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Abstract. In this paper, we give the definitions of statistical inner and outer limits for sequences of closed
sets in metric spaces. We investigate some properties of statistical inner and outer limits. For sequences of
closed sets if its statistical outer and statistical inner limits coincide, we say that the sequence is Kuratowski
statistically convergent. We prove some proporties for Kuratowski statistically convergent sequences.
Also, we examine the relationship between Kuratowski statistical convergence and Hausdorff statistical
convergence.

1. Introduction

Let K be a subset of positive integers N and K(n) = |{k ≤ n : k ∈ K}|, where |A| denotes the number of
elements in A. The natural density of K is given by

δ(K) = lim
n→∞

1
n

K(n)

if this limit exists.
Statistical convergence of a sequence of scalars was introduced by Fast [6]. A sequence x = (xk) is said

to be statistically convergent to the number L if the set

{k ∈N : |xk − L| ≥ ε}

has natural density zero for every ε > 0, i.e.

lim
n→∞

1
n

∣∣∣{k ≤ n : |xk − L| ≥ ε}
∣∣∣ = 0.

In this case we write

st− lim
k→∞

xk = L. (1)
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Lemma 1.1. [15, Lemma 1.1] Statement (1) holds if and only if there exists a set

K = {k1 < k2 < k3 < · · · } ⊆N

such that δ(K) = 1 and lim
n→∞

xkn = L.

The concepts of statistical limit superior and statistical limit inferior were introduced by Fridy and Orhan
[8]. For a sequence of real numbers x = (xk), the notions of statistical limit inferior and limit superior are
defined as follows:

st − lim inf x :=
{

inf Ax, Ax , ∅,
∞, otherwise,

st − lim sup x :=
{

sup Bx, Bx , ∅,
−∞, otherwise,

where

Ax := {a ∈ R : δ({k ∈N : xk < a}) , 0} ,
Bx := {b ∈ R : δ({k ∈N : xk > b}) , 0} .

Lemma 1.2. [8] If β = st − lim sup x is finite, then for every ε > 0,

δ
(
{k ∈N : xk > β − ε}

)
, 0 and δ

(
{k ∈N : xk > β + ε}

)
= 0. (2)

Conversely, if (2) holds for every ε > 0 then β = st − lim sup x.

The dual statement for st − lim inf x is as follows:

Lemma 1.3. [8] If α = st − lim inf x is finite, then for every ε > 0,

δ ({k ∈N : xk < α + ε}) , 0 and δ ({k ∈N : xk < α − ε}) = 0. (3)

Conversely, if (3) holds for every ε > 0 then α = st − lim inf x.

The statement δ(K) , 0 means that either δ(K) > 0 or δ(K) is not defined (i.e. K does not have natural
density).

The idea of statistical convergence can be extended to a sequence of points of a metric space (see [5]).
We say that a sequence x = (xk) of points of a metric space (X, d) statistically converges to a point ξ ∈ X if
for each ε > 0 we have

δ({k ∈N : d(xk, ξ) ≥ ε}) = 0.

A point ξ ∈ X is called a statistical limit point of a sequence x = (xk) if there is a set K = {k1 < k2 < k3 < · · · }
with δ(K) , 0 such that xkn → ξ as n → ∞. The set of all statistical limit points of a sequence x will be
denoted by Λx.

A point ξ ∈ X is called a statistical cluster point of x = (xk) if for any ε > 0,

δ
({

k ∈N : d(xk, ξ) < ε
})
, 0.

The set of all statistical cluster points of x will be denoted by Γx.
Let Lx denote the set of all limit points ξ (accumulation points) of the sequence x; i.e., ξ ∈ Lx if there

exists an infinite set K = {k1 < k2 < k3 < · · · } such that xkn → ξ as n→∞.
Obviously we have Λx ⊆ Γx ⊆ Lx.

Lemma 1.4. [5, Lemma 3.1] Let (X, d) be a metric space and K be a compact subset of X. Then, we have K ∩ Γx , ∅
for every x = (xn) with δ({n ∈N : xn ∈ K}) , 0.
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The concept of statistical convergence has been studied by many authors, see for instance [7, 9, 13, 15, 19].
Let (X, d) be a metric space. The distance between a subset A of X and x ∈ X is given by

d(x,A) = inf{d(x, y) : y ∈ A},

where it is understood that the infimum of d(x, .) is∞ if A = ∅. For each closed subset A of X, the function
x→ d(.,A) is Lipschitz continuous, i.e. for each x, y ∈ X∣∣∣d(x,A) − d(y,A)

∣∣∣ ≤ d(x, y). (4)

The open ball with center x and radius ε > 0 in X is denoted by B(x, ε), i.e.

