(m, n)
$$

If $k=k(\varepsilon, z)$ and $t=t(\varepsilon, z)$ are chosen so that for each $x \in X$ and each nonzero $z \in Y$,

$$
\left\|f_{k t}(x)-f(x), z\right\|<\frac{\varepsilon}{2},
$$

and so we have

$$
\begin{aligned}
\left\|f_{m n}(x)-f_{k t}(x), z\right\| & \leq\left\|f_{m n}(x)-f(x), z\right\|+\left\|f(x)-f_{k t}(x), z\right\| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon, \quad \text { a.a. } \quad(m, n) .
\end{aligned}
$$

Hence, $\left\{f_{m n}\right\}$ is statistically Cauchy sequence of double sequence of functions.
Now, assume that $\left\{f_{m n}\right\}$ is statistically Cauchy sequence of double sequence of function. By Theorem 3.8, there exists a convergent sequence $\left\{g_{m n}\right\}$ from X to Y such that $f_{m n}=g_{m n}$ for a.a. (m, n). By Theorem 3.3, we have

$$
s t-\lim \left\|f_{m n}(x), z\right\|=\|f(x), z\|,
$$

for each $x \in X$ and each nonzero $z \in Y$.
Theorem 3.10. Let $\left\{f_{m n}\right\}$ be a double sequence of functions. The following statements are equivalent
(i) $\left\{f_{m n}\right\}$ is (pointwise) statistically convergent to $f(x)$,
(ii) $\left\{f_{m n}\right\}$ is statistically Cauchy,
(iii) There exisits a subsequence $\left\{g_{m n}\right\}$ of $\left\{f_{m n}\right\}$ such that $\lim _{m, n \rightarrow \infty}\left\|g_{m n}(x), z\right\|=$ $\|f(x), z\|$.

Proof. Proof of this Theorem is as an immediate consequence of Theorem 3.6 and Theorem 3.9.

Definition 3.6. Let D be a compact subset of X and $\left\{f_{m n}\right\}$ be a double sequence of functions on D. $\left\{f_{m n}\right\}$ is said to be statistically uniform Cauchy if for every $\varepsilon>0$ and each nonzero $z \in Y$, there exists $k=k(\varepsilon, z), t=t(\varepsilon, z)$ such that

$$
d_{2}\left(\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f_{k t}(x), z\right\| \geq \varepsilon\right\}\right)=0
$$

for all $x \in X$.
Theorem 3.11. Let D be a compact subset of X and $\left\{f_{m n}\right\}$, be a sequence of bounded functions on D. Then, $\left\{f_{m n}\right\}$ is uniformly statistically convergent if and only if it is uniformly statistically Cauchy on D.

Proof. Proof of this theorem is similar the Theorem 3.9. So, we omit it.

