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ON STATISTICAL CONVERGENCE OF SEQUENCES
OF FUNCTIONS IN 2-NORMED SPACES

SEVIM YEGUL AND ERDINC DUNDAR

Abstract. Statistical convergence and statistical Cauchy sequence in 2-normed space were stud-
ied by Giirdal and Pehlivan [M. Giirdal, S. Pehlivan, Statistical convergence in 2-normed spaces,
Southeast Asian Bulletin of Mathematics, (33) (2009), 257-264]. In this paper, we get analogous
results of statistical convergence and statistical Cauchy sequence of functions and investigate
some properties and relationships between them in 2-normed spaces.

1. Introduction

Throughout the paper, N denotes the set of all positive integers, R the set of all
real numbers. The concept of convergence of a sequence of real numbers has been
extended to statistical convergence independently by Fast [7] and Schoenberg [23].
Gokhan et al. [12] introduced the concepts of pointwise statistical convergence and
statistical Cauchy sequence of real-valued functions. Balcerzak et al. [2] studied sta-
tistical convergence and ideal convergence for sequence of functions. Baldz et al. [1]
investigated .# -convergence and .# -continuity of real functions. Gezer and Karakug
[11] investigated .# -pointwise and uniform convergence and .#* -pointwise and uni-
form convergence of function sequences and then they examined the relation between
them. Gokhan et al. [13] introduced the notion of pointwise and uniform statistical
convergence of double sequences of real-valued functions. Diindar and Altay [4, 5]
studied the concepts of pointwise and uniformly .# -convergence and .#* -convergence
of double sequences of functions and investigated some properties about them. Further-
more, Diindar [6] investigated some results of .%, -convergence of double sequences of
functions.

The concept of 2-normed spaces was initially introduced by Géhler [9, 10] in the
1960’s. Giirdal and Pehlivan [16] studied statistical convergence, statistical Cauchy se-
quence and investigated some properties of statistical convergence in 2-normed spaces.
Sharma and Kumar [24] introduced statistical convergence, statistical Cauchy sequence,
statistical limit points and statistical cluster points in probabilistic 2-normed space.
Savag and Giirdal [22] concerned with .# -convergence of sequences of functions in
random 2-normed spaces and introduce the concepts of ideal uniform convergence
and ideal pointwise convergence in the topology induced by random 2-normed spaces.
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Sarabadan and Talebi [21] presented various kinds of statistical convergence and .# -
convergence for sequences of functions with values in 2-normed spaces and also de-
fined the notion of .# -equistatistically convergence and study .¥ -equistatistically con-
vergence of sequences of functions. Sahiner et al. [25] and Giirdal [18] studied .¢ -
convergence in 2-normed spaces. Giirdal and Ag¢ik [17] investigated .# -Cauchy and
#*-Cauchy sequences in 2-normed spaces. Furthermore, a lot of development have
been made in this area (see [3, 14, 15, 19, 20]).

2. Definitions and notations

Now, we recall the concept of density, statistical convergence, 2 -normed space and
some fundamental definitions and notations (See [2, 8, 10, 11, 12, 14, 15, 16, 21, 24]).

If K C N, then K, denotes the set {k € K : k < n} and |K,| denotes the cardinality
of K,. The natural density of K is given by 6(K) = r}grolo% |K, |, if it exists.

Clearly, finite subsets have natural density zero and §(K¢) = 1 — §(K) where
K¢=N\K,i.e., the complementof K. If K; C K, and K; and K, have natural densities
then 6(K;) < 8(K>). Moreover, if §(K;) = 6(K;) =1, then §(K; NK;) = 1.

The number sequence x = (x;) is statistically convergent to L provided that for
every € > 0 the set

K=K(e):={keN:|x—L| >¢}

has natural density zero; in this case, we write st —limx = L.
We note following theorem which is useful in establishing our results.

THEOREM 1. [8] The following statements are equivalent:

(i) x is statistically convergent sequence;

(ii) x is statistically Cauchy sequence;

(iii) x is sequence for which there is a convergent sequence y such that x, = yp,
fora.a. n.

Let X be a real vector space of dimension d, where 2 < d < co. A 2-norm on X
is a function ||-,-|| : X x X — R which satisfies the following statements:

() |lx,y|| = 0 if and only if x and y are linearly dependent.

