\mathscr{I}_{2}-Convergence of Double Sequences of Functions in 2-Normed Spaces

Sevim Yegüil ${ }^{1}$ and Erdinç Dündar ${ }^{1 *}$
${ }^{1}$ Department of Mathematics, Afyon Kocatepe Universit, Afyonkarahisar, Turkey
*Corresponding author

Article Info

Keywords: \mathscr{I}_{2}-convergence, \mathscr{I}_{2}^{*} convergence, Double sequences of functions, 2-normed Spaces.
2010 AMS: 40A05, 40A30, 40A35
Received: 18 August 2019
Accepted: 12 September 2019
Available online: 30 September 2019

Abstract

In this study, we introduced the concepts of \mathscr{I}_{2}-convergence and \mathscr{I}_{2}^{*}-convergence of double sequences of functions in 2-normed space. Also, were studied some properties about these concepts and investigated relationships between them for double sequences of functions in 2 -normed spaces.

1. Introduction and Background

Throughout the paper, \mathbb{N} denotes the set of all positive integers and \mathbb{R} the set of all real numbers. The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [14] and Schoenberg [32]. Gökhan et al. [19] introduced the notion of pointwise and uniform statistical convergence of double sequences of real-valued functions.
The idea of \mathscr{I}-convergence was introduced by Kostyrko et al. [25] as a generalization of statistical convergence which is based on the structure of the ideal \mathscr{I} of subset of \mathbb{N} [14, 15]. Gezer and Karakuş [18] investigated \mathscr{I}-pointwise and uniform convergence and \mathscr{I}^{*}-pointwise and uniform convergence of function sequences and they examined the relation between them. Baláz et al. [4] investigated \mathscr{I}-convergence and \mathscr{I}-continuity of real functions. Das et al. [6] introduced the concept of \mathscr{I}-convergence of double sequences in a metric space and studied some properties of this convergence. Dündar and Altay [7,9] studied the concepts of pointwise and uniformly \mathscr{I}_{2}-convergence and \mathscr{I}_{2}^{*}-convergence of double sequences of functions and investigated some properties about them. Furthermore, Dündar [11] investigated some results of \mathscr{I}_{2}-convergence of double sequences of functions. Also, a lot of development have been made about double sequences of functions (see [8], [10]-[12], [18], [27], [28], [34]-[36]).
The concept of 2-normed spaces was initially introduced by Gähler [16, 17] in the 1960's. Statistical convergence and statistical Cauchy sequence of functions in 2-normed space were studied by Yegül and Dündar [39]. Also, Yegül and Dündar [40] introduced concepts of pointwise and uniform convergence, statistical convergence and statistical Cauchy double sequences of functions in 2-normed space. Sarabadan and Talebi [29] presented various kinds of statistical convergence and \mathscr{I}-convergence for sequences of functions with values in 2-normed spaces and also defined the notion of \mathscr{I}-equistatistically convergence and study \mathscr{I}-equistatistically convergence of sequences of functions. Recently, Arslan and Dündar [1, 2] inroduced \mathscr{I}-convergence and \mathscr{I}-Cauchy sequences of functions in 2-normed spaces. Futhermore, a lot of development have been made in this area (see [3, 5, 13, 26, 30, 33]).

2. Definitions and Notations

Now, we recall the concept of density, statistical convergence, 2-normed space and some fundamental definitions and notations (See $[1,2,4,6,16,17,18,20,21,22,23,24,25,26,29,30,31,37,38,40])$.
Let X be a real vector space of dimension d, where $2 \leq d<\infty$. A 2-norm on X is a function $\|\cdot, \cdot\|: X \times X \rightarrow \mathbb{R}$ which satisfies the following statements:
(i) $\|x, y\|=0$ if and only if x and y are linearly dependent.
(ii) $\|x, y\|=\|y, x\|$.
(iii) $\|\alpha x, y\|=|\alpha|\|x, y\|, \alpha \in \mathbb{R}$.
(iv) $\|x, y+z\| \leq\|x, y\|+\|x, z\|$.