REFERENCES

1. M. Arslan, E. Dündar, I-Convergence and I-Cauchy Sequence of Functions In 2-Normed Spaces, Konuralp Journal of Mathematics, 6(1) (2018), 57-62.
2. M. Arslan, E. Dündar, On \mathcal{I}-Convergence of sequences of functions in 2-normed spaces, Southeast Asian Bulletin of Mathematics, 42 (2018), 491-502.
3. M. Arslan, E. Dündar, Rough convergence in 2-normed spaces, Bulletin of Mathematical Analysis and Applications, 10(3) (2018), 1-9.
4. V. Baláz, J. C̆erven̆anský, P. Kostyrko, T. S̆ Slát, I-convergence and Icontinuity of real functions, Acta Mathematica, Faculty of Natural Sciences, Constantine the Philosopher University, Nitra, 5 (2004), 43-50.
5. M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007), 715-729.
6. H. Çakalli, S. Ersan, New types of continuity in 2-normed spaces, Filomat, 30(3) (2016), 525-532.
7. O. Duman, C. Orhan, μ-statistically convergent function sequences, Czechoslovak Mathematical Journal, 54(129) (2004), 413-422.
8. E. Dündar, B. Altay, \mathcal{I}_{2}-convergence of double sequences of functions, Electronic Journal of Mathematical Analysis and Applications, 3(1) (2015), 111-121.
9. E. Dündar, B. Altay, \mathcal{I}_{2}-uniform convergence of double sequences of functions, Filomat, 30(5) (2016), 1273-1281.
10. E. Dündar, B. Altay, \mathcal{I}_{2}-convergence and \mathcal{I}_{2}-Cauchy of double sequences, Acta Mathematica Scientia, 34(2) (2014), 343-353.
11. E. Dündar, B. Altay, On some properties of \mathcal{I}_{2}-convergence and \mathcal{I}_{2}-Cauchy of double sequences, Gen. Math. Notes, 7(1) (2011), 1-12.
12. E. Dündar, Ö. Talo, \mathcal{I}_{2}-convergence of double sequences of fuzzy numbers, Iranian Journal of Fuzzy Systems, 10(3) (2013), 37-50.
13. E. Dündar, B. Altay, Multipliers for bounded \mathcal{I}_{2}-convergent of double sequences, Math. Comput. Modelling, 55(3-4) (2012), 1193-1198.
14. E. Dündar, On some results of \mathcal{I}_{2}-convergence of double sequences of functions, Mathematical Analysis Sciences and Applications E-notes, 3(1) (2015), 44-52.
15. E. Dündar, M. Arslan, S. Yegül ,On \mathcal{I}-Uniform Convergence of Sequences of Functions In 2-Normed Spaces, (Under Review).
16. H. FAst, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
17. J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
18. S. Gähler, 2-metrische Räume und ihre topologische struktur, Math. Nachr. 26 (1963), 115-148.
19. S. GÄHLER, 2-normed spaces, Math. Nachr. 28 (1964), 1-43.
20. F. Gezer, S. Karakuş, \mathcal{I} and \mathcal{I}^{*} convergent function sequences, Math. Commun. 10 (2005), 71-80.
21. A. GÖkhan, M. Güngör, On pointwise statistical convergence, Indian J. Pure Appl. Math., 33(9) (2002), 1379-1384.
22. A. GÖKhan, M. GÜngör, M. Et, Statistical convergence of double sequences of real-valued functions, Int. Math. Forum, 2(8) (2007), 365-374.
23. H. Gunawan, M. Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math. 27 (3) (2001), 321-329.
24. M. Gürdal, S. Pehlivan, The statistical convergence in 2-Banach spaces, Thai J. Math. 2 (1) (2004), 107-113.
25. M. Gürdal, S. Pehlivan, Statistical convergence in 2-normed spaces, Southeast Asian Bulletin of Mathematics, 33 (2009), 257-264.
26. M. Gürdal, I. Açik, On \mathcal{I}-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl. 11 (2) (2008), 349-354.
27. M. Gürdal, On ideal convergent sequences in 2-normed spaces, Thai J. Math. 4 (1) (2006), 85-91.
28. M. Mursaleen, S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca 62 (2012), 49-62.
29. M. Mursaleen, A. Alotaibi, On \mathcal{I}-convergence in random 2-normed spaces, Math. Slovaca 61 (6) (2011), 933-940.
30. F. Nuray, U. Ulusu, E. Dündar, Lacunary statistical convergence of double sequences of sets, Soft Computing, 20(7) (2016), 2883-2888.
31. S. Sarabadan, S. Talebi, Statistical convergence and ideal convergence of sequences of functions in 2-normed spaces, Internat. J. Math. Math. Sci. 2011 (2011), 10 pages.
32. A. Sharma, K. Kumar, Statistical convergence in probabilistic 2-normed spaces, Mathematical Sciences, 2(4) (2008), 373-390.
33. A. Şahiner, M. Gürdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math. 11 (2007), 1477-1484.
34. E. Savaş, M. Gürdal, Ideal Convergent Function Sequences in Random 2-Normed Spaces, Filomat, 30(3) (2016), 557-567.
35. I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
36. U. Ulusu, E. Dündar, I-Lacunary Statistical Convergence of Sequences of Sets, Filomat, 28(8) (2014), 1567-1574.
37. S. Yegül, E. Dündar, On Statistical Convergence of Sequences of Functions In 2-Normed Spaces, Journal of Classical Analysis, 10(1) (2017), 49-57.

Sevim Yegül
Hoca Ahmet Yesevi Mah.
1007. Sok. Yeşil Pınar Sitesi
03200 Afyonkarahisar, Turkey
sevimyegull@gmail.com
Erdinç Dündar
Faculty of Science
Department of Mathematics
03200 Afyonkarahisar, Turkey
edundar@aku.edu.tr and erdincdundar79@gmail.com

[^0]: Received September 18, 2018; accepted October 29, 2018
 2010 Mathematics Subject Classification. Primary 40A30, 40A35, Secondary 46A70

