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Abstract 

In this paper, we study the concepts of Wijsman ℐ2, ℐ2
∗-convergence and Wijsman ℐ2, ℐ2

∗-Cauchy double sequences of sets and 
investigate the relationships among them.  
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1 Introduction  

Throughout the paper ℕ denotes the set of all positive integers and ℝ the set of all real numbers. The concept of convergence of 
a sequence of real numbers has been extended to statistical convergence independently by Fast [10] and Schoenberg [23]. This 
concept was extended to the double sequences by Mursaleen and Edely [16]. Fridy and Orhan [12] have introduced the concepts 
of statistical limit superior and statistical limit inferior. Çakan and Altay [7] presented multidimensional analogues of the results 
presented by Fridy and Orhan [12]. 

Nuray and Ruckle [19] indepedently introduced the same with another name generalized statistical convergence. The idea of ℐ-
convergence was introduced by Kostyrko, Šalát and Wilczyński [14] as a generalization of statistical convergence which is based 
on the structure of the ideal ℐ of subset of the set of natural numbers. Das, Kostyrko, Wilczyński and Malik [8] introduced the 
concept of ℐ-convergence of double sequences in a metric space and studied some properties of this convergence. A lot of 
development have been made in this area after the works of [9, 15, 17]. 

The concept of convergence of sequences of numbers has been extended by several authors to convergence of sequences of 
sets (see, [3, 4, 5, 18, 25, 26]). Nuray and Rhoades [18] extended the notion of convergence of set sequences to statistical 
convergence and gave some basic theorems. Ulusu and Nuray [24] defined the Wijsman lacunary statistical convergence of 
sequence of sets and considered its relation with Wiijsman statistical convergence, which was defined by Nuray and Rhoades. 
Nuray et al. [20] studied Wijsman statistical convergence, Hausdorff statistical convergence and Wijsman statistical Cauchy 
double sequences of sets and investigate the relationships between them. Kişi and Nuray [13] introduced a new convergence 
notion, for sequences of sets, which is called Wijsman ℐ-convergence. 

In this paper, we study the concepts of Wijsman ℐ2, ℐ2
∗-convergence and Wijsman ℐ2, ℐ2

∗-Cauchy double sequences of sets and 
investigate the relationships among them. 
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2 Definitions and Notations 

Now, we recall the basic definitions and concepts (See [1, 2, 3, 4, 5, 8, 9, 14, 18, 21, 25, 26]). For any point 𝑥 ∈ 𝑋 and any non-
empty subset 𝐴 of 𝑋, we define the distance from 𝑥 to  𝐴 by 

 𝑑(𝑥, 𝐴) = inf
𝑎∈𝐴

𝜌(𝑥, 𝑎). 

We let  𝑋, 𝜌  be a metric space and 𝐴, 𝐴𝑘  be any non-empty closed subsets of 𝑋 that use following. We say that the sequence 
 𝐴𝑘  is Wijsman convergent to 𝐴 if lim𝑘→∞𝑑 𝑥, 𝐴𝑘 = 𝑑 𝑥, 𝐴 , for each 𝑥 ∈ 𝑋. In this case we write 𝑊 − lim𝐴𝑘 = 𝐴. We say 
that the sequence  𝐴𝑘  is Wijsman Cauchy sequence, if for 𝜀 > 0 and for each 𝑥 ∈ 𝑋, there is a positive integer 𝑘0 such that for 
all 𝑚, 𝑛 > 𝑘0 ,  𝑑 𝑥, 𝐴𝑚  − 𝑑 𝑥, 𝐴𝑛  < 𝜀. A double sequence 𝑥 = (𝑥𝑘𝑗 )𝑘,𝑗∈ℕ of real numbers is said to be convergent to 𝐿 ∈ ℝ 

in Pringsheim’s sense if for any 𝜀 > 0, there exists 𝑁𝜀 ∈ ℕ such that  𝑥𝑘𝑗 − 𝐿 < 𝜀, whenever 𝑘, 𝑗 > 𝑁𝜀 . In this case we write 

𝑃 − lim𝑘,𝑗→∞𝑥𝑘𝑗 = 𝐿    𝑜𝑟    lim𝑘,𝑗→∞𝑥𝑘𝑗 = 𝐿. 