Gi) x| = [l

Gii) flocx,y]| = | [y, @ € R.

(V) [Jx,y + 2l < [lx ]|+ [|lx.z] -

The pair (X,]|-,-]|) is then called a 2-normed space. As an example of a 2-normed
space we may take X = R? being equipped with the 2-norm ||x,y|| := the area of
the parallelogram based on the vectors x and y which may be given explicitly by the
formula

o, ¥]| = [x1y2 —xay1]; x = (x1,%2),y = (y1,y2) € R%.

In this study, we suppose X to be a 2-normed space having dimension d; where
2<d < oo,
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Let (X,]|.,.]|) be a finite dimensional 2-normed space and u = {uy,---,u,} be a
basis of X. We can define the norm ||.]| on X by

[|x]| 0 = max{||x,u;]| : i=1,...,d}.

Associated to the derived norm |||, we can define the (closed) balls B, (x,€)
centered at x having radius € by

Bu(x,) = {y:[x—y[= <e},

where [[x — yl| = max{[x -y, j = 1,....d}.
Let X be a 2-normed space. A sequence (x,) in X is said to be convergent to
L € X, if for every nonzero z € X,

lim |3, — L,z] =0
n—oo

In this case, we write limx, = L and call L the limit of (x,).

n—oo

Let {x,} be a sequence in 2-normed space (X, ||.,.||). The sequence (x,) is said
to be statistically convergent to L, if for every € > 0, the set

{neN:|x,—L,z|| > ¢}

has natural density zero for each nonzero z in X, in other words (x,) statistically
converges to L in 2-normed space (X,||.,.||) if

lim —]{n [, — L,2|| > €}| =
for each nonzero z in X . It means that for each z € X,

X, —L,z|| < &, aa. n.

In this case we write st — lim ||x,,z|| = ||L,z]|-
n—oo

A sequence (x,) in 2-normed space (X,||.,.||) is said to be statistically Cauchy
sequence in X, if for every € > 0 and every nonzero z € X there exists a number
N = N(¢&,z) such that

S({neN:||lx,—xn,z|| > €}) =0,
i.e., for each nonzero z € X,
X0 —xn,2]| <€, aa. n.

Let X and Y be two 2-normed spaces and assume that functions f, : X — Y and
f:X —Y are given. The sequence of functions {f; },en is said to be convergent to f
if fu(x) =— Il f(x) for each x € X. We write f, -y f. This can be expressed by the
formula

(Vy € Y)(Vx € X)(Ve > 0)(3ng € N)(Vn = no)|| fu(x) — f(x),y]| < &.
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3. Main results

In this paper, we study concepts of convergence, statistical convergence and sta-
tistical Cauchy sequence of functions and investigate some properties and relationships
between them in 2-normed spaces.

Throughout the paper, we let X and Y be two 2-normed spaces, {f,},en and
{gn}nen be two sequences of functions and f, g be two functions from X to Y.

DEFINITION 1. The sequence {f,},cn is said to be (pointwise) statistical con-
vergent to f, if for every € >0,
1
lim = [{n € N | £u(x) = £(x),2] > e}| =

for each x € X and each nonzero z € Y. It means that for each x € X and each nonzero
zeY,
|l fu(x) = f(x),2]| < €, aa. n.

In this case, we write
st = lim || (), 2]l = £ (0)2]) or fu = 7
REMARK 1. {f,}.en is any sequence of functions and f is any function from X
to Y, then set
{neN:|fulx)—f(x),z| = €, for each x € X and each z€ Y} =0,

since if z= 0 (0 vektor), I fn(x) = f(x),z]] =0 % € so the above set is empty.

THEOREM 1. Iffor each x € X and each nonzero 7 €Y,
st = lim || £ (x), 2| = [1f ()2l and st = lim || fu(x),z]] = [[g(x),z]),

then || fu(x),z|| = l|gn(x),2]| (i.e., f=g), foreach x € X and each nonzero 7 €Y.

Proof. Assume f # g. Then f—g# 6, so there exists a z € Y such that f, g and
z are linearly independent (such a z exists since d > 2). Therefore, for each x € X and
each nonzero z € Y,
Ilf(x) —g(x),z|| =2¢, with €>0.