The pair $(X,\|\cdot, \cdot\|)$ is then called a 2 -normed space. As an example of a 2 -normed space we may take $X=\mathbb{R}^{2}$ being equipped with the 2-norm $\|x, y\|:=$ the area of the parallelogram based on the vectors x and y which may be given explicitly by the formula

$$
\|x, y\|=\left|x_{1} y_{2}-x_{2} y_{1}\right| ; \quad x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2} .
$$

In this study, we suppose X to be a 2 -normed space having dimension d; where $2 \leq d<\infty$.
Throughout the paper, we X and Y be two 2-normed spaces, $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ be two sequences of functions and f, g be two functions from X to Y.
The sequence of functions $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is said to be convergent to f if $f_{n}(x) \xrightarrow{\|, \ldots\|_{Y}} f(x)$ for each $x \in X$. We write $f_{n} \xrightarrow{\|, \ldots\|_{Y}} f$. This can be expressed by the formula

$$
(\forall y \in Y)(\forall x \in X)(\forall \varepsilon>0)\left(\exists n_{0} \in \mathbb{N}\right)\left(\forall n \geq n_{0}\right)\left\|f_{n}(x)-f(x), y\right\|<\varepsilon .
$$

A family of sets $\mathscr{I} \subseteq 2^{\mathbb{N}}$ is called an ideal if and only if
(i) $\emptyset \in \mathscr{I}$, (ii) For each $A, B \in \mathscr{I}$ we have $A \cup B \in \mathscr{I}$, (iii) For each $A \in \mathscr{I}$ and each $B \subseteq A$ we have $B \in \mathscr{I}$.

An ideal is called nontrivial if $\mathbb{N} \notin \mathscr{I}$ and nontrivial ideal is called admissible if $\{n\} \in \mathscr{I}$ for each $n \in \mathbb{N}$.
A family of sets $\mathscr{F} \subseteq 2^{\mathbb{N}}$ is called a filter if and only if
(i) $\emptyset \notin \mathscr{F}$, (ii) For each $A, B \in \mathscr{F}$ we have $A \cap B \in \mathscr{F}$, (iii) For each $A \in \mathscr{F}$ and each $B \supseteq A$ we have $B \in \mathscr{F}$.
\mathscr{I} is nontrivial ideal in \mathbb{N} if and only if $\mathscr{F}(\mathscr{I})=\{M \subset \mathbb{N}:(\exists A \in \mathscr{I})(M=\mathbb{N} \backslash A)\}$ is a filter in \mathbb{N}.
A nontrivial ideal \mathscr{I}_{2} of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible ideal if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times\{i\}$ belong to \mathscr{I}_{2} for each $i \in N$.
Throughout the paper we take \mathscr{I}_{2} as a strongly admissible ideal in $\mathbb{N} \times \mathbb{N}$.
It is evident that a strongly admissible ideal is admissible also.
$\mathscr{I}_{2}^{0}=\{A \subset \mathbb{N} \times \mathbb{N}:(\exists m(A) \in \mathbb{N})(i, j \geq m(A) \Rightarrow(i, j) \notin A)\}$. Then \mathscr{I}_{2}^{0} is a strongly admissible ideal and clearly an ideal \mathscr{I}_{2} is strongly admissible if and only if $\mathscr{I}_{2}^{0} \subset \mathscr{I}_{2}$.
A sequence $\left\{f_{n}\right\}$ of functions is said to be $\mathscr{\mathscr { C }}$-convergent (pointwise) to f on $D \subseteq \mathbb{R}$ if and only if for every $\varepsilon>0$ and each $x \in D$,

$$
\left\{n:\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\} \in \mathscr{I} .
$$