Throughout the paper, we let 𝐴, 𝐴𝑘𝑗  be any non-empty closed subsets of 𝑋. The double sequence {𝐴𝑘𝑗 } is Wijsman convergent 

to 𝐴 if   
𝑃 − lim

𝑘,𝑗→∞
𝑑(𝑥, 𝐴𝑘𝑗 ) = 𝑑(𝑥, 𝐴)    𝑜𝑟    lim

𝑘,𝑗→∞
𝑑(𝑥, 𝐴𝑘𝑗 ) = 𝑑(𝑥, 𝐴) 

for each 𝑥 ∈ 𝑋. In this case we write 𝑊2 − lim𝐴𝑘𝑗 = 𝐴. 

Let 𝑋 ≠ ∅. A class ℐ of subsets of 𝑋 is said to be an ideal in 𝑋 provided: (i) ∅ ∈ ℐ, (ii) 𝐴, 𝐵 ∈ ℐ implies 𝐴 ∪ 𝐵 ∈ ℐ, (iii) 𝐴 ∈ ℐ, 𝐵 ⊂ 𝐴 
implies B ∈ ℐ. ℐ is called nontrivial ideal if 𝑋 ∈ ℐ. Let 𝑋 ≠ ∅. A non empty class ℱ of subsets of 𝑋 is said to be a filter in 𝑋 
provided: (i) ∅ ∈ ℱ, (ii) 𝐴, 𝐵 ∈ ℱ implies 𝐴 ∩ 𝐵 ∈ ℱ, (iii) 𝐴 ∈ ℱ, 𝐴 ⊂ 𝐵 implies 𝐵 ∈ ℱ. 

Lemma 2.1 [14]  If ℐ is a nontrivial ideal in 𝑋, 𝑋 ≠ ∅, then the class ℱ(ℐ) =  𝑀 ⊂ 𝑋:  ∃𝐴 ∈ ℐ  𝑀 = 𝑋\𝐴   is a filter on 𝑋, called 
the filter associated with ℐ.  

 A nontrivial ideal ℐ in 𝑋 is called admissible if {𝑥} ∈ ℐ for each 𝑥 ∈ 𝑋. Throughout the paper we take ℐ2 as a nontrivial admissible 
ideal in ℕ × ℕ. A nontrivial ideal ℐ2 of ℕ × ℕ is called strongly admissible if {𝑖} × ℕ and ℕ × {𝑖} belong to ℐ2 for each 𝑖 ∈ 𝑁. It is 
evident that a strongly admissible ideal is admissible also. 

ℐ2
0 = {𝐴 ⊂ ℕ × ℕ: (∃𝑚(𝐴) ∈ ℕ)(𝑖, 𝑗 ≥ 𝑚(𝐴) ⇒ (𝑖, 𝑗) ∈ 𝐴)}. Then ℐ2

0 is a nontrivial strongly admissible ideal and clearly an ideal 

ℐ2 is strongly admissible if and only if ℐ2
0 ⊂ ℐ2. 

Let (𝑋, 𝜌) be a metric space and ℐ2 ⊂ 2ℕ×ℕ be a strongly admissible ideal. A double sequence 𝑥 = (𝑥𝑚𝑛 ) in 𝑋 is said to be ℐ2-
convergent to 𝐿 ∈ 𝑋 , if for any 𝜀 > 0 we have  𝐴(𝜀) = {(𝑚, 𝑛) ∈ ℕ × ℕ: 𝜌(𝑥𝑚𝑛 , 𝐿) ≥ 𝜀} ∈ ℐ2. In this case we say that 𝑥 is ℐ2-
convergent and we write ℐ2 − lim𝑚,𝑛→∞𝑥𝑚𝑛 = 𝐿. 