Now, for each x € X and each nonzero z € Y, we get
28 = [|f(x) = g(x),2l| = [[(f () = fu(x)) + (/u(x) — 8(x)) 2]
< fa(x) = 8 () zll + [ fa(x) = £ (x), 2]
and so
{n: [1a(x) — g(x), 2l < &} € {n: [|falx) = f(x),2] > €}
But, for each x € X and each nonzero z € Y, d({n: | fu(x) — g(x),z|| < €}) =0, then
contradicting the fact that f,, — I Hy,, g. O
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THEOREM 2. [If {g,,}(,,eN) is a convergent sequence of functions such that f, = g,
a.a. n, then { fu}(neny is statistically convergent.

Proof. Suppose that for each x € X and each nonzero z €Y,
S({neN: fulx) # gn(x)}) =0 and lim |[g,(x),z[| = || f(x), 2],
then for every € > 0,
{neN:[[fu(x) = f(x),2l] > €} S {neN:lga(x) = f(x),2l| > €}
U{n e N: f,(x) # gn(x)}.
Therefore,
S({neN: | fulx) = f(x),2l| = €}) < 6({n e N:|[|galx) = f(x),2 = €}) (D)
+6({n €N fulx) # gn(x)})

Since lim, e ||gn(x),z]| = [|f(x),z]|, for each x € X and each nonzero z € Y. The set
{neN:|gn(x)— f(x),z]| = €} contain finite number of integers and so

6({neN:|lgn(x) = fx),z| > €}) =

Using inequality (1) we get for every € > 0

S({n e N:|falx) = f(x),2]| > €}) =

for each x € X and each nonzero z € Y and so consequently

st = Tim || fu(x), 2] = [If (x), 2]l O

THEOREM 3. Let o € R. Iffor each x € X and each nonzero z €Y,

st = Tim || fu(x), 2| = 1/ (x),z]| and st = lim [|gx(x), 2] = [|g(x),z];
then
(i) st = lim | £ (x) + gn(x), 2| = 1/ (x) +&(x), 2] and
(id) st — lim [locfu (x),2l| = [|ef (x),2]]-

Proof. (i) Suppose that
st— i [[f(x),z]| = [1/(x),2l| and st — lim [ga(x),z]| = [|lg(x), 2]

for each x € X and each nonzero z € Y. Then, 0(K;) =0 and d(K>) = 0 where

Ki=Ki(e.2): {neN: |0~ £(0).2] > 3 }

and

Ko = Ko(e.2) : {n e N:[lgu(v) — (0.2 > 5 }

for every € > 0, each x € X and each nonzero z €Y. Let

K=K(g,z) = {n e N: [[(fa(x) + galx)) = (f(x) +8(x)),2l| > €}
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To prove that §(K) = 0, it suffices to show that K C K; UK,. Let ng € K then, for
each x € X and each nonzero z €Y,

([ (g (%) + 8o (x)) — (f (%) +8(x)),2]| = e. 2
Suppose to the contrary, that ng & Ky UK, . Then, ng € K| and ny € K. If ng € K; and
ny € K then, for each x € X and each nonzero z € Y,

o () = £(0),2]) < 5 and. gny(x) — g(), 2 < 5.

Then, we get
[[(forg (%) + 8o (%)) = (f (%) + 8(x)) 2l < [ fng (¥) = £ () 2l + Nl gny () — g(x), 2]l
<Eiioe

for each x € X and each nonzero z € Y, which contradicts (2). Hence ny € K1 UK, and
so KCKiUK,.
(i) Let ¢ € R (o # 0) and for each x € X and each nonzero z € Y,

st = Tim [ fu(x),2l| = £ (x), 2.

5({nemillnm-rmal> 5 1) -0

|af

Then, we get

Therefore, for each x € X and each nonzero z € Y, we have

(n € Nl ~af ()2l > €) = fn € N: el ) - 7,2 > €)
€
—{nenIne -2 > 5 -

Hence, the right hand side of above equality equals 0. Therefore, for each x € X and
each nonzero z € Y, we have

st = lim [loefu(x), 2l = [|ef (x),z]]. O

Now, we give the concept of statistical Cauchy sequence and investigate rela-
tionships between statistical Cauchy sequence and statistical convergence in 2-normed
space.