In this case, we will write $f_{n} \xrightarrow{\mathscr{q}} f$ on D.
The sequence of functions $\left\{f_{n}\right\}$ is said to be \mathscr{I}-pointwise convergent to f, if for every $\varepsilon>0$ and each nonzero $z \in Y$

$$
A(\varepsilon, z)=\left\{n \in \mathbb{N}:\left\|f_{n}(x)-f(x), z\right\| \geq \varepsilon\right\} \in \mathscr{I},
$$

or $\mathscr{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x)-f(x), z\right\|_{Y}=0$, for each $x \in X$. In this case, we write $f_{n} \xrightarrow{\|, .,\|_{Y}} g f$. This can be expressed by the formula

$$
(\forall z \in Y)(\forall \varepsilon>0)(\exists M \in \mathscr{I})\left(\forall n_{0} \in \mathbb{N} \backslash M\right)(\forall x \in X)\left(\forall n \geq n_{0}\right)\left\|f_{n}(x)-f(x), z\right\| \leq \varepsilon .
$$

The sequence of functions $\left\{f_{n}\right\}$ is said to be (pointwise) \mathscr{I}^{*}-convergent to f, if there exists a set $M \in \mathscr{F}(\mathscr{I})$, (i.e., $\left.\mathbb{N} \backslash M \in \mathscr{I}\right), M=\left\{m_{1}<\right.$ $\left.m_{2}<\cdots<m_{k}<\cdots\right\}$, such that for each $x \in X$ and each nonzero $z \in Y$

$$
\lim _{k \rightarrow \infty}\left\|f_{n_{k}}(x), z\right\|=\|f(x), z\|
$$

and we write

$$
\mathscr{I}^{*}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\| \text { or } f_{n} \xrightarrow{\mathscr{S}^{*}} f .
$$

An admissible ideal $\mathscr{I}_{2} \subset 2^{\mathbb{N} \times \mathbb{N}}$ satisfies the property (AP2) if for every countable family of mutually disjoint sets $\left\{E_{1}, E_{2}, \ldots\right\}$ belonging to \mathscr{I}_{2}, there exists a countable family of sets $\left\{F_{1}, F_{2}, \ldots\right\}$ such that $E_{j} \Delta F_{j} \in \mathscr{I}_{2}^{0}$, i.e., $E_{j} \Delta F_{j}$ is included in the finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $F=\bigcup_{j=1}^{\infty} F_{j} \in \mathscr{I}_{2}$ (hence $F_{j} \in \mathscr{I}_{2}$ for each $j \in \mathbb{N}$).
Throughout the paper, we let $\mathscr{I}_{2} \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal, X and Y be two 2-normed spaces, $\left\{f_{m n}\right\}_{(m, n) \in \mathbb{N} \times \mathbb{N}},\left\{g_{m n}\right\}_{(m, n) \in \mathbb{N} \times \mathbb{N}}$ and $\left\{h_{m n}\right\}_{(m, n) \in \mathbb{N} \times \mathbb{N}}$ be three double sequences of functions, f, g and k be three functions from X to Y.
A double sequence $\left\{f_{m n}\right\}$ is said to be pointwise convergent to f if, for each point $x \in X$ and for each $\varepsilon>0$, there exists a positive integer $k_{0}=k_{0}(x, \varepsilon)$ such that for all $m, n \geq k_{0}$ implies $\left\|f_{m n}(x)-f(x), z\right\|<\varepsilon$, for every $z \in Y$. In this case, we write $f_{m n} \xrightarrow{\|, .,\|_{Y}} f$.
A double sequence $\left\{f_{m n}\right\}$ is said to be (pointwise) statistical convergent to f, if for every $\varepsilon>0, \left.\lim _{i, j \rightarrow \infty} \frac{1}{i j} \right\rvert\,\left\{(m, n), m \leq i, n \leq j: \| f_{m n}(x)-\right.$ $f(x), z \| \geq \varepsilon\} \mid=0$, for each (fixed) $x \in X$ and each nonzero $z \in Y$. It means that for each (fixed) $x \in X$ and each nonzero $z \in Y, \| f_{m n}(x)-$ $f(x), z \|<\varepsilon$, a.a. (m, n). In this case, we write

$$
s t-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x)-z\right\|=\|f(x), z\| \text { or } f_{m n} \xrightarrow{\|.,\|_{y}} s t
$$