B(x, ε) = {y ∈ X | d(x, y) < ε}.

Also, for any set A and ε > 0, we write

B(A, ε) = {x ∈ X | d(x,A) < ε}.

By Ω(x), we denote the set of neighborhoods of x.
Let us recall some basic properties of Kuratowski convergence. Alternatively, in the literature, conver-

gence in this sense may be called Painlevé-Kuratowski convergence. We use the following notation:

N := {N ⊆N :N\N finite}
:= {subsequences ofN contain all positive integers beyond some positive integer n0}

N
# := {N ⊆N : N infinite} = {all subsequences ofN}.

We write limn→∞ when n → ∞ as usual in N , but limn∈N in the case of convergence of a subsequence
designated by an index set N inN orN#.

Definition 1.5. (Inner and outer limits) Let (X, d) be a metric space. For a sequence (An) of closed subsets of X; the
outer limit is the set

lim sup
n→∞

An :=
{
x | ∀ V ∈ Ω(x), ∃N ∈ N#, ∀n ∈ N : An ∩ V , ∅

}
:=

{
x | ∃N ∈ N#, ∀n ∈ N, ∃xn ∈ An : lim

n∈N
xn = x

}
,

while the inner limit is the set

lim inf
n→∞

An :=
{
x | ∀ V ∈ Ω(x), ∃N ∈ N , ∀n ∈ N : An ∩ V , ∅

}
:=

{
x | ∃N ∈ N , ∀n ∈ N, ∃xn ∈ An : lim

n∈N
xn = x

}
.

The limit of a sequence (An) of closed subsets of X exists if the outer and inner limit sets are equal, that is,

lim
n→∞

An = lim inf
n→∞

An = lim sup
n→∞

An.

Inner and outer limits can also be expressed in terms of distance functions or operations of intersection
and union.

Proposition 1.6. (characterizations of set limits)

lim sup
n→∞

An =
{
x | lim inf

n→∞
d(x,An) = 0

}
,

lim inf
n→∞

An =
{
x | lim sup

n→∞
d(x,An) = 0

}
,

lim sup
n→∞

An =
⋂
N∈N

cl
⋃
n∈N

An,

lim inf
n→∞

An =
⋂

N∈N#

cl
⋃
n∈N

An.
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For more result on inner and outer limits of sequences of sets we refer to [11, 14, 16]. Concerning other
types of convergence the reader could consult the book of G. Beer [3] and the survey paper of Baronti and
Papini [2]. See also [4, 17, 18, 20, 21].

2. Kuratowski Statistical Convergence

In this section, we introduce Kuratowski statistical convergence of sequences of closed sets. For oper-
ational reasons in handling statements about sequences, it will be convenient to work with the following
collections of subsets ofN

S := {N ⊆N : δ(N) = 1} and S
# := {N ⊆N : δ(N) , 0}.

Firstly, we define the statistical analogues for inner and outer limits of a sequence of closed sets as
follows.

Definition 2.1. Let (X, d) be a metric space. The statistical outer limit and statistical inner limit of a sequence (An)
of closed subsets of X are defined as follows:

st − lim sup
n→∞

An :=
{
x | ∀ V ∈ Ω(x), ∃N ∈ S#, ∀n ∈ N : An ∩ V , ∅

}
and

st − lim inf
n→∞

An :=
{
x | ∀ V ∈ Ω(x), ∃N ∈ S, ∀n ∈ N : An ∩ V , ∅

}
.

The statistical limit of a sequence (An) exists if its statistical outer and statistical inner limits coincide. In this situation
we say that the sequence is Kuratowski statistically convergent and we write

st − lim inf
n→∞

An = st − lim sup
n→∞

An = st − lim
n→∞

An.

