
Universal Journal of Mathematics and Applications, 2 (3) (2019) 130-137
Research paper

Universal Journal of Mathematics and Applications
Journal Homepage: www.dergipark.gov.tr/ujma

ISSN 2619-9653
DOI: http://dx.doi.org/10.32323/ujma.606050

I2-Convergence of Double Sequences of Functions in 2-Normed
Spaces

Sevim Yegül1 and Erdinç Dündar1*
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Abstract

In this study, we introduced the concepts of I2-convergence and I ∗2 -convergence of double
sequences of functions in 2-normed space. Also, were studied some properties about these
concepts and investigated relationships between them for double sequences of functions in
2-normed spaces.

1. Introduction and Background

Throughout the paper, N denotes the set of all positive integers and R the set of all real numbers. The concept of convergence of a sequence
of real numbers has been extended to statistical convergence independently by Fast [14] and Schoenberg [32]. Gökhan et al. [19] introduced
the notion of pointwise and uniform statistical convergence of double sequences of real-valued functions.
The idea of I -convergence was introduced by Kostyrko et al. [25] as a generalization of statistical convergence which is based on
the structure of the ideal I of subset of N [14, 15]. Gezer and Karakuş [18] investigated I -pointwise and uniform convergence and
I ∗-pointwise and uniform convergence of function sequences and they examined the relation between them. Baláz et al. [4] investigated
I -convergence and I -continuity of real functions. Das et al. [6] introduced the concept of I -convergence of double sequences in a
metric space and studied some properties of this convergence. Dündar and Altay [7, 9] studied the concepts of pointwise and uniformly
I2-convergence and I ∗2 -convergence of double sequences of functions and investigated some properties about them. Furthermore, Dündar
[11] investigated some results of I2-convergence of double sequences of functions. Also, a lot of development have been made about double
sequences of functions (see [8], [10]-[12], [18], [27], [28], [34]-[36]).
The concept of 2-normed spaces was initially introduced by Gähler [16, 17] in the 1960’s. Statistical convergence and statistical Cauchy
sequence of functions in 2-normed space were studied by Yegül and Dündar [39]. Also, Yegül and Dündar [40] introduced concepts
of pointwise and uniform convergence, statistical convergence and statistical Cauchy double sequences of functions in 2-normed space.
Sarabadan and Talebi [29] presented various kinds of statistical convergence and I -convergence for sequences of functions with values in
2-normed spaces and also defined the notion of I -equistatistically convergence and study I -equistatistically convergence of sequences
of functions. Recently, Arslan and Dündar [1, 2] inroduced I -convergence and I -Cauchy sequences of functions in 2-normed spaces.
Futhermore, a lot of development have been made in this area (see [3, 5, 13, 26, 30, 33]).

2. Definitions and Notations

Now, we recall the concept of density, statistical convergence, 2-normed space and some fundamental definitions and notations (See
[1, 2, 4, 6, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 37, 38, 40]).
Let X be a real vector space of dimension d, where 2≤ d < ∞. A 2-norm on X is a function ‖·, ·‖ : X×X → R which satisfies the following
statements:

(i) ‖x,y‖= 0 if and only if x and y are linearly dependent.

Email addresses: sevimyegull@gmail.com (S. Yegül), erdincdundar79@gmail.com, edundar@aku.edu.tr (E. Dündar)



Universal Journal of Mathematics and Applications 131

(ii) ‖x,y‖= ‖y,x‖.
(iii) ‖αx,y‖= |α|‖x,y‖, α ∈ R.
(iv) ‖x,y+ z‖ ≤ ‖x,y‖+‖x,z‖.

The pair (X ,‖·, ·‖) is then called a 2-normed space. As an example of a 2-normed space we may take X = R2 being equipped with the
2-norm ‖x,y‖ := the area of the parallelogram based on the vectors x and y which may be given explicitly by the formula

‖x,y‖= |x1y2− x2y1|; x = (x1,x2),y = (y1,y2) ∈ R2.