The double sequences of functions $\left\{f_{m n}\right\}$ is said to be statistically Cauchy sequence, if for every $\varepsilon>0$ and each nonzero $z \in Y$, there exist a number $k=k(\varepsilon, z), t=t(\varepsilon, z)$ such that $d_{2}\left(\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f_{k t}(x), z\right\| \geq \varepsilon\right\}\right)=0$, for each (fixed) $x \in X$, i.e., for each nonzero $z \in Y,\left\|f_{n m}(x)-f_{k t}(x), z\right\|<\varepsilon$, a.a. (m, n).

3. Main Results

We introduced the concepts of \mathscr{I}_{2}-convergence and \mathscr{I}_{2}^{*}-convergence of double sequences of functions in 2-normed space. Also, were studied some properties about these concepts and investigated relationships between them for double sequences of functions in 2-normed spaces.
Definition 3.1. $\left\{f_{m n}\right\}$ is said to be \mathscr{I}_{2}-convergent (pointwise sense) to f, if for every $\varepsilon>0$ and each nonzero $z \in Y$

$$
A(\varepsilon, z)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq \varepsilon\right\} \in \mathscr{I}_{2},
$$

for each $x \in X$. This can be expressed by the formula

$$
(\forall z \in Y)(\forall x \in X)(\forall \varepsilon>0)\left(\exists H \in \mathscr{I}_{2}\right)(\forall(m, n) \notin H)\left\|f_{m n}(x)-f(x), z\right\|<\varepsilon .
$$

In this case, we write

$$
\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|, \text { or } f_{m n} \xrightarrow{\|,\|_{Y}} \mathscr{I}_{2} f .
$$

Theorem 3.2. For each $x \in X$ and each nonzero $z \in Y$,

$$
\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\| \text { implies } \mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|
$$

Proof. Let $\varepsilon>0$ be given. Since

$$
\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|
$$

for each $x \in X$ and each nonzero $z \in Y$, therefore, there exists a positive integer $k_{0}=k_{0}(\varepsilon, x)$ such that $\left\|f_{m n}(x)-f(x), z\right\|<\varepsilon$, whenever $m, n \geq k_{0}$. This implies that for each nonzero $z \in Y$,

$$
\begin{aligned}
A(\varepsilon, z) & =\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\|<\varepsilon\right\} \\
& \subset\left(\left(\mathbb{N} \times\left\{1,2, . ., k_{0}-1\right\}\right) \cup\left(\left\{1,2, . ., k_{0}-1\right\} \times \mathbb{N}\right)\right) .
\end{aligned}
$$

Since \mathscr{I}_{2} be an admissible ideal, therefore

$$
\left(\left(\mathbb{N} \times\left\{1,2, \ldots, k_{0}-1\right\}\right) \cup\left(\left\{1,2, . ., k_{0}-1\right\} \times \mathbb{N}\right)\right) \in \mathscr{I}_{2} .
$$

Hence, it is clear that $A(\varepsilon, z) \in \mathscr{I}_{2}$ and consequently, for each nonzero $z \in Y$ we have

$$
\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\| .
$$

Theorem 3.3. If \mathscr{I}_{2}-limit of any double sequence of functions $\left\{f_{m n}\right\}$ exists, then it is unique.
Proof. Assume that

$$
\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}\left(x_{0}\right), z\right\|=\left\|f\left(x_{0}\right), z\right\| \text { and } \mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}\left(x_{0}\right), z\right\|=\left\|g\left(x_{0}\right), z\right\|,
$$