Let (𝑋, 𝜌) be a metric space and ℐ2 ⊂ 2ℕ×ℕ be a strongly admissible ideal. A double sequence 𝑥 = (𝑥𝑚𝑛 ) of elements of 𝑋 is said 
to be ℐ2

∗- convergent to 𝐿 ∈ 𝑋 if and only if there exists a set 𝑀2 ∈ ℱ(ℐ2) (i.e., ℕ × ℕ\𝑀2 ∈ ℐ2) such that lim𝑚,𝑛→∞𝑥𝑚𝑛 = 𝐿, for 

(𝑚, 𝑛) ∈ 𝑀2 and we write ℐ2
∗ − lim𝑚,𝑛→∞𝑥𝑚𝑛 = 𝐿. 

Let (𝑋, 𝜌) be a metric space and ℐ2 ⊂ 2ℕ×ℕ be a strongly admissible ideal. A double sequence 𝑥 = (𝑥𝑚𝑛 ) of elements of 𝑋 is said 
to be ℐ2-Cauchy if for every 𝜀 > 0 there exist 𝑠 = 𝑠(𝜀), 𝑡 = 𝑡(𝜀) ∈ ℕ such that 𝐴(𝜀) = {(𝑚, 𝑛) ∈ ℕ × ℕ: 𝜌(𝑥𝑚𝑛 , 𝑥𝑠𝑡 ) ≥ 𝜀} ∈ ℐ2 . 

Let (𝑋, 𝜌) be a metric space and ℐ2 ⊂ 2ℕ×ℕ be a strongly admissible ideal. A double sequence 𝑥 = (𝑥𝑚𝑛 ) in 𝑋 is said to be ℐ2
∗-

Cauchy sequence if there exists a set 𝑀2 ∈ ℱ(ℐ2) (i.e., 𝐻 = ℕ × ℕ\𝑀2 ∈ ℐ2) such that for every 𝜀 > 0 and for (𝑚, 𝑛), (𝑠, 𝑡) ∈
𝑀2, 𝑚, 𝑛, 𝑠, 𝑡 > 𝑘0 = 𝑘0(𝜀) 𝜌(𝑥𝑚𝑛 , 𝑥𝑠𝑡 ) < 𝜀. In this case we write lim𝑚,𝑛,𝑠,𝑡→∞𝜌(𝑥𝑚𝑛 , 𝑥𝑠𝑡 ) = 0. 

We say that an admissible ideal ℐ2 ⊂ 2ℕ×ℕ satisfies the property (AP2) if for every countable family of mutually disjoint sets 

{𝐴1 , 𝐴2 , . . . } belonging to ℐ2, there exists a countable family of sets {𝐵1 , 𝐵2 , . . . } such that 𝐴𝑗 Δ𝐵𝑗 ∈ ℐ2
0, i.e., 𝐴𝑗 Δ𝐵𝑗  is included in 

the finite union of rows and columns in ℕ × ℕ for each 𝑗 ∈ ℕ and 𝐵 =   ∞
𝑗=1 𝐵𝑗 ∈ ℐ2 (hence 𝐵𝑗 ∈ ℐ2 for each 𝑗 ∈ ℕ). 

