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Wijsman quasi-invariant convergence

ESRA GÜLLE and UǦUR ULUSU

ABSTRACT. In this study, we defined concepts of Wijsman quasi-invariant convergence, Wijsman quasi-
strongly invariant convergence and Wijsman quasi-strongly q-invariant convergence. Also, we give the con-
cept of Wijsman quasi-invariant statistically convergence. Then, we study relationships among these concepts.
Furthermore, we investigate relationship between these concepts and some convergence types given earlier for
sequences of sets, too.

1. INTRODUCTION AND BACKGROUND

The concept of statistical convergence was firstly introduced by Fast [5] and this con-
cept has been studied by Šalát [15], Fridy [6], Connor [4] and many others, too.

A sequence x = (xk) is statistically convergent to L if for every ε > 0

lim
n→∞

1

n

∣∣∣{k ≤ n : |xk − L| ≥ ε
}∣∣∣ = 0,

where the vertical bars indicate the number of elements in the enclosed set.
Several authors have studied on the concepts of invariant mean and invariant conver-

gent sequences (see, [7, 9, 10, 14, 16, 19]).
Let σ be a mapping of the positive integers into themselves. A continuous linear functi-

onal φ on `∞, the space of real bounded sequences, is said to be an invariant mean or a
σ-mean if it satisfies following conditions:

(1) φ(x) ≥ 0, when the sequence (xn) has xn ≥ 0 for all n,
(2) φ(e) = 1, where e = (1, 1, 1, ...), and
(3) φ(xσ(n)) = φ(xn) for all x ∈ `∞.

The mappings σ are assumed to be one-to-one and such that σm(n) 6= n for all positive
integers n and m, where σm(n) denotes the m th iterate of the mapping σ at n. Thus,
φ extends the limit functional on c, the space of convergent sequences, in the sense that
φ(x) = limx for all x ∈ c.

In the case σ is translation mappings σ(n) = n+ 1, the σ-mean is often called a Banach
limit.

It can be shown that

Vσ =

{
x = (xn) ∈ `∞ : lim

m→∞

1

m

m∑
k=1

xσk(n) = L, uniformly in n

}
.

The concept of strongly σ-convergence was introduced by Mursaleen [8].
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A sequence x = (xk) is said to be strongly σ-convergent to L if

lim
m→∞

1

m

m∑
k=1

|xσk(n) − L| = 0,

uniformly in n.
In [17], Savaş generalized the concept of strongly σ-convergence as below:

[Vσ]p =

{
x = (xk) : lim

m→∞

1

m

m∑
k=1

|xσk(n) − L|p = 0, uniformly in n

}
,

where 0 < p <∞.

The concept of σ-statistically convergent sequence was introduced by Savaş and Nuray
[18] as follows:

A sequence x = (xk) is said to be σ-statistically convergent to L if for every ε > 0

lim
m→∞

1

m

∣∣∣{k ≤ m : |xσk(n) − L| ≥ ε
}∣∣∣ = 0,

uniformly in n.
Let X be any non-empty set and N be the set of natural numbers. The function

f : N → P (X) is defined by f(k) = Ak ∈ P (X) for each k ∈ N, where P (X) is po-
wer set of X . The sequence {Ak} = (A1, A2, . . .), which is the range’s elements of f , is
said to be sequences of sets.

Let (X, ρ) be a metric space. For any point x ∈ X and any non-empty subset A of X ,
the distance from x to A is defined by d(x,A) = infa∈A ρ(x, a).

Throughout the paper we take (X, ρ) as a metric space and A,Ak as any non-empty
closed subsets of X .

There are different convergence notions for sequence of sets. One of them handled in
this paper is the concept of Wijsman convergence (see, [1, 2, 3, 20, 21, 22]).

A sequence {Ak} is said to be Wijsman convergent to A if for each x ∈ X ,

lim
k→∞

d(x,Ak) = d(x,A)

and it is denoted by Ak
W→ A.

A sequence {Ak} is said to be bounded if for each x ∈ X , there exists an M > 0 such
that |d(x,Ak)| < M for all k, i.e., if supk

{
d(x,Ak)

}
<∞.