where $f\left(x_{0}\right) \neq g\left(x_{0}\right)$ for a $x_{0} \in X$ each nonzero $z \in Y$. Since $f\left(x_{0}\right) \neq g\left(x_{0}\right)$. So we may suppose that $f\left(x_{0}\right) \geq g\left(x_{0}\right)$. Now, select $\varepsilon=\frac{f\left(x_{0}\right)-g\left(x_{0}\right)}{3}$, so that neighborhoods $\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right)$ and $\left(g\left(x_{0}\right)-\varepsilon, g\left(x_{0}\right)+\varepsilon\right)$ of points $f\left(x_{0}\right)$ and $g\left(x_{0}\right)$, respectively, are disjoints. Since for $x_{0} \in X$ and each nonzero $z \in Y$

$$
\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}\left(x_{0}\right), z\right\|=\left\|f\left(x_{0}\right), z\right\| \text { and } \mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}\left(x_{0}\right), z\right\|=\left\|g\left(x_{0}\right), z\right\|,
$$

then for each nonzero $z \in Y$, we have

$$
A(\varepsilon, z)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}\left(x_{0}\right)-f\left(x_{0}\right), z\right\| \geq \varepsilon\right\} \in \mathscr{I}_{2}
$$

and

$$
B(\varepsilon, z)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}\left(x_{0}\right)-g\left(x_{0}\right), z\right\| \geq \varepsilon\right\} \in \mathscr{I}_{2} .
$$

This implies that the sets

$$
A^{c}(\varepsilon, z)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}\left(x_{0}\right)-f\left(x_{0}\right), z\right\|<\varepsilon\right\}
$$

and

$$
B^{c}(\varepsilon, z)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}\left(x_{0}\right)-g\left(x_{0}\right), z\right\|<\varepsilon\right\}
$$

belongs to $\mathscr{F}\left(\mathscr{I}_{2}\right)$ and $A^{c}(\varepsilon, z) \cap B^{c}(\varepsilon, z)$ is nonempty set in $\mathscr{F}\left(\mathscr{I}_{2}\right)$ for $x_{0} \in X$ and each nonzero $z \in Y$. Since $A^{c}(\varepsilon, z) \cap B^{c}(\varepsilon, z) \neq \emptyset$, we obtain a contradiction to the fact that the neighborhoods $\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right)$ and $\left(g\left(x_{0}\right)-\varepsilon, g\left(x_{0}\right)+\varepsilon\right)$ of points $f\left(x_{0}\right)$ and $g\left(x_{0}\right)$ respectively are disjoints. Hence, it is clear that for $x_{0} \in X$ and each nonzero $z \in Y$,

$$
\left\|f\left(x_{0}\right), z\right\|=\left\|g\left(x_{0}\right), z\right\|
$$

and consequently, we have $\|f(x), z\|=\|g(x), z\|$, (i.e., $f=g$) for each $x \in X$ and each nonzero $z \in Y$.

Theorem 3.4. For each $x \in X$ and each nonzero $z \in Y$, If

$$
\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\| \text { and } \mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|g_{m n}(x), z\right\|=\|g(x), z\|,
$$

then
(i) $\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x)+g_{m n}(x), z\right\|=\|f(x)+g(x), z\|$,
(ii) $\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|c f_{m n}(x), z\right\|=\|c f(x), z\|, c \in \mathbb{R}$,
(iii) $\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x) g_{m n}(x), z\right\|=\|f(x) g(x), z\|$.