Throughout the paper, we let ℐ ⊆ 2ℕ be an admissible ideal,  𝑋, 𝜌  be a separable metric space and 𝐴, 𝐴𝑘  be any non-empty 
closed subsets of 𝑋. We say that the sequence  𝐴𝑘  is Wijsman ℐ-convergent to 𝐴, if for each 𝜀 > 0 and for each 𝑥 ∈ 𝑋 the set 
𝐴 𝑥, 𝜀 =  𝑘 ∈ ℕ:  𝑑 𝑥, 𝐴𝑘 − 𝑑 𝑥, 𝐴  ≥ 𝜀    belongs to ℐ. In this case we write ℐ𝑊 − lim𝐴𝑘 = 𝐴 or 𝐴𝑘 → 𝐴 ℐ𝑊 . We say that 
the sequence  𝐴𝑘  is Wijsman ℐ∗-convergent to 𝐴, if and only if there exists a set 𝑀 ∈ ℱ ℐ ,  𝑀 = {𝑚 =  𝑚𝑖 : 𝑚𝑖 < 𝑚𝑖+1 , 𝑖 ∈

ℕ} ⊂ ℕ such that for each 𝑥 ∈ 𝑋 lim𝑘→∞𝑑 𝑥, 𝐴𝑚𝑘
 = 𝑑 𝑥, 𝐴 . In this case, we write ℐw

∗ − lim𝐴𝑘 = 𝐴. We say that the sequence 

 𝐴𝑘  is Wijsman ℐ-Cauchy sequence if for each 𝜀 and for each 𝑥 ∈ 𝑋, there exists a number 𝑁 = 𝑁 𝜀  such that {𝑛 ∈
ℕ:  𝑑 𝑥, 𝐴𝑛 − 𝑑 𝑥, 𝐴𝑁  ≥ 𝜀} ∈ ℐ. We say that the sequence  𝐴𝑘  is Wijsman ℐ∗-Cauchy sequence if there exists a set 𝑀 ∈

ℱ ℐ , 𝑀 =  𝑚 =  𝑚𝑖 : 𝑚𝑖 < 𝑚𝑖+1 , 𝑖 ∈ ℕ ⊂ ℕ such that the subsequence 𝐴𝑀 =  𝐴𝑚𝑘
  is Wijsman Cauchy in 𝑋 that is, 

lim𝑘,𝑝→∞  𝑑 𝑥, 𝐴𝑚𝑘
 − 𝑑  𝑥, 𝐴𝑚𝑝

  = 0. The double sequence {𝐴𝑘𝑗 } is Wijsman convergent to 𝐴 if  

𝑃 − lim
𝑘,𝑗→∞

𝑑(𝑥, 𝐴𝑘𝑗 ) = 𝑑(𝑥, 𝐴)    𝑜𝑟    lim
𝑘,𝑗→∞

𝑑(𝑥, 𝐴𝑘𝑗 ) = 𝑑(𝑥, 𝐴) 

for each 𝑥 ∈ 𝑋. In this case we write 𝑊2 − lim𝐴𝑘𝑗 = 𝐴. 
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3   Main Results 

Throughout the paper, we let (𝑋, 𝜌) be a separable metric space, ℐ2 ⊆ 2ℕ×ℕ be a strongly admissible ideal and 𝐴, 𝐴𝑘𝑗  be any 

non-empty closed subsets of 𝑋. 

Definition 3.1 We say that a double sequence of sets {𝐴𝑘𝑗 } is ℐ𝑊2
-convergent to 𝐴, if for every 𝑥 ∈ 𝑋 and for every 𝜀 > 0,  

  (𝑘, 𝑗) ∈ ℕ × ℕ:  𝑑(𝑥, 𝐴𝑘𝑗 ) − 𝑑(𝑥, 𝐴) ≥ 𝜀 ∈ ℐ2 . 

In this case we write ℐ𝑊2
− lim

𝑘,𝑗→∞
𝑑(𝑥, 𝐴𝑘𝑗 ) = 𝑑(𝑥, 𝐴).  

Definition 3.2 We say that the double sequence of sets {𝐴𝑘𝑗 } is ℐ𝑊2

∗ -convergent to 𝐴, if there exists a set 𝑀2 ∈ ℱ(ℐ2) (i.e., 

ℕ × ℕ\𝑀2 = 𝐻 ∈ ℐ2) such that for every 𝑥 ∈ 𝑋  

 lim
𝑘,𝑗→∞

(𝑘,𝑗 )∈𝑀2

𝑑(𝑥, 𝐴𝑘𝑗 ) = 𝑑(𝑥, 𝐴). 