Moreover, we always have that

st − lim inf
n→∞

An ⊆ st − lim sup
n→∞

An

so that in fact, st − limn→∞ An = A if and only if the inclusion

st − lim sup
n→∞

An ⊆ A ⊆ st − lim inf
n→∞

An

holds. SinceN ⊆ S and S#
⊆ N

#, it is clear that

lim inf
n→∞

An ⊆ st − lim inf
n→∞

An ⊆ st − lim sup
n→∞

An ⊆ lim sup
n→∞

An. (5)

Example 2.2. Let us define the sequence (An) ⊆ R by

An =


[−4, 1] , if n is an even square,
[−1, 4] , if n is an odd square,
[−3, 2] , if n is an even nonsquare,
[−2, 3] , if n is an odd nonsquare.

Then st − lim infn→∞ An = [−2, 2], st − lim supn→∞ An = [−3, 3], lim infn→∞ An = [−1, 1] and lim supn→∞ An =
[−4, 4]. So (An) is not Kuratowski statistically convergent.

From the inclusion (5), Kuratowski convergence implies Kuratowski statistical convergence, i.e.

lim
n→∞

An = A implies st − lim
n→∞

An = A.

But, the converse of this claim does not hold in general, as seen in the following example.
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Example 2.3. Let A and B be two different nonempty closed sets in X. Define

An :=
{

A , n = k2 for k ∈N,
B , otherwise.

Then, st − limn→∞ An = B. However, lim infn→∞ An = A ∩ B and lim supn→∞ An = A ∪ B. So, (An) is not
Kuratowski convergent.

Without loss of generality, the neighborhoods V in Definition 2.1 can be taken to be of the form B(x, ε).
So, the formulas can be written just as well as

st − lim sup
n→∞

An :=
{
x | ∀ε > 0, ∃N ∈ S#, ∀n ∈ N : An ∩ B(x, ε) , ∅

}
,

st − lim inf
n→∞

An :=
{
x | ∀ε > 0, ∃N ∈ S, ∀n ∈ N : An ∩ B(x, ε) , ∅

}
.

Proposition 2.4. Let (X, d) be a metric space and (An) be a sequence of closed subsets of X. Then

st − lim inf
n→∞

An =
⋂

N∈S#

cl
⋃
n∈N

An and st − lim sup
n→∞

An =
⋂
N∈S

cl
⋃
n∈N

An

Proof. We prove only the first equality. Let x ∈ st − lim infn→∞ An be arbitrary and N ∈ S# be arbitrary. For
every ε > 0 there exists N1 ∈ S such that for every n ∈ N1

An ∩ B(x, ε) , ∅.

Since N ∩N1 , ∅, there exists n0 ∈ N ∩N1 and An0 ∩ B(x, ε) , ∅. Therefore,⋃
n∈N

An

 ∩ B(x, ε) , ∅.

This means that x ∈ cl
⋃

n∈N An. This holds for any N ∈ S#. Consequently,

x ∈
⋂

N∈S#

cl
⋃
n∈N

An.

For the reverse inclusion, suppose that x < st − lim infn→∞ An. Then, there exists ε > 0 such that

δ
({

n ∈N : An ∩ B(x, ε) , ∅
})
, 1

and so, the set

N =
{
n ∈N : An ∩ B(x, ε) = ∅

}
does not have density zero, i.e. N ∈ S#. Thus⋃

n∈N

An

 ∩ B(x, ε) = ∅.

This means that x < cl
⋃

n∈N An. This completes the proof.

As a result of Proposition 2.4, given any sequence (An), st − lim infn→∞ An and st − lim supn→∞ An are
closed.
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Proposition 2.5. Let (X, d) be a metric space and (An) be a sequence of closed subsets of X. Then

st − lim sup
n→∞

An =
{
x | st − lim inf

n→∞
d(x,An) = 0

}
,

st − lim inf
n→∞

An =
{
x | st − lim

n→∞
d(x,An) = 0

}
.

Proof. For any closed set A we have

d(x,A) < ε ⇔ A ∩ B(x, ε) , ∅. (6)

Suppose that st − lim infn→∞ d(x,An) = 0. Then for every ε > 0

δ
({

n ∈N : d(x,An) < ε
})
, 0.

By (6), we have x ∈ st − lim supn→∞ An.
Now, we show the reverse inclusion. Let x ∈ st− lim supn→∞ An. Then for every ε > 0 there exists N ∈ S#

such that An ∩ B(x, ε) , ∅ for every n ∈ N. Since

N ⊆
{
n ∈N : An ∩ B(x, ε) , ∅

}
,

we obtain

δ
({

n ∈N : An ∩ B(x, ε) , ∅
})
, 0.