Proof. (i) Let $\varepsilon>0$ be given. Since

$$
\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\| \text { and } \mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|g_{m n}(x), z\right\|=\|g(x), z\|,
$$

for each $x \in X$ and each nonzero $z \in Y$, then

$$
A\left(\frac{\varepsilon}{2}, z\right)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq \frac{\varepsilon}{2}\right\} \in \mathscr{I}_{2}
$$

and

$$
B\left(\frac{\varepsilon}{2}, z\right)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|g_{m n}(x)-g(x), z\right\| \geq \frac{\varepsilon}{2}\right\} \in \mathscr{I}_{2}
$$

and by the definition of ideal we have

$$
A\left(\frac{\varepsilon}{2}, z\right) \cup B\left(\frac{\varepsilon}{2}, z\right) \in \mathscr{I}_{2}
$$

Now, for each $x \in X$ and each nonzero $z \in Y$ we define the set

$$
C(\varepsilon, z)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|\left(f_{m n}(x)+g_{m n}(x)\right)-(f(x)+g(x)), z\right\| \geq \varepsilon\right\}
$$

and it is sufficient to prove that $C(\varepsilon, z) \subset A\left(\frac{\varepsilon}{2}, z\right) \cup B\left(\frac{\varepsilon}{2}, z\right)$. Let $(m, n) \in C(\varepsilon, z)$, then for each $x \in X$ and each nonzero $z \in Y$, we have

$$
\varepsilon \leq\left\|\left(f_{m n}(x)+g_{m n}(x)\right)-(f(x)+g(x)), z\right\| \leq\left\|f_{m n}(x)-f(x), z\right\|+\left\|g_{m n}(x)-g(x), z\right\| .
$$

As both of $\left\{\left\|f_{m n}(x)-f(x), z\right\|,\left\|g_{m n}(x)-g(x), z\right\|\right\}$ can not be (together) strictly less than $\frac{\varepsilon}{2}$ and therefore either

$$
\left\|f_{m n}(x)-f(x), z\right\| \geq \frac{\varepsilon}{2} \text { or }\left\|g_{m n}(x)-g(x), z\right\| \geq \frac{\varepsilon}{2},
$$

for each $x \in X$ and each nonzero $z \in Y$. This shows that $(m, n) \in A\left(\frac{\varepsilon}{2}, z\right)$ or $(m, n) \in B\left(\frac{\varepsilon}{2}, z\right)$ and so we have

$$
(m, n) \in A\left(\frac{\varepsilon}{2}, z\right) \cup B\left(\frac{\varepsilon}{2}, z\right)
$$

Hence, we have

$$
C(\varepsilon, z) \subset A\left(\frac{\varepsilon}{2}, z\right) \cup B\left(\frac{\varepsilon}{2}, z\right)
$$

and so

$$
\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x)+g_{m n}(x), z\right\|=\|f(x)+g(x), z\| .
$$

(ii) Let $c \in \mathbb{R}$ and $\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|$, for each $x \in X$ and each nonzero $z \in Y$. If $c=0$, there is nothing to prove. We assume that $c \neq 0$. Then,

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq \frac{\varepsilon}{|c|}\right\} \in \mathscr{I}_{2}
$$

for each $x \in X$ and each nonzero $z \in Y$ and by the definition we have

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|c f_{m n}(x)-c f(x), z\right\| \geq \varepsilon\right\}=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq \frac{\varepsilon}{|c|}\right\}
$$

Hence, the right side of above equality belongs to \mathscr{I}_{2} and so

$$
\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|c f_{m n}(x), z\right\|=\|c f(x), z\|
$$

for each $x \in X$ and each nonzero $z \in Y$.
(iii) Since $\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|$ for each $x \in X$ and each nonzero $z \in Y$, then for $\varepsilon=1>0$,

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq 1\right\} \in \mathscr{I}_{2}
$$

and so

$$
A=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\|<1\right\} \in \mathscr{F}\left(\mathscr{I}_{2}\right)
$$