In this case we write ℐ𝑊2

∗ − lim
𝑘,𝑗→∞

𝑑(𝑥, 𝐴𝑘𝑗 ) = 𝑑(𝑥, 𝐴).  

Theorem 3.1  ℐ𝑊2

∗ -convergence implies ℐ𝑊2
-convergence for double sequence of sets.  

Proof. Since ℐ𝑊2

∗ − lim
𝑘,𝑗→∞

𝑑(𝑥, 𝐴𝑘𝑗 ) = 𝑑(𝑥, 𝐴), so there exists a set 𝑀2 ∈ ℱ(ℐ2) (i.e., ℕ × ℕ\𝑀2 = 𝐻 ∈ ℐ2) such that for each 

𝑥 ∈ 𝑋  

 lim
𝑘,𝑗→∞

(𝑘,𝑗 )∈𝑀2

𝑑(𝑥, 𝐴𝑘𝑗 ) = 𝑑(𝑥, 𝐴). 

Let 𝜀 > 0. Then there exists 𝑘0 ∈ ℕ such that for each 𝑥 ∈ 𝑋, |𝑑(𝑥, 𝐴𝑘𝑗 ) − 𝑑(𝑥, 𝐴)| < 𝜀 for all (𝑘, 𝑗) ∈ 𝑀2 and 𝑘, 𝑗 ≥ 𝑘0. Then 

for each 𝜀 > 0 and 𝑥 ∈ 𝑋, we have  

𝑇 𝜀, 𝑥 =   𝑘, 𝑗 ∈ ℕ × ℕ:  𝑑 𝑥, 𝐴𝑘𝑗  − 𝑑 𝑥, 𝐴  ≥ 𝜀                                        

                     ⊂ 𝐻 ∪ (𝑀2 ∩ (({1,2, . . . , (𝑘0 − 1)} × ℕ) ∪ (ℕ × {1,2, . . . , (𝑘0 − 1)}))). 

Since  

𝐻 ∪ (𝑀2 ∩ (({1,2, . . . , (𝑘0 − 1)} × ℕ) ∪ (ℕ × {1,2, . . . , (𝑘0 − 1)}))) ∈ ℐ2 , 

so we have 𝑇(𝜀, 𝑥) ∈ ℐ2. Hence, ℐ𝑊2
− lim

𝑘,𝑗→∞
𝑑(𝑥, 𝐴𝑘𝑗 ) = 𝑑(𝑥, 𝐴) . 

Theorem 3.2  If the ideal ℐ2 has the property (𝐴𝑃2), then ℐ𝑊2
-convergence implies ℐ𝑊2

∗ -convergence for double sequence of 

sets.  

Proof. Suppose that ℐ2 satisfies property (𝐴𝑃2). Let ℐ𝑊2
− lim

𝑘,𝑗→∞
𝑑(𝑥, 𝐴𝑘𝑗 ) = 𝑑(𝑥, 𝐴). Then  

 𝑇(𝜀, 𝑥) = 𝑇𝜀 =  (𝑘, 𝑗) ∈ ℕ × ℕ:  𝑑 𝑥, 𝐴𝑘𝑗  − 𝑑 𝑥, 𝐴  ≥ 𝜀 ∈ ℐ2                                               (1) 