By (6) and Lemma 1.3, we have st − lim infn→∞ d(x,An) = 0.
Similarly, for any closed set A

d(x,A) ≥ ε⇔ A ∩ B(x, ε) = ∅. (7)

Now, the second equality can be obtained by using (7).

Proposition 2.6. Let (X, d) be a metric space and (An) be a sequence of closed subsets of X. Then

st − lim inf
n→∞

An =
{
x | ∃N ∈ S, ∀n ∈ N, ∃yn ∈ An : lim

n→∞
yn = x

}
. (8)

Proof. Suppose that x ∈ st − lim infn→∞ An and define K j by

K j =

{
n ∈N : An ∩ B

(
x,

1
j

)
, ∅

}
=

{
n ∈N : ∃yn ∈ An and d(x, yn) <

1
j

}
for all j ∈ N. Then, we have by Definition 2.1 that δ(K j) = 1. It is evident from the definition of K j with
j ∈N that

K1 ⊃ K2 ⊃ K3 ⊃ · · · ⊃ K j ⊃ K j+1 · · ·

By the proof of Lemma 1.1 in [15] we can construct the strictly increasing sequence (v j) of positive integers
that v j ∈ K j for all j ∈N and

K j(n)
n

>
j − 1

j

for each n ≥ v j. Again by the proof of Lemma 1.1 in [15], we construct the set K as follows:

K =
(
[1, v1) ∩N

)
∪

(
[v1, v2) ∩ K1

)
∪

(
[v2, v3) ∩ K2

)
∪ · · ·
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It is clear that δ(K) = 1. Thus for each n ∈ K there exists yn ∈ An such that

lim
n∈K

yn = x.

Therefore x belongs to the set in the right-hand side of equality (8).
For the reverse inclusion assume that x belongs to the right-hand side set of the equality (8). Then, there

exist N ∈ S and the sequence {yn | yn ∈ An, n ∈ N} such that limn→∞ yn = x. If ε is an arbitrary given positive
number, then we can choose such a number n0 ∈N that for each n > n0, n ∈ N, we have yn ∈ B(x, ε). Define
the set M by M = N \ {1, 2, 3, . . . ,n0}. Then, M ∈ S and yn ∈ An ∩ B(x, ε) for each n ∈M. This means that the
sets An and B(x, ε) are not disjoint. Hence, x ∈ st − lim infn→∞ An.

Corollary 2.7. Let X be a normed linear space and (An) be a sequence of closed subsets of X. If there is a set K ∈ S
such that An is convex for each n ∈ K, then st− lim infn→∞ An is convex and so too, when it exists, is st− limn→∞ An.

Proof. Let st − lim infn→∞ An = A. If x1 and x2 belong to A, by Proposition 2.6, we can find for all n ∈ N in
some set N ∈ S points y1

n and y2
n in An such that limn→∞ y1

n = x1 and limn→∞ y2
n = x2. Since K ∈ S, we have

M ∈ Swith M = N ∩ K. Then for arbitrary λ ∈ [0, 1] and n ∈M let us define

yλn := (1 − λ)y1
n + λy2

n and xλ := (1 − λ)x1 + λx2.

Then

lim
n∈M

yλn = xλ.

By Proposition 2.6, we obtain xλ ∈ A. This means that A is convex.

Proposition 2.8. Let (X, d) be a metric space and (An) be a sequence of closed subsets of X. Then

st − lim sup
n→∞

An =
{
x | ∃N ∈ S#, ∀n ∈ N, ∃yn ∈ An : x ∈ Γy

}
. (9)

Proof. Let x ∈ st − lim supn→∞ An be arbitrary. By Proposition 2.5,

st − lim inf
n→∞

d(x,An) = 0.

By Lemma 1.3, for every ε > 0 the set{
n ∈N : d(x,An) <

ε
2

}
does not have density zero. Since An is closed, for n ∈ N, there exists yn ∈ An such that d(x, yn) ≤ 2d(x,An).
Now, we define the sequence {yn | yn ∈ An, n ∈N}. Then, clearly, x is a statistical cluster point of (yn). That
is, x ∈ Γy.