The set of all bounded sequences of sets is denoted by L∞.
Nuray and Rhoades [11] defined the concept of Wijsman statistical convergence for

sequences of sets.
A sequence {Ak} is Wijsman statistically convergent to A if for each x ∈ X and every

ε > 0

lim
n→∞

1

n

∣∣∣{k ≤ n : |d(x,Ak)− d(x,A)| ≥ ε
}∣∣∣ = 0

and it is denoted by st− limW Ak = A.
Using the invariant mean, the concepts of Wijsman invariant convergence (WVσ), Wijs-

man strongly invariant convergence [WVσ] and Wijsman invariant statistical convergence
(WSσ) were also introduced by Pancaroğlu and Nuray [13].

A sequence {Ak} is said to be Wijsman invariant convergent to A if for each x ∈ X

lim
n→∞

1

n

n∑
k=1

d(x,Aσk(m)) = d(x,A),

uniformly in m and it is denoted by Ak
WVσ−→ A.
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A sequence {Ak} is said to be Wijsman strongly invariant convergent to A if for each
x ∈ X

lim
n→∞

1

n

n∑
k=1

|d(x,Aσk(m))− d(x,A)| = 0,

uniformly in m and it is denoted by Ak
[WVσ]−→ A.

A sequence {Ak} is Wijsman invariant statistically convergent to A if for each x ∈ X
and every ε > 0

lim
n→∞

1

n

∣∣∣{k ≤ n : |d(x,Aσk(m))− d(x,A)| ≥ ε
}∣∣∣ = 0,

uniformly in m and it is denoted by Ak
(WSσ)−→ A.

Nuray [12] studied concepts of quasi-invariant convergence and quasi-invariant statis-
tical convergence for real sequences in a normed space.

2. WIJSMAN QUASI-INVARIANT CONVERGENCE

In this section, we defined concepts of Wijsman quasi-invariant convergence,
Wijsman quasi-strongly invariant convergence and Wijsman quasi-strongly q-invariant
convergence. Also, we give the concept of Wijsman quasi-invariant statistically conver-
gence. Then, we study relationships among these concepts. Furthermore, we investigate
relationship between these concepts and some convergences types given earlier for se-
quences of sets.

Definition 2.1. A sequence {Ak} is Wijsman quasi-invariant convergent to A if for each
x ∈ X

lim
p→∞

∣∣∣∣∣1p
p−1∑
k=0

dx(Aσk(np))− dx(A)

∣∣∣∣∣ = 0,

uniformly in n = 1, 2, . . . where dx(Aσk(np)) = d(x,Aσk(np)) and dx(A) = d(x,A). In this

case, we write Ak
WQVσ−→ A.

Theorem 2.1. If a sequence {Ak} is Wijsman invariant convergent to A, then {Ak} is Wijsman
quasi-invariant convergent to A.

Proof. Suppose that the sequence {Ak} is Wijsman invariant convergent to A. Then, for
each x ∈ X and every ε > 0 there exists an integer p0 > 0 such that for all p > p0∣∣∣∣∣1p

p−1∑
k=0

dx(Aσk(m))− dx(A)

∣∣∣∣∣ < ε,

for all m. If m is taken as m = np, then we get∣∣∣∣∣1p
p−1∑
k=0

dx(Aσk(np))− dx(A)

∣∣∣∣∣ < ε

for all n. Since ε > 0 is an arbitrary, we have

lim
p→∞

∣∣∣∣∣1p
p−1∑
k=0

dx(Aσk(np))− dx(A)

∣∣∣∣∣ = 0

uniformly in n. Therefore, the sequence {Ak} is Wijsman quasi-invariant convergent to
A. �
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Definition 2.2. A sequence {Ak} is Wijsman quasi-invariant statistically convergent to A
if for each x ∈ X and every ε > 0

lim
p→∞

1

p

∣∣∣{k ≤ p : |dx(Aσk(np))− dx(A)| ≥ ε}∣∣∣ = 0,

uniformly in n. In this case, we write Ak
WQSσ−→ A.

The set of all Wijsman quasi-invariant statistically convergent sequences will be
denoted by (WQSσ).

Theorem 2.2. If a sequence {Ak} is Wijsman invariant statistically convergent to A, then {Ak}
is Wijsman quasi-invariant statistically convergent to A.