 for each 𝜀 > 0 and for each 𝑥 ∈ 𝑋. Put  

 𝑇1 = 𝑇(1, 𝑥) =  (𝑘, 𝑗) ∈ ℕ × ℕ:  𝑑 𝑥, 𝐴𝑘𝑗  − 𝑑 𝑥, 𝐴  ≥ 1  

and  

 𝑇𝑘 = 𝑇(𝑘, 𝑥) =  (𝑘, 𝑗) ∈ ℕ × ℕ:
1

𝑘
≤  𝑑 𝑥, 𝐴𝑘𝑗  − 𝑑 𝑥, 𝐴  <

1

𝑘−1
  

 for 𝑘 ≥ 2 and 𝑘 ∈ ℕ. Obviously, 𝑇𝑖 ∩ 𝑇𝑗 = ∅ for 𝑖 ≠ 𝑗 and 𝑇𝑖 ∈ ℐ2 for each 𝑖 ∈ ℕ. By property (𝐴𝑃2) there exits a sequence of 

sets  𝑉𝑘 𝑘∈ℕ such that 𝑇𝑗 Δ𝑉𝑗  is included in finite union of rows and columns in ℕ × ℕ for each 𝑗 and 𝑉 =   ∞
𝑗 =1 𝑉𝑗 ∈ ℐ2. We shall 

prove that for 𝑀2 = ℕ × ℕ\𝑉 we have  

lim
𝑘,𝑗→∞

(𝑘,𝑗 )∈𝑀2

𝑑(𝑥, 𝐴𝑘𝑗 ) = 𝑑(𝑥, 𝐴). 

Let 𝜂 > 0 be given. Choose 𝑘 ∈ ℕ such that 
1

𝑘
< 𝜂 . Then  

 (𝑘, 𝑗) ∈ ℕ × ℕ:  𝑑 𝑥, 𝐴𝑘𝑗  − 𝑑 𝑥, 𝐴  ≥ 𝜂 ⊂   

𝑘

𝑗 =1

𝑇𝑗 . 

Since, 𝑇𝑗 Δ𝑉𝑗  , 𝑗 = 1,2, . .. are included in finite union of rows and columns, there exists 𝑛0 ∈ ℕ such that  

   𝑘
𝑗=1 𝑇𝑗  ∩ {(𝑘, 𝑗): 𝑘 ≥ 𝑛0 ∧ 𝑗 ≥ 𝑛0} =    𝑘

𝑗=1 𝑉𝑗  ∩ {(𝑘, 𝑗): 𝑘 ≥ 𝑛0 ∧ 𝑗 ≥ 𝑛0}.       (2) 
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If 𝑘, 𝑗 > 𝑛0 and (𝑘, 𝑗) ∉ 𝑉, then (𝑘, 𝑗) ∉   𝑘
𝑗=1 𝑉𝑗  and (𝑘, 𝑗) ∉   𝑘

𝑗=1 𝑇𝑗 . This implies that  𝑑 𝑥, 𝐴𝑘𝑗  − 𝑑 𝑥, 𝐴  <
1

𝑘
< 𝜂. Hence, 

we have  

lim
𝑘,𝑗→∞

(𝑘,𝑗 )∈𝑀2

𝑑(𝑥, 𝐴𝑘𝑗 ) = 𝑑(𝑥, 𝐴). 

Definition 3.3 We say that the double sequence {𝐴𝑘𝑗 } is Wijsman Cauchy, if for each 𝜀 > 0 and for each 𝑥 ∈ 𝑋, there is positive 

integers (𝑝, 𝑞) such that for all (𝑚, 𝑛) > (𝑝, 𝑞) we have  

 |𝑑(𝑥, 𝐴𝑘𝑗 ) − 𝑑(𝑥, 𝐴𝑚𝑛 )| < 𝜀. 

Definition 3.4 We say that the double set sequence {𝐴𝑘𝑗 } is ℐ2-Cauchy sequence in Pringsheim’s sense if for every 𝑥 ∈ 𝑋 and for 

every 𝜀 > 0, there exists (𝑝, 𝑞) in ℕ × ℕ such that  

  (𝑘, 𝑗) ∈ ℕ × ℕ:  𝑑(𝑥, 𝐴𝑘𝑗 ) − 𝑑(𝑥, 𝐴𝑝𝑞 ) ≥ 𝜀 ∈ ℐ2 . 