On the contrary, assume that x belongs to the right-hand side set of the equality (9). Then, there exist
N ∈ S# and the sequence {yn | yn ∈ An,n ∈ N} such that x ∈ Γy. That is, the set

{
n ∈N : d(x, yn) < ε

}
does not

have density zero for every ε > 0. The inequality d(x, yn) ≥ d(x,An) yields the inclusion

{n ∈N : d(x, yn) < ε
}
⊆ {n ∈N : d(x,An) < ε

}
.

So, the set

N
′

= {n ∈N : d(x,An) < ε
}

does not have density zero. That is, N′

∈ S
#. By (6), for every n ∈ N′

we obtain An ∩ B(x, ε) , ∅. This means
that x ∈ st − lim supn→∞ An.
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By Proposition 2.6 and Proposition 2.8, note that st − lim infn→∞ An is the set of statistical limits of the
sequences (yn)n∈N with yn ∈ An and st− lim supn→∞ An is the set of statistical cluster points of the sequences
(yn)n∈N with yn ∈ An.

Remark 2.9. In Proposition 2.8 the set of statistical cluster points can not be replaced by the set of statistical limit
points. Following Example 4 of [9] we let y = (yk) be the uniformly distributed sequence

(yk) = (0, 1, 0, 1/2, 1, 0, 1/3, 2/3, 1, 0, 1/4, 2/4, 3/4, 1 . . .)

and define

(Ak) = ({yk}) = ({0}, {1}, {0}, {1/2}, {1}, {0}, {1/3}, {2/3}, . . . ) .

In this case st − lim supn→∞ An = [0, 1]. Because for any x ∈ [0, 1] we have{
k ∈N : Ak ∩ B(x, ε) , ∅

}
= {k ∈N : yk ∈ (x − ε, x + ε)}.

So,

δ
({

k ∈N : Ak ∩ B(x, ε) , ∅
})
≥ ε > 0.

On the other hand, if x ∈ [0, 1] and {yk | yk ∈ Ak, k ∈ N ⊆ N} is a subsequence that converges to x, then we obtain
δ(N) = 0. That is N < S#. Therefore{

x | ∃N ∈ S#, ∀n ∈ N, ∃yn ∈ An : lim
n∈N

yn = x
}

= ∅.

Consequently

st − lim sup
n→∞

An ,
{
x | ∃N ∈ S#, ∀n ∈ N, ∃yn ∈ An : lim

n∈N
yn = x

}
.

Lemma 2.10. Let (An) and (Bn) be two sequences of closed subsets of a metric space X. If there is a set K ∈ S such
that An ⊆ Bn for each n ∈ K, then the inclusions

st − lim inf
n→∞

An ⊆ st − lim inf
n→∞

Bn and st − lim sup
n→∞

An ⊆ st − lim sup
n→∞

Bn

hold.

Proof. Since the second inclusion can be proved in the similar way, we prove only the first inclusion.
Suppose that there exists K ∈ S such that for each n ∈ K the inclusion An ⊆ Bn holds. In this case for
arbitrary x ∈ st − lim infn→∞ An, we obtain

d(x,Bn) ≤ d(x,An). (10)

By Proposition 2.5, we have

st − lim
n→∞

d(x,An) = 0. (11)

Consequently, combining (10) and (11), we have st − limn→∞ d(x,Bn) = 0. Namely x ∈ st − lim infn→∞ Bn.
This completes the proof.

Corollary 2.11. Let (An) and (Bn) be two sequences of closed subsets of a metric space X. Then, the following
statements hold:

(i) st − lim supn→∞(An ∩ Bn) ⊆ st − lim supn→∞ An ∩ st − lim supn→∞ Bn.

(ii) st − lim infn→∞(An ∩ Bn) ⊆ st − lim infn→∞ An ∩ st − lim infn→∞ Bn.

(iii) st − lim supn→∞(An ∪ Bn) = st − lim supn→∞ An ∪ st − lim supn→∞ Bn.
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(iv) st − lim infn→∞(An ∪ Bn) ⊇ st − lim infn→∞ An ∪ st − lim infn→∞ Bn.

Proof. For each n ∈N, the inclusions An ∩Bn ⊆ An, An ∩Bn ⊆ Bn, An ⊆ An ∪Bn and Bn ⊆ An ∪Bn hold. Now,
the proof is immediate by Lemma 2.10.

We prove two theorems related to Kuratowski statistical convergence. In the finite dimensional case,
Salinetti and Wets gave the corresponding results for Kuratowski convergence in [16].