Proof. Suppose that the sequence {Ak} is Wijsman invariant statistically convergent to A.
In this case, when δ > 0 is given, for each x ∈ X and every ε > 0 there exists an integer
p0 > 0 such that for all p > p0

1

p

∣∣∣{k ≤ p : |dx(Aσk(m))− dx(A)| ≥ ε
}∣∣∣ < δ,

for all m. If m is taken as m = np, then we get

1

p

∣∣∣{k ≤ p : |dx(Aσk(np))− dx(A)| ≥ ε}∣∣∣ < δ

for all n. Since δ > 0 is an arbitrary, we have

lim
p→∞

1

p

∣∣∣{k ≤ p : |dx(Aσk(np))− dx(A)| ≥ ε}∣∣∣ = 0

uniformly in n. Therefore, the sequence Ak is Wijsman quasi-invariant satatistically con-
vergent to A. �

Definition 2.3. A sequence {Ak} is Wijsman quasi-strongly invariant convergent to A if
for each x ∈ X

lim
p→∞

1

p

p−1∑
k=0

|dx(Aσk(np))− dx(A)| = 0,

uniformly in n. In this case, we write Ak
[WQVσ ]−→ A.

Definition 2.4. Let 0 < q < ∞. A sequence {Ak} is Wijsman quasi-strongly q-invariant
convergent to A if for each x ∈ X

lim
p→∞

1

p

p−1∑
k=0

|dx(Aσk(np))− dx(A)|q = 0,

uniformly in n. In this case, we write Ak
[WQVσ ]

q

−→ A.

The set of all Wijsman quasi-strongly q-invariant convergence sequences will be
denoted by [WQVσ]

q .
Theorem 2.3.

i) If a sequence {Ak} is Wijsman quasi-strongly q-invariant convergent to A, then this
sequence is Wijsman quasi-invariant statistically convergent to A.

ii) If a sequence {Ak} ∈ L∞ and Wijsman quasi-invariant statistically convergent to A,
then this sequence is Wijsman quasi-strongly q-invariant convergent to A.

iii) (WQSσ) ∩ L∞ = [WQVσ]
q
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Proof. i) Suppose that the sequence {Ak} is Wijsman quasi-strongly q-invariant conver-
gent to A. For each x ∈ X and every ε > 0, following inequality is provided:

p−1∑
k=0

|dx(Aσk(np))− dx(A)|q ≥ εq
∣∣∣{k ≤ p : |dx(Aσk(np))− dx(A)| ≥ ε}∣∣∣,

for all n. If the both side of the above inequality are multipled by
1

p
and after that the limit

is taken for p→∞, we get

lim
p→∞

1

p

p−1∑
k=0

|dx(Aσk(np))− dx(A)|q ≥ εq lim
p→∞

1

p

∣∣∣{k ≤ p : |dx(Aσk(np))− dx(A)| ≥ ε}∣∣∣. (2.1)

Since the sequence {Ak} is Wijsman quasi-strongly q-invariant convergent to A, the left
side of inequality (2.1) is equal to 0. Hence, we have

lim
p→∞

1

p

∣∣∣{k ≤ p : |dx(Aσk(np))− dx(A)| ≥ ε}∣∣∣ = 0

uniformly in n. So, the proof is completed.

ii) Suppose that the sequence {Ak} ∈ L∞ and Wijsman quasi-invariant statistically con-
vergent to A. Since {Ak} is bounded, there exists an M > 0 such that for each x ∈ X∣∣dx(Aσk(np))− dx(A)∣∣ ≤M.

Also, since {Ak} is Wijsman quasi-invariant statistically convergent to A, for each x ∈ X
and every ε > 0 there exists a number Nε ∈ N such that for all p > Nε

1

p

∣∣∣∣{k ≤ p : |dx(Aσk(np))− dx(A)| ≥ (ε2)1/q
}∣∣∣∣ < ε

2Mq
,

for all n. Now, we take the set

Gp =

{
k ≤ p : |dx(Aσk(np))− dx(A)| ≥

(ε
2

)1/q}
.

Thus, for each x ∈ X we get

1

p

p−1∑
k=0

|dx(Aσk(np))− dx(A)|q =
1

p

( ∑
k≤p
k∈Gp

|dx(Aσk(np))− dx(A)|q

+
∑
k≤p

k/∈Gp

|dx(Aσk(np))− dx(A)|q
)

<
1

p
p

ε

2Mq
Mq +

1

p
p
ε

2

=
ε

2
+
ε

2
= ε,

for all n. So, the proof is completed.

iii) If (i) and (ii) are considered together, we handle (WQSσ) ∩ L∞ = [WQVσ]
q . �



118 Esra Gülle and Uǧur Ulusu

Lemma 2.1. If for each x ∈ X and every ε > 0 there exists numbers p0 and n0 such that for all
p ≥ p0 and n ≥ n0

1

p

p−1∑
k=0

|dx(Aσk(np))− dx(A)| < ε,

then the sequence {Ak} is Wijsman quasi-strongly invariant convergent to A.