In this study, we suppose X to be a 2-normed space having dimension d; where 2≤ d < ∞.
Throughout the paper, we X and Y be two 2-normed spaces, { fn}n∈N and {gn}n∈N be two sequences of functions and f ,g be two functions
from X to Y .
The sequence of functions { fn}n∈N is said to be convergent to f if fn(x)

‖.,.‖Y−→ f (x) for each x ∈ X . We write fn
‖.,.‖Y−→ f . This can be expressed

by the formula

(∀y ∈ Y )(∀x ∈ X)(∀ε > 0)(∃n0 ∈ N)(∀n≥ n0)‖ fn(x)− f (x),y‖< ε.

A family of sets I ⊆ 2N is called an ideal if and only if
(i) /0 ∈I , (ii) For each A,B ∈I we have A∪B ∈I , (iii) For each A ∈I and each B⊆ A we have B ∈I .
An ideal is called nontrivial if N /∈I and nontrivial ideal is called admissible if {n} ∈I for each n ∈ N.
A family of sets F ⊆ 2N is called a filter if and only if
(i) /0 /∈F , (ii) For each A,B ∈F we have A∩B ∈F , (iii) For each A ∈F and each B⊇ A we have B ∈F .
I is nontrivial ideal in N if and only if F (I ) = {M ⊂ N : (∃A ∈I )(M = N\A)} is a filter in N.
A nontrivial ideal I2 of N×N is called strongly admissible ideal if {i}×N and N×{i} belong to I2 for each i ∈ N.
Throughout the paper we take I2 as a strongly admissible ideal in N×N.
It is evident that a strongly admissible ideal is admissible also.
I 0

2 = {A⊂ N×N : (∃m(A) ∈ N)(i, j ≥ m(A)⇒ (i, j) 6∈ A)}. Then I 0
2 is a strongly admissible ideal and clearly an ideal I2 is strongly

admissible if and only if I 0
2 ⊂I2.

A sequence { fn} of functions is said to be I -convergent (pointwise) to f on D⊆ R if and only if for every ε > 0 and each x ∈ D,

{n : | fn(x)− f (x)| ≥ ε} ∈I .

In this case, we will write fn
I→ f on D.

The sequence of functions { fn} is said to be I -pointwise convergent to f , if for every ε > 0 and each nonzero z ∈ Y

A(ε,z) = {n ∈ N : ‖ fn(x)− f (x),z‖ ≥ ε} ∈I ,

or I − lim
n→∞
‖ fn(x)− f (x),z‖Y = 0, for each x ∈ X . In this case, we write fn

‖.,.‖Y−→I f . This can be expressed by the formula

(∀z ∈ Y )(∀ε > 0)(∃M ∈I )(∀n0 ∈ N\M)(∀x ∈ X)(∀n≥ n0)‖ fn(x)− f (x),z‖ ≤ ε.

The sequence of functions { fn} is said to be (pointwise) I ∗-convergent to f , if there exists a set M ∈F (I ), (i.e., N\M ∈I ), M = {m1 <
m2 < · · ·< mk < · · ·}, such that for each x ∈ X and each nonzero z ∈ Y

lim
k→∞
‖ fnk (x),z‖= ‖ f (x),z‖

and we write

I ∗− lim
n→∞
‖ fn(x),z‖= ‖ f (x),z‖ or fn

I ∗
→ f .

An admissible ideal I2 ⊂ 2N×N satisfies the property (AP2) if for every countable family of mutually disjoint sets {E1,E2, ...} belonging to
I2, there exists a countable family of sets {F1,F2, ...} such that E j∆Fj ∈I 0

2 , i.e., E j∆Fj is included in the finite union of rows and columns
in N×N for each j ∈ N and F =

⋃
∞
j=1 Fj ∈I2 (hence Fj ∈I2 for each j ∈ N).

Throughout the paper, we let I2 ⊂ 2N×N be a strongly admissible ideal, X and Y be two 2-normed spaces, { fmn}(m,n)∈N×N, {gmn}(m,n)∈N×N
and {hmn}(m,n)∈N×N be three double sequences of functions, f , g and k be three functions from X to Y .
A double sequence { fmn} is said to be pointwise convergent to f if, for each point x ∈ X and for each ε > 0, there exists a positive integer

k0 = k0(x,ε) such that for all m,n≥ k0 implies ‖ fmn(x)− f (x),z‖< ε, for every z ∈ Y . In this case, we write fmn
‖.,.‖Y−→ f .