Definition 2.12. A sequence (Ak) is said to be statistically increasing if there exists a subset K = {k1 < k2 < k3 <
· · · } ⊆ N such that δ(K) = 1 and Akn ⊆ Akn+1 for all n ∈ N. Similarly, a sequence (Ak) is said to be statistically
decreasing if there exists a subset K = {k1 < k2 < k3 < · · · } ⊆N such that δ(K) = 1 and Akn ⊇ Akn+1 for all n ∈N.

Theorem 2.13. Suppose that (Ak) is a statistically increasing sequence of closed subsets of X. Then st − limk→∞ Ak
exists and

st − lim
k→∞

Ak = cl
⋃
n∈N

Akn .

Proof. Let (Ak) be a statistically increasing sequence of closed subsets of X and A = cl
⋃

n∈N Akn . Then,
Akn ⊆ A for every n ∈ N. If A = ∅, then Akn = ∅ for every n ∈ N. So, st − limk→∞ Ak = ∅. Let A , ∅ and
x ∈ cl

⋃
n∈N Akn . In this case, for every ε > 0

B(x, ε) ∩
⋃
n∈N

Akn , ∅.

Then there exists n0 ∈N such that B(x, ε) ∩Akn0
, ∅. Since (Akn ) is an increasing sequence, Akn0

⊆ Akn for all
n ≥ n0. Define the set M by

M = {m | m = kn,n ≥ n0,n ∈N}.

Then, δ(M) = 1 and B(x, ε) ∩ Am , ∅ for all m ∈M. Consequently, we obtain x ∈ st − lim infn→∞ An.
Now we show that st− lim supk→∞ Ak ⊆ A. Let x ∈ st− lim supk→∞ Ak be arbitrary. Then, for every ε > 0

there exists N ∈ S# such that Ak ∩ B(x, ε) , ∅ for every k ∈ N. Since δ(K) = 1 and δ(N) , 0, the set K ∩N is
nonempty. So, there exists kn0 ∈ K ∩N such that B(x, ε) ∩ Akn0

, ∅. Therefore we obtain

B(x, ε) ∩
⋃
n∈N

Akn , ∅.

This means that x ∈ cl
⋃

n∈N Akn . This completes the proof.

Example 2.14. Define

Ak =


{
(x, y) ∈ R2 : (x − 1)2 + y2

≤
1
k

}
, if k is a prime number,{

(x, y) ∈ R2 : |x| + |y| ≤ k
k+1

}
, otherwise.

Let K = {1, 4, 6, 8, 9, 10, 12, . . .}. Then, δ(K) = 1 (see [1], p.2) and Akn ⊆ Akn+1 for every n ∈ N. By Definition
2.12 , we say that (Ak) is statistically increasing sequence but is not increasing. Moreover, by Theorem 2.13, (Ak) is
Kuratowski statistically convergent to A, where

A =
{
(x, y) ∈ R2 : |x| + |y| ≤ 1

}
.

Theorem 2.15. Suppose that (Ak) is a statistically decreasing sequence of closed subsets of X. Then st − limk→∞ Ak
exists and

st − lim
k→∞

Ak =
⋂
n∈N

Akn .
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Proof. Let A =
⋂

n∈N Akn . Clearly if x ∈ A, then x ∈ Akn for every n ∈ N. Let M = {m | m = kn,n ∈N}. Then,
δ(M) = 1 and B(x, ε) ∩ Am , ∅ for all ε > 0 and m ∈M. This means that x ∈ st − lim infk→∞ Ak.

Now we show that st − lim supk→∞ Ak ⊆ A. Let x ∈ st − lim supk→∞ Ak be arbitrary. Then, for every
ε > 0 there exists N ∈ S# such that Ak ∩ B(x, ε) , ∅ for every k ∈ N. Since δ(N) , 0, there exists m ∈ N
such that kn ≤ m for every n ∈ N. Since the sequence (Ak) is decreasing, the inclusion Akn ⊇ Am holds
and consequently B(x, ε) ∩ Akn , ∅. This means that x ∈ clAkn . Since Akn is closed, x ∈ Akn . Therefore
x ∈

⋂
n∈N Akn . This completes the proof.

Proposition 2.16. [2, Proposition 10] Let X be a finite-dimensional normed linear space and (An) be a sequence of
closed convex subsets of X. If limn→∞ An = A , ∅ with A compact. Then,

⋃
∞

n=1 An is bounded.