Theorem 3.3  A double sequence of sets {𝐴𝑘𝑗 } if ℐ𝑊2
-convergent then it is ℐ𝑊2

-Cauchy.  

Proof. Let ℐ𝑊2
− lim𝐴𝑘𝑗 = 𝐴. Then for each 𝜀 > 0 and for each 𝑥 ∈ 𝑋, we have  

𝐴 𝑥, 𝜀 =  (𝑘, 𝑗) ∈ ℕ × ℕ:  𝑑 𝑥, 𝐴𝑘𝑗  − 𝑑 𝑥, 𝐴  ≥ 𝜀 ∈ ℐ2 . 

Since ℐ2 is a strongly admissible ideal, there exists an 𝑝, 𝑞 ∈ ℕ such that (𝑝, 𝑞) ∉ 𝐴 𝑥, 𝜀 . Let  

𝐵 𝑥, 𝜀 =  (𝑘, 𝑗) ∈ ℕ × ℕ:  𝑑 𝑥, 𝐴𝑘𝑗  − 𝑑 𝑥, 𝐴𝑝𝑞   ≥ 2𝜀 . 

Taking into account the inequality 

 𝑑 𝑥, 𝐴𝑘𝑗  − 𝑑 𝑥, 𝐴𝑝𝑞   ≤  𝑑 𝑥, 𝐴𝑘𝑗  − 𝑑 𝑥, 𝐴  +  𝑑 𝑥, 𝐴𝑝𝑞  − 𝑑 𝑥, 𝐴  ; 

 we observe that if (𝑘, 𝑗) ∈ 𝐵 𝑥, 𝜀  then  𝑑 𝑥, 𝐴𝑘𝑗  − 𝑑 𝑥, 𝐴  +  𝑑 𝑥, 𝐴𝑝𝑞  − 𝑑 𝑥, 𝐴  ≥ 2𝜀. 

 On the other hand, since (𝑘, 𝑗) ∉ 𝐴 𝑥, 𝜀  we have  𝑑 𝑥, 𝐴𝑝𝑞  − 𝑑 𝑥, 𝐴  < 𝜀. 

Here we conclude that  

  𝑑 𝑥, 𝐴𝑘𝑗  − 𝑑 𝑥, 𝐴  ≥ 𝜀, 

hence (𝑘, 𝑗) ∈ 𝐴 𝑥, 𝜀 . Observe that  

 𝐵 𝑥, 𝜀 ⊂ 𝐴 𝑥, 𝜀 ∈ ℐ2 

for each 𝜀 > 0 and for each 𝑥 ∈ 𝑋. This gives that 𝐵 𝑥, 𝜀 ∈ ℐ2 that is  𝐴𝑘𝑗   is Wijsman ℐ2-Cauchy double sequence.  

Definition 3.5 We say that the double sequence of sets {𝐴𝑘𝑗 } is ℐ𝑊2

∗ -Cauchy, if there exists a set 𝑀2 ∈ ℱ(ℐ2) (i.e., ℕ × ℕ\𝑀2 =

𝐻 ∈ ℐ2) such that for every 𝑥 ∈ 𝑋 and (𝑘, 𝑗), (𝑝, 𝑞) ∈ 𝑀2  

 lim
𝑘,𝑗 ,𝑝,𝑞→∞

|𝑑(𝑥, 𝐴𝑘𝑗 ) − 𝑑(𝑥, 𝐴𝑝𝑞 )| = 0. 

Theorem 3.4  A double sequence of sets {𝐴𝑘𝑗 } if ℐ𝑊2

∗ -Cauchy then it is ℐ𝑊2
-Cauchy.  