A double sequence { fmn} is said to be (pointwise) statistical convergent to f , if for every ε > 0, lim
i, j→∞

1
i j

∣∣{(m,n),m≤ i,n≤ j : ‖ fmn(x)−

f (x),z‖ ≥ ε}
∣∣= 0, for each (fixed) x ∈ X and each nonzero z ∈ Y. It means that for each (fixed) x ∈ X and each nonzero z ∈ Y, ‖ fmn(x)−

f (x),z‖< ε, a.a. (m,n). In this case, we write

st− lim
m,n→∞

‖ fmn(x)− z‖= ‖ f (x),z‖ or fmn
‖.,.‖Y−→ st f .

The double sequences of functions { fmn} is said to be statistically Cauchy sequence, if for every ε > 0 and each nonzero z ∈ Y, there exist a
number k = k(ε,z) , t = t(ε,z) such that d2({(m,n) ∈ N×N : ‖ fmn(x)− fkt(x),z‖ ≥ ε}) = 0, for each (fixed) x ∈ X , i.e., for each nonzero
z ∈ Y, ‖ fnm(x)− fkt(x),z‖< ε, a.a. (m,n).
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3. Main Results

We introduced the concepts of I2-convergence and I ∗2 -convergence of double sequences of functions in 2-normed space. Also, were studied
some properties about these concepts and investigated relationships between them for double sequences of functions in 2-normed spaces.

Definition 3.1. { fmn} is said to be I2-convergent (pointwise sense) to f , if for every ε > 0 and each nonzero z ∈ Y

A(ε,z) = {(m,n) ∈ N×N : ‖ fmn(x)− f (x),z‖ ≥ ε} ∈I2,

for each x ∈ X . This can be expressed by the formula

(∀z ∈ Y ) (∀x ∈ X) (∀ε > 0) (∃H ∈I2) (∀(m,n) 6∈ H) ‖ fmn(x)− f (x),z‖< ε.

In this case, we write

I2− lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖, or fmn
‖.,.‖Y−→I2 f .

Theorem 3.2. For each x ∈ X and each nonzero z ∈ Y ,

lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖ implies I2− lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖

Proof. Let ε > 0 be given. Since

lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖

for each x ∈ X and each nonzero z ∈ Y , therefore, there exists a positive integer k0 = k0(ε,x) such that ‖ fmn(x)− f (x),z‖< ε , whenever
m,n≥ k0. This implies that for each nonzero z ∈ Y ,

A(ε,z) = {(m,n) ∈ N×N : ‖ fmn(x)− f (x),z‖< ε}
⊂ ((N×{1,2, ..,k0−1})∪ ({1,2, ..,k0−1}×N)) .

Since I2 be an admissible ideal, therefore

((N×{1,2, ..,k0−1})∪ ({1,2, ..,k0−1}×N)) ∈I2.

Hence, it is clear that A(ε,z) ∈I2 and consequently, for each nonzero z ∈ Y we have

I2− lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖.

Theorem 3.3. If I2-limit of any double sequence of functions { fmn} exists, then it is unique.

Proof. Assume that

I2− lim
m,n→∞

‖ fmn(x0),z‖= ‖ f (x0),z‖ and I2− lim
m,n→∞

‖ fmn(x0),z‖= ‖g(x0),z‖,

where f (x0) 6= g(x0) for a x0 ∈ X each nonzero z ∈ Y . Since f (x0) 6= g(x0). So we may suppose that f (x0) ≥ g(x0). Now, select
ε =

f (x0)−g(x0)
3 , so that neighborhoods ( f (x0)−ε, f (x0)+ε) and (g(x0)−ε,g(x0)+ε) of points f (x0) and g(x0), respectively, are disjoints.