Proof. Let ε > 0 be given. Because of the hypothesis, for each x ∈ X we can choose
numbers p′0 and n0 such that

1

p

p−1∑
k=0

|dx(Aσk(np))− dx(A)| <
ε

2
, (2.2)

for all p ≥ p′0 and n ≥ n0. It is enough to prove that there exists a number p′′0 such that

1

p

p−1∑
k=0

|dx(Aσk(np))− dx(A)| < ε,

for all p ≥ p′′0 and 0 ≤ n ≤ n0. If p0 is taken as p0 = max{p′0, p′′0}, then the following
inequality is hold:

1

p

p−1∑
k=0

|dx(Aσk(np))− dx(A)| < ε,

for all p ≥ p0 and n. The number n0 is a constant due to the its selection. Thus, we can
take as

n0−1∑
k=0

|dx(Aσk(np))− dx(A)| = T.

Now, when considering the inequality (2.2) for 0 ≤ n ≤ n0 and p ≥ n0, we get

1

p

p−1∑
k=0

|dx(Aσk(np))− dx(A)| =
1

p

n0−1∑
k=0

|dx(Aσk(np))− dx(A)|

+
1

p

p−1∑
k=n0

|dx(Aσk(np))− dx(A)|

=
T

p
+

1

p

p−1∑
k=n0

|dx(Aσk(np))− dx(A)|

≤ T

p
+
ε

2
.

If p is taken sufficiently large, we can write
T

p
+
ε

2
< ε.

So, the sequence {Ak} is Wijsman quasi-strongly invariant convergent to A. �

Lemma 2.2. If for each x ∈ X and every ε, δ > 0 there exists numbers p0 and n0 such that for
all p ≥ p0 and n ≥ n0

1

p

∣∣∣{0 ≤ k ≤ p− 1 : |dx(Aσk(np))− dx(A)| ≥ ε
}∣∣∣ ≤ δ,

then the sequence {Ak} is Wijsman quasi-invariant statistically convergent to A.
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Proof. Let ε, δ > 0 be given. Because of the hypothesis, for each x ∈ X we can choose
numbers p′0 and n0 such that

1

p

∣∣∣{0 ≤ k ≤ p− 1 : |dx(Aσk(np))− dx(A)| ≥ ε
}∣∣∣ < δ

2
, (2.3)

for all p ≥ p′0 ve n ≥ n0. It is enough to prove that there exists a number p′′0 such that
1

p

∣∣∣{0 ≤ k ≤ p− 1 : |dx(Aσk(np))− dx(A)| ≥ ε
}∣∣∣ < δ,

for all p ≥ p′′0 and 0 ≤ n ≤ n0. If p0 is taken as p0 = max{p′0, p′′0}, then the following
inequality is hold:

1

p

∣∣∣{0 ≤ k ≤ p− 1 : |dx(Aσk(np))− dx(A)| ≥ ε
}∣∣∣ < δ,

for all p ≥ p0 and n. The number n0 is a constant due to the its selection. Thus, we can
take as ∣∣∣{0 ≤ k ≤ n0 − 1 : |dx(Aσk(np))− dx(A)| ≥ ε

}∣∣∣ = H.

Now, when considering the inequality (2.3) for 0 ≤ n ≤ n0 and p ≥ n0, we get
1

p

∣∣∣{0 ≤ k ≤ p− 1 : |dx(Aσk(np))− dx(A)| ≥ ε
}∣∣∣

≤ 1

p

∣∣∣{0 ≤ k ≤ n0 − 1 : |dx(Aσk(np))− dx(A)| ≥ ε
}∣∣∣

+
1

p

∣∣∣{n0 ≤ k ≤ p− 1 : |dx(Aσk(np))− dx(A)| ≥ ε
}∣∣∣

=
H

p
+

1

p

∣∣∣{n0 ≤ k ≤ p− 1 : |dx(Aσk(np))− dx(A)| ≥ ε
}∣∣∣

≤ H

p
+
δ

2
.

If p is taken sufficiently large, we can write
H

p
+
δ

2
< δ.

So, the sequence {Ak} is Wijsman quasi-invariant statistically convergent to A. �
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