Proof. Let  𝐴𝑘𝑗   is Wijsman ℐ𝑊2

∗ -Cauchy sequence then by the definition, there exits a set 𝑀2 ∈ ℱ(ℐ2) (i.e., ℕ × ℕ\𝑀2 = 𝐻 ∈ ℐ2) 

such that for each 𝜀 > 0 and for each 𝑥 ∈ 𝑋,  

  𝑑 𝑥, 𝐴𝑘𝑗  − 𝑑 𝑥, 𝐴𝑝𝑞   < 𝜀, 

for all (𝑘, 𝑗), (𝑝, 𝑞) ∈ 𝑀2, 𝑘, 𝑗, 𝑝, 𝑞 > 𝑁 = 𝑁 𝑥, 𝜀  and 𝑁 ∈ ℕ. Then, for each 𝜀 > 0 and 𝑥 ∈ 𝑋, we have  

𝐴 𝜀, 𝑥 =   𝑘, 𝑗 ∈ ℕ × ℕ:  𝑑 𝑥, 𝐴𝑘𝑗  − 𝑑 𝑥, 𝐴𝑝𝑞   ≥ 𝜀                 

                                      ⊂ 𝐻 ∪ (𝑀2 ∩ (({1,2, . . . , (𝑁 − 1)} × ℕ) ∪ (ℕ × {1,2, . . . , (𝑁 − 1)}))). 

 Since  

𝐻 ∪ (𝑀2 ∩ (({1,2, . . . , (𝑁 − 1)} × ℕ) ∪ (ℕ × {1,2, . . . , (𝑁 − 1)}))) ∈ ℐ2, 

so we have 𝐴(𝜀, 𝑥) ∈ ℐ2. Hence, {𝐴𝑘𝑗 } is ℐ𝑊2
-Cauchy double sequence.  

Theorem 3.5  A double sequence of sets {𝐴𝑘𝑗 } if ℐ𝑊2

∗ -convergent, then it is ℐ𝑊2
-Cauchy.  

Proof. Let ℐ𝑊2

∗ − lim
𝑘,𝑗→∞

𝑑(𝑥, 𝐴𝑘𝑗 ) = 𝑑(𝑥, 𝐴), so there exists a set 𝑀2 ∈ ℱ(ℐ2) (i.e., ℕ × ℕ\𝑀2 = 𝐻 ∈ ℐ2) such that for each 𝑥 ∈ 𝑋  

lim
𝑘,𝑗→∞

(𝑘,𝑗 )∈𝑀2

𝑑(𝑥, 𝐴𝑘𝑗 ) = 𝑑(𝑥, 𝐴). 

 Let 𝜀 > 0. Then there exists 𝑘0 ∈ ℕ such that for each 𝑥 ∈ 𝑋,  

|𝑑(𝑥, 𝐴𝑘𝑗 ) − 𝑑(𝑥, 𝐴)| <
𝜀

2
, 
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for all (𝑘, 𝑗) ∈ 𝑀2 and 𝑘, 𝑗 ≥ 𝑘0. Then for each 𝜀 > 0 and 𝑥 ∈ 𝑋, we have  

 𝑑 𝑥, 𝐴𝑘𝑗  − 𝑑 𝑥, 𝐴𝑝𝑞   <  𝑑 𝑥, 𝐴𝑘𝑗  − 𝑑 𝑥, 𝐴  +  𝑑 𝑥, 𝐴𝑝𝑞  − 𝑑 𝑥, 𝐴   

<
𝜀

2
+

𝜀

2
= 𝜀. 

 Therefore, for each 𝑥 ∈ 𝑋 and (𝑘, 𝑗), (𝑝, 𝑞) ∈ 𝑀2 we have  

lim
𝑘,𝑗 ,𝑝,𝑞→∞

|𝑑(𝑥, 𝐴𝑘𝑗 ) − 𝑑(𝑥, 𝐴𝑝𝑞 )| = 0. 

 Hence,  𝐴𝑘𝑗   is ℐ𝑊2

∗ -Cauchy double sequence and so by Theorem 3.4  𝐴𝑘𝑗   is ℐ𝑊2
-Cauchy double sequence.  
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