Since for x0 ∈ X and each nonzero z ∈ Y

I2− lim
m,n→∞

‖ fmn(x0),z‖= ‖ f (x0),z‖ and I2− lim
m,n→∞

‖ fmn(x0),z‖= ‖g(x0),z‖,

then for each nonzero z ∈ Y , we have

A(ε,z) = {(m,n) ∈ N×N : ‖ fmn(x0)− f (x0),z‖ ≥ ε} ∈I2

and

B(ε,z) = {(m,n) ∈ N×N : ‖ fmn(x0)−g(x0),z‖ ≥ ε} ∈I2.

This implies that the sets

Ac(ε,z) = {(m,n) ∈ N×N : ‖ fmn(x0)− f (x0),z‖< ε}

and

Bc(ε,z) = {(m,n) ∈ N×N : ‖ fmn(x0)−g(x0),z‖< ε}

belongs to F (I2) and Ac(ε,z)∩Bc(ε,z) is nonempty set in F (I2) for x0 ∈ X and each nonzero z ∈ Y . Since Ac(ε,z)∩Bc(ε,z) 6= /0,
we obtain a contradiction to the fact that the neighborhoods ( f (x0)− ε, f (x0)+ ε) and (g(x0)− ε,g(x0)+ ε) of points f (x0) and g(x0)
respectively are disjoints. Hence, it is clear that for x0 ∈ X and each nonzero z ∈ Y ,

‖ f (x0),z‖= ‖g(x0),z‖

and consequently, we have ‖ f (x),z‖= ‖g(x),z‖, (i.e., f = g) for each x ∈ X and each nonzero z ∈ Y .
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Theorem 3.4. For each x ∈ X and each nonzero z ∈ Y , If

I2− lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖ and I2− lim
m,n→∞

‖gmn(x),z‖= ‖g(x),z‖,

then
(i) I2− lim

m,n→∞
‖ fmn(x)+gmn(x),z‖= ‖ f (x)+g(x),z‖,

(ii) I2− lim
m,n→∞

‖c fmn(x),z‖= ‖c f (x),z‖, c ∈ R,

(iii) I2− lim
m,n→∞

‖ fmn(x)gmn(x),z‖= ‖ f (x)g(x),z‖.

Proof. (i) Let ε > 0 be given. Since

I2− lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖ and I2− lim
m,n→∞

‖gmn(x),z‖= ‖g(x),z‖,

for each x ∈ X and each nonzero z ∈ Y , then

A
(

ε

2
,z
)
=
{
(m,n) ∈ N×N : ‖ fmn(x)− f (x),z‖ ≥ ε

2

}
∈I2

and

B
(

ε

2
,z
)
=
{
(m,n) ∈ N×N : ‖gmn(x)−g(x),z‖ ≥ ε

2

}
∈I2

and by the definition of ideal we have

A
(

ε

2
,z
)
∪B
(

ε

2
,z
)
∈I2.

Now, for each x ∈ X and each nonzero z ∈ Y we define the set

C(ε,z) = {(m,n) ∈ N×N : ‖( fmn(x)+gmn(x))− ( f (x)+g(x)),z‖ ≥ ε}

and it is sufficient to prove that C(ε,z)⊂ A
(

ε

2 ,z
)
∪B
(

ε

2 ,z
)
. Let (m,n) ∈C(ε,z), then for each x ∈ X and each nonzero z ∈ Y , we have

ε ≤ ‖( fmn(x)+gmn(x))− ( f (x)+g(x)),z‖ ≤ ‖ fmn(x)− f (x),z‖+‖gmn(x)−g(x),z‖.

As both of {‖ fmn(x)− f (x),z‖,‖gmn(x)−g(x),z‖} can not be (together) strictly less than ε

2 and therefore either

‖ fmn(x)− f (x),z‖ ≥ ε

2
or ‖gmn(x)−g(x),z‖ ≥ ε

2
,

for each x ∈ X and each nonzero z ∈ Y . This shows that (m,n) ∈ A
(

ε

2 ,z
)

or (m,n) ∈ B
(

ε

2 ,z
)

and so we have

(m,n) ∈ A
(

ε

2
,z
)
∪B
(

ε

2
,z
)
.