Now, we give an example which shows that Proposition 2.16 is not valid for Kuratowski statistical conver-
gence.

Example 2.17. Define (An) by

An :=
{

[−n,n] , n = k2 for k ∈N,
[1, 2] , otherwise.

Then, (An) is a sequence of closed convex subsets of R and st − limn→∞ An = [1, 2]. However,
⋃
∞

n=1 An = R is not
bounded.

In the next section we compare Kuratowski statistical convergence with Hausdorff statistical conver-
gence, introduced by Nuray and Rhoades [12].

3. Hausdorff Statistical Convergence

We mention some references related to Hausdorff convergence: [2, 3, 10, 16, 17]. The Hausdorff distance
h(E,F) between the subsets E and F of X is defined as follows:

h(E,F) = max {D(E,F),D(F,E)} ,

where

D(E,F) = sup
x∈E

d(x,F) = inf{ε > 0 : E ⊆ B(F, ε)}

unless both E and F are empty in which case h(E,F) = 0. Note that if only one of the two sets is empty then
h(E,F) = ∞.

It is known, for a long time (see [2, 10]), that

h(E,F) = sup
x∈X
|d(x,E) − d(x,F)|. (12)

Definition 3.1. [12] Let (X, d) be a metric space and (An) be a sequence of closed subsets of X. We say that the
sequence (An) is Hausdorff statistically convergent to a closed subset A of X if

st − lim
n→∞

h(An,A) = 0. (13)

In this case, we write A = stH − limn→∞ An.

Lemma 3.2. Suppose that {A; An,n ∈N} is a family of closed subsets of X. Then A = stH − limn→∞ An if and only
if either there exists M ∈ S such that A and An are empty for all n ∈M or for any ε > 0 the sets{

n ∈N : A * B(An, ε)
}

and
{
n ∈N : An * B(A, ε)

}
(14)

have density zero.
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Proof. If A = ∅, then {
n ∈N : h(An,A) ≥ ε

}
=

{
n ∈N : An , ∅

}
.

Thus,
δ
({

n ∈N : An , ∅
})

= 0.

Namely
δ
({

n ∈N : An = ∅
})

= 1.

Conversely, there exists M ∈ S such that An is empty for all n ∈M. Then, it is clear that A = ∅.
On the other hand if A , ∅, then (13) holds if and only if

δ
({

n ∈N : h(An,A) ≥ ε
})

= 0

or equivalently,

δ
({

n ∈N : h(An,A) < ε
})

= 1

for any ε > 0. By the definition of Hausdorff metric,

δ
({

n ∈N : A ⊆ B(An, ε) and An ⊆ B(A, ε)
})

= 1.

Consequently, we obtain that the sets in (14) have density zero.

Theorem 3.3. Suppose that {A; An,n ∈ N} is a family of closed subsets of X with A nonempty. Then Hausdorff
statistical convergence implies Kuratowski statistical convergence, i.e. stH−limn→∞ An = A implies st−limn→∞ An =
A.

Proof. If A = ∅, then δ
({

n ∈ N : An = ∅
})

= 1. Hence, st − limn→∞ An = ∅. Let us suppose that A and An are
nonempty for every n ∈N. By the equality (12),

st − lim
n→∞

d(x,An) = d(x,A) for each x ∈ X. (15)

Take x ∈ A. Then, we have

st − lim
n→∞

d(x,An) = d(x,A) = 0.

By Proposition 2.5, this implies x ∈ st − lim infn→∞ An. Consequently, we obtain

A ⊆ st − lim inf
n→∞

An.

Conversely, take x ∈ st − lim supn→∞ An. Again, one can derive from Proposition 2.5 that

st − lim inf
n→∞

d(x,An) = 0.

By (15), we obtain

d(x,A) = st − lim
n→∞

d(x,An) = 0.

So, x ∈ A. Therefore, we conclude from the inclusion relation

st − lim sup
n→∞

An ⊆ A ⊆ st − lim inf
n→∞

An

that A = st − limn→∞ An.

The converse of Theorem 3.3 does not hold, in general. To see this, we give the following example.
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Example 3.4. Define the sequence (An) by

An :=
{

[2, 3] , n = k3 for k ∈N,
[0, 1] ∪ {n} , otherwise.

(An) is Kuratowski statistically convergent to [0, 1]. However, (An) is not Hausdorff statistically convergent.