DEFINITION 2. The sequences of functions { f,} is said to be statistically Cauchy
sequence, if for every € > 0 and each nonzero z € Y, there exist a number k = k(&,z2)
such that

S({neN:||fu(x) — fi(x).z|| > €}) =0
foreach x € X i.e.,
Ilfn(x) — fi(x),z|| < €, a.a. n.

THEOREM 4. Let {fy}n>1 be a statistically Cauchy sequence of functions in a
finite dimensional 2-normed space (X,||.,.||). Then, there exists a convergent sequence
of functions {gn}tn>1 in (X,||.,.||) such that f,, = gn, for a.a. n.



ON ST-CONVERGENCE OF SEQUENCES OF FUNCTIONS IN 2-NORMED SPACES 55

Proof. First note that {f,},>; is a statistically Cauchy sequence of functions in
(X, |Ill). Choose a natural number k(1) such that the closed ball B, = By (fi(1)(x), 1)
contains f,(x) fora.a. n and for each x € X . Then, choose a natural number k(2) such
that the closed ball By = Bu(f(1)(x), 2) contains f,(x) for a.a. n and for each x € X.

Note that B2 = B\ N B, also contains f,(x) for a.a. n and for each x € X. Thus, by
continuing of this process, we can obtain a sequence {BJ'},,~ of nested closed balls
such that diam (B') < 1 . Therefore,

M B =
m=1

where £ is a function from X to Y. Since each B]} contains f,(x) for a.a. n and for
each x € X, we can choose a sequence of strictly increasing natural numbers {S; }n>1
such that foreach x € X,

1 .
;|{n€N:fn(x) ZB'} < — if n> 8.

Put R, ={neN:n>S,, fu(x) €Bl'} foreach x € X, forall m>1 and R =
Upm=1 Rm. Now, for each x € X, define the sequence of functions {g,},>1 as following

(h(x), if neR
gn(x) = { fa(x),  otherwise.

Note that, limg,(x) = h(x), for each x € X . In fact, for each € > 0 and for each
Nn—o0

x € X, choose a natural number m such that € > % > (. Then, for each n > S, and for
each x € X, g,(x) = h(x) or g,(x) = f,(x) € Bl and so in each case

1
3) — () < diam(B) < 5
Since, foreach x € X, {n € N: g,(x) # fu(x)} C{n e N: f,(x) & B'}, we have

L €N () £ fu()H < S l{n €N fu(0) €BIY < -

and so
5({1’1 eN: gn(x) #fn(x)}) =0

Thus, g,(x) = f,(x) fora.a. n and foreach x € X in (X, ||.||). Suppose that {uy,...,uy}
is a basis for (X, ].,.]|). Since, for each x € X,

1im [g,(x) = h(x)[|eo = 0 and [|gn(x) = hlx), uil| < [lga(x) = A(x)]|
forall 1 <i<d,then we have
’}g{}o Hgﬂ(x) - h(x)7Z||°° =0,

for each x € X and each nonzero z € X. This completes the proof. [

THEOREM 5. The sequence {f,} is statistically convergent if and only if {f,} is
a statistically Cauchy sequence of functions.
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Proof. Assume that f be function from X to ¥ and
st = lim [| fu (), 2| = [1£(x), 2],

for each x € X and each nonzero z € Y and € > 0. Then, for each x € X and each
nonzero z € Y, we have

a.a. n.

o) = £0).21 < 5,

If k = k(€,z) is chosen so that for each x € X and each nonzero z €Y,

i) = £l < 5
and so we have
1) = i) 2ll < I1£a0) = £002l+ 1£0) = )2l < 5 +5

5 =g, aa. n.

Hence, {f,} is statistically Cauchy sequence of functions.

Now, assume that {f,} is statistically Cauchy sequence of function. By Theorem
4, there exists a convergent sequence {g,},en from X to ¥ such that f, = g, for a.a.
n. By Theorem 2, we have

st —1im|| f(x), 2] = || f(x),z]|

foreach x € X and eachnonzeroz €Y. [
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