Hence, we have

C(ε,z)⊂ A
(

ε

2
,z
)
∪B
(

ε

2
,z
)

and so

I2− lim
m,n→∞

‖ fmn(x)+gmn(x),z‖= ‖ f (x)+g(x),z‖.

(ii) Let c ∈R and I2− lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖, for each x ∈ X and each nonzero z ∈Y . If c = 0, there is nothing to prove. We assume

that c 6= 0. Then,{
(m,n) ∈ N×N : ‖ fmn(x)− f (x),z‖ ≥ ε

|c|

}
∈I2

for each x ∈ X and each nonzero z ∈ Y and by the definition we have

{(m,n) ∈ N×N : ‖c fmn(x)− c f (x),z‖ ≥ ε}=
{
(m,n) ∈ N×N : ‖ fmn(x)− f (x),z‖ ≥ ε

|c|

}
.

Hence, the right side of above equality belongs to I2 and so

I2− lim
m,n→∞

‖c fmn(x),z‖= ‖c f (x),z‖,

for each x ∈ X and each nonzero z ∈ Y .
(iii) Since I2− lim

m,n→∞
‖ fmn(x),z‖= ‖ f (x),z‖ for each x ∈ X and each nonzero z ∈ Y , then for ε = 1 > 0,

{(m,n) ∈ N×N : ‖ fmn(x)− f (x),z‖ ≥ 1} ∈I2,
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and so

A = {(m,n) ∈ N×N : ‖ fmn(x)− f (x),z‖< 1} ∈F (I2).

Also, for any (m,n) ∈ A, ‖ fmn(x),z‖< 1+‖ f (x),z‖ for each x ∈ X and each nonzero z ∈ Y . Let ε > 0 be given. Choose δ > 0 such that

0 < 2δ <
ε

‖ f (x),z‖+‖g(x),z‖+1

for each x ∈ X and each nonzero z ∈ Y . It follows from the assumption that

B = {(m,n) ∈ N×N : ‖ fmn(x)− f (x),z‖< δ} ∈F (I2)

and

C = {(m,n) ∈ N×N : ‖gmn(x)−g(x),z‖< δ} ∈F (I2)

for each x ∈ X and each nonzero z ∈ Y . Since F (I2) is a filter, therefore A∩B∩C ∈F (I2). Then, for each (m,n) ∈ A∩B∩C we have

‖ fmn(x)gmn(x)− f (x).g(x),z‖= ‖ fmn(x)gmn(x)− fmn(x)g(x)+ fmn(x)g(x)− f (x)g(x),z‖
≤ ‖ fmn(x),z‖‖gmn(x)−g(x),z‖+‖g(x),z‖‖ fmn(x)− f (x),z‖
< (‖ f (x),z‖+1)δ +(‖g(x),z‖)δ
= (‖ f (x),z‖+‖g(x),z‖+1)δ

< ε

and so, we have

{(m,n) ∈ N×N : ‖ fmn(x).gmn(x)− f (x).g(x),z‖ ≥ ε} ∈I2,

for each x ∈ X and each nonzero z ∈ Y . This completes the proof of theorem.

Theorem 3.5. For each x ∈ X and each nonzero z ∈ Y , if
(i) { fmn} ≤ {gmn} ≤ {hmn}, for every (m,n) ∈ K, where N×N⊇ K ∈F (I2)
and
(ii) I2− lim

m,n→∞
‖ fmn(x),z‖= ‖k(x),z‖ and I2− lim

m,n→∞
‖hmn(x),z‖= ‖k(x),z‖,

then we have

I2− lim
m,n→∞

‖gmn(x),z‖= ‖k(x),z‖.