Definition 3.5. The sequence (An) is said to be statistically bounded if there exists a compact set K such that
δ
({

n ∈N : An * K
})

= 0.

It is natural to ask under which conditions Kuratowski and Hausdorff statistical convergence are iden-
tical? The answer is given by the following theorem.

Theorem 3.6. Let (An) be a statistically bounded sequence of closed subsets of X. If st− limn→∞ An = A with A , ∅,
then stH − limn→∞ An = A.

Proof. Let (An) be a statistically bounded sequence of closed subsets of X. Then, there exist a compact set K
and M ∈ S such that An ⊆ K for all n ∈ M. By Lemma 2.10, st − limn→∞ An = A ⊆ K. So, the closed set A is
compact. Then given ε > 0, A has a finite cover with open balls of radius ε; i.e. there exists {x1, x2, x3 . . . , xn}

with xi ∈ A such that

A ⊆
n⋃

i=1

B
(
xi,
ε
2

)
.

Since st − limn→∞ An = A and xi ∈ A for i ∈ {1, 2, . . . ,n}, we obtain st − limn→∞ d(xi,An) = 0. Therefore, there
exists Ni = {n ∈N : d(xi,An) < ε/2} such that δ(Ni) = 1 for each i. Let us define N =

⋂n
i=1 Ni. Then, δ(N) = 1.

Thus, we obtain d(y,An) ≤ d(y, xi) + d(xi,An) < ε for any y ∈ A and n ∈ N. So, A ⊆ B(An, ε) for every n ∈ N.
This means that δ

({
n ∈N : A * B(An, ε)

})
= 0. Now, suppose that C =

{
n ∈ N : An * B(A, ε)

}
for some

ε > 0 does not have density zero. Since δ(M) = 1, we have δ(M ∩ C) , 0. Hence, there exists a sequence
{yk | yk ∈ Ak\B(A, ε), k ∈ M ∩ C} ⊆ K. By Lemma 1.4, the sequence (yn) has at least statistical cluster point
that belongs to st − lim supn→∞ An = A but does not belong to B(A, ε) ⊇ A, a contradiction. This gives that
δ
({

n ∈N : An * B(A, ε)
})

= 0, which completes the proof.

Conclusion

In literature, there are different definitions for convergence of set-valued sequences. The best known
of them are Kuratowski convergence, Hausdorff convergence, Wijsman convergence, Mosco convergence
and scalar convergence. Statistical convergence for set-valued sequences was first defined by Nuray
and Rhoades [12]. They studied Hausdorff and Wijsman statistical convergence. In the present paper,
based on the definitions of inner and outer limits given by Rockafellar and Wets [14], we introduce the
statistical inner and outer limits, and investigate some of their properties. Later, we define the Kuratowski
statistical convergence and give the results related to this concept corresponding to the results on Kuratowski
convergence due to Salinetti and Wets [16]. Furthermore, we compare the Hausdorff statistical convergence
with the Kuratowski statistical convergence.

It is natural to study statistical convergence for other types of convergence of set-valued sequences. In
the light of the main results of our paper, one can provide ways of statistically approximating set-valued
mappings through convergence of graphs and extended real-valued functions through convergence of
epigraphs.
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Ö. Talo et al. / Filomat 30:6 (2016), 1497–1509 1509

References

[1] G. A. Anastassiou, O. Duman, Towards IntelligentModeling: Statistical Approximation Theory, Intell. Syst. Ref. Libr., 14, Springer,
Berlin, 2011.

[2] M. Baronti, P. Papini, ”Convergence of sequences of sets” Methods of functional analysis in approximation theory, ISNM 76 (1986)
[3] G. Beer, Topologies on closed and closed convex sets, Kluwer Academic, Dordrecht, 1993.
[4] G. Beer, On convergence of closed sets in a metric space and distance functions, Bull. Austral. Math. Soc. 31 (1985), 421–432.
[5] J. Cincura, T. Salát, M. Sleziak, V. Toma, Sets of statistical cluster points and I-cluster points, Real Anal. Exch. 30 (2) (2004/2005),

565–580.
[6] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
[7] J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301–313.
[8] J.A. Fridy, C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125 (12) (1997), 3625–3631.
[9] J.A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), 1187–1192.

[10] C. Kuratowski, Topologie, vol.I, PWN, Warszawa, 1958.
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