Proof. Let ε > 0 be given. By condition (ii) we have

{(m,n) ∈ N×N : ‖ fmn(x)− k(x),z‖ ≥ ε} ∈I2

and

{(m,n) ∈ N×N : ‖hmn(x)− k(x),z‖ ≥ ε} ∈I2,

for each x ∈ X and each nonzero z ∈ Y . This implies that the sets

P = {(m,n) ∈ N×N : ‖ fmn(x)− k(x),z‖< ε}

and

R = {(m,n) ∈ N×N : ‖hmn(x)− k(x),z‖< ε}

belong to F (I2), for each x ∈ X and each nonzero z ∈ Y . Let

Q = {(m,n) ∈ N×N : ‖gmn(x)− k(x),z‖< ε},

for each x ∈ X and each nonzero z ∈ Y . It is clear that the set P∩R∩K ⊂ Q. Since P∩R∩K ∈F (I2) and P∩R∩K ⊂ Q, then from the
definition of filter, we have Q ∈F (I2) and so

{(m,n) ∈ N×N : ‖gmn(x)− k(x),z‖ ≥ ε} ∈I2,

for each x ∈ X and each nonzero z ∈ Y . Hence,

I2− lim
m,n→∞

‖gmn(x),z‖= ‖k(x),z‖.

Theorem 3.6. For each x ∈ X and each nonzero z ∈ Y , we let

I2− lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖ and I2 lim
m,n→∞

‖gmn(x),z‖= ‖g(x),z‖.

Then, for every (m,n) ∈ K we have
(i) If fmn(x)≥ 0 then, f (x)≥ 0 and
(ii) If fmn(x)≤ gmn(x) then f (x)≤ g(x), where K ⊆ N×N and K ∈F (I2).
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Proof. (i) Suppose that f (x)< 0. Select ε =− f (x)
2 , for each x ∈ X . Since

I2− lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖,

so there exists the set M such that

M = {(m,n) ∈ N×N : ‖ fmn(x)− f (x),z‖< ε} ∈F (I2),

for each x∈ X and each nonzero z∈Y . Since M,K ∈F (I2), then M∩K is a nonempty set in F (I2). So we can find out point (m0,n0)∈K
such that

‖ fm0n0(x)− f (x),z‖< ε.

Since f (x) < 0 and ε = − f (x)
2 for each x ∈ X , then we have fm0n0(x) ≤ 0. This is a contradiction to the fact that fmn(x) > 0 for every

(m,n) ∈ K. Hence, we have f (x)> 0, for each x ∈ X .
(ii) Suppose that f (x)> g(x). Select ε =

f (x)−g(x)
3 , for each x∈X . So that the neighborhoods ( f (x0)−ε, f (x0)+ε) and (g(x0)−ε,g(x0)+ε)

of f (x) and g(x), respectively, are disjoints. Since for each x ∈ X and each nonzero z ∈ Y ,

I2− lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖ and I2− lim
m,n→∞

‖gmn(x),z‖= ‖g(x),z‖

and F (I2) is a filter on N×N, therefore we have

A = {(m,n) ∈ N×N : ‖ fmn(x)− f (x),z‖< ε} ∈F (I2)

and

B = {(m,n) ∈ N×N : ‖gmn(x)−g(x),z‖< ε} ∈F (I2).

This implies that /0 6= A∩B∩K ∈F (I2). There exists a point (m0,n0) ∈ K such that

‖ fmn(x)− f (x),z‖< ε and ‖gmn(x)−g(x),z‖< ε.

Since f (x)> g(x) and ε =
f (x)−g(x)

3 for each x ∈ X , then we have

fm0n0(x)> gm0n0(x).

This is a contradiction to the fact fmn(x)≤ gmn(x) for every (m,n) ∈ K. Thus, we have f (x)≤ g(x), for each x ∈ X .

Definition 3.7. The double sequence of functions { fmn} in 2-normed space (X ,‖., .‖) is said to be I ∗2 -convergent (pointwise sense) to f , if
there exists a set M ∈F (I2) (i.e.,H = N×N\M ∈I2) such that for each x ∈ X, each nonzero z ∈ Y and all (m,n) ∈M

lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖

and we write

I ∗2 − lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖ or fmn
‖.,.‖Y−→I ∗

2
f .

Theorem 3.8. For each x ∈ X and nonzero z ∈ Y ,

I ∗2 − lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖ implies I2− lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖.

Proof. Since for each x ∈ X and each nonzero z ∈ Y ,

I ∗2 − lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖,

so there exists a set H ∈I2 such that for M ∈F (I2) (i.e.,H = N×N\M ∈I2) we have

lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖, (m,n) ∈M.

Let ε > 0. Then, for each x ∈ X there exists a k0 = k0(ε,x) ∈ N such that for each nonzero z ∈ Y , ‖ fmn(x)− f (x),z‖< ε , for all (m,n) ∈M
such that m,n≥ k0. Then, clearly we have

A(ε,z) = {(m,n) ∈ N×N : ‖ fmn(x)− f (x),z‖ ≥ ε}
⊂ H ∪ [M∩ (({1,2,3, ...,(k0−1)}×N)∪ (N×{1,2,3, ...,(k0−1)}))] ,

for each x ∈ X , for each nonzero z ∈ Y . Since I2 ⊂ 2N×Nbe a strongly admissible ideal then

H ∪ [M∩ (({1,2,3, ...,(k0−1)}×N)∪ (N×{1,2,3, ...,(k0−1)}))] ∈I2

and so, A(ε,z) ∈I2. This implies that I2− lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖.
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Theorem 3.9. Let I2 ⊂ 2N×N be an admissible ideal having the property (AP2). For each x ∈ X and nonzero z ∈ Y ,

I2− lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖ implies I ∗2 − lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖.

Proof. Let I2 ⊂ 2N×N be an admissible ideal having the property (AP2) and I2− lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖, for each x ∈ X and each

nonzero z ∈ Y . Then, for any ε > 0

A(ε,z) = {(m,n) ∈ N×N : ‖ fmn(x)− f (x),z‖ ≥ ε} ∈I2

for each x ∈ X and each nonzero z ∈ Y . Now, put

A1(ε,z) = {(m,n) ∈ N×N : ‖ fmn(x)− f (x),z‖ ≥ 1}

and

Ak(ε,z) = {(m,n) ∈ N×N :
1
k
≤ ‖ fmn(x)− f (x),z‖< 1

k−1
}

for k≥ 2. Ai∩A j = /0 for i 6= j and Ai ∈I2 for each i ∈N. By property (AP2) there exists a sequence {Bk}k ∈N of sets such that A j4B j is
finite union of rows and columns in N×N for each j ∈ N and B = ∪∞

j=1B j ∈I2.
We shall prove that, for each x ∈ X and each nonzero z ∈ Y

lim
m,n→∞

‖ fmn(x)− f (x),z‖= ‖ f (x),z‖, (m,n) ∈M,

for M = N×N\B ∈F (I2). Let δ > 0 be given. Choose k ∈ N such that 1
k < δ . Then, we have

{(m,n) ∈ N×N : ‖ fmn(x)− f (x),z‖ ≥ δ} ⊂
k⋃

j=1
A j.

Since A j4B j, j = 1,2, ...,k are included in finite union of rows and columns, there exis k⋃
j=1

B j

∩{(m,n) ∈ N×N : m≥ n0∧n≥ n0}=

 k⋃
j=1

A j

∩{(m,n) ∈ N×N : m≥ m0∧n≥ n0}.

If m,n≥ n0 and (m,n) /∈ B then

(m,n) /∈
k⋃

j=1
B j and so (m,n) /∈

k⋃
j=1

A j.

Thus, we have ‖ fmn(x)− f (x),z‖< 1
k < δ for each x ∈ X and each nonzero z ∈ Y . This implies that

lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖, (m,n) ∈M

and so we have

I ∗2 − lim
m,n→∞

‖ fmn(x),z‖= ‖ f (x),z‖

for each x ∈ X and each nonzero z ∈ Y .
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[31] E. Savaş, M. Gürdal, Ideal Convergent Function Sequences in Random 2-Normed Spaces, Filomat, 30(3) (2016), 557–567.
[32] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
[33] Y. Sever, E. Dündar, Regularly ideal convergence and regularly ideal Cauchy double sequences in 2-normed spaces, Filomat, 28(5) (2015), 907–915.
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