Also, for any $(m, n) \in A,\left\|f_{m n}(x), z\right\|<1+\|f(x), z\|$ for each $x \in X$ and each nonzero $z \in Y$. Let $\varepsilon>0$ be given. Choose $\delta>0$ such that

$$
0<2 \delta<\frac{\varepsilon}{\|f(x), z\|+\|g(x), z\|+1}
$$

for each $x \in X$ and each nonzero $z \in Y$. It follows from the assumption that

$$
B=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\|<\delta\right\} \in \mathscr{F}\left(\mathscr{I}_{2}\right)
$$

and

$$
C=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|g_{m n}(x)-g(x), z\right\|<\delta\right\} \in \mathscr{F}\left(\mathscr{I}_{2}\right)
$$

for each $x \in X$ and each nonzero $z \in Y$. Since $\mathscr{F}\left(\mathscr{I}_{2}\right)$ is a filter, therefore $A \cap B \cap C \in \mathscr{F}\left(\mathscr{I}_{2}\right)$. Then, for each $(m, n) \in A \cap B \cap C$ we have

$$
\begin{aligned}
\left\|f_{m n}(x) g_{m n}(x)-f(x) \cdot g(x), z\right\| & =\left\|f_{m n}(x) g_{m n}(x)-f_{m n}(x) g(x)+f_{m n}(x) g(x)-f(x) g(x), z\right\| \\
& \leq\left\|f_{m n}(x), z\right\|\left\|g_{m n}(x)-g(x), z\right\|+\|g(x), z\|\left\|f_{m n}(x)-f(x), z\right\| \\
& <(\|f(x), z\|+1) \delta+(\|g(x), z\|) \delta \\
& =(\|f(x), z\|+\|g(x), z\|+1) \delta \\
& <\varepsilon
\end{aligned}
$$

and so, we have

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x) \cdot g_{m n}(x)-f(x) \cdot g(x), z\right\| \geq \varepsilon\right\} \in \mathscr{I}_{2}
$$

for each $x \in X$ and each nonzero $z \in Y$. This completes the proof of theorem.
Theorem 3.5. For each $x \in X$ and each nonzero $z \in Y$, if
(i) $\left\{f_{m n}\right\} \leq\left\{g_{m n}\right\} \leq\left\{h_{m n}\right\}$, for every $(m, n) \in K$, where $\mathbb{N} \times \mathbb{N} \supseteq K \in \mathscr{F}\left(\mathscr{I}_{2}\right)$ and
(ii) $\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|k(x), z\|$ and $\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|h_{m n}(x), z\right\|=\|k(x), z\|$,
then we have

$$
\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|g_{m n}(x), z\right\|=\|k(x), z\|
$$

Proof. Let $\varepsilon>0$ be given. By condition (ii) we have

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-k(x), z\right\| \geq \varepsilon\right\} \in \mathscr{I}_{2}
$$

and

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|h_{m n}(x)-k(x), z\right\| \geq \varepsilon\right\} \in \mathscr{I}_{2}
$$

for each $x \in X$ and each nonzero $z \in Y$. This implies that the sets

$$
P=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-k(x), z\right\|<\varepsilon\right\}
$$

and

$$
R=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|h_{m n}(x)-k(x), z\right\|<\varepsilon\right\}
$$

belong to $\mathscr{F}\left(\mathscr{I}_{2}\right)$, for each $x \in X$ and each nonzero $z \in Y$. Let

$$
Q=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|g_{m n}(x)-k(x), z\right\|<\varepsilon\right\}
$$

for each $x \in X$ and each nonzero $z \in Y$. It is clear that the set $P \cap R \cap K \subset Q$. Since $P \cap R \cap K \in \mathscr{F}\left(\mathscr{I}_{2}\right)$ and $P \cap R \cap K \subset Q$, then from the definition of filter, we have $Q \in \mathscr{F}\left(\mathscr{I}_{2}\right)$ and so

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|g_{m n}(x)-k(x), z\right\| \geq \varepsilon\right\} \in \mathscr{I}_{2}
$$

for each $x \in X$ and each nonzero $z \in Y$. Hence,

$$
\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|g_{m n}(x), z\right\|=\|k(x), z\|
$$

Theorem 3.6. For each $x \in X$ and each nonzero $z \in Y$, we let

$$
\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\| \text { and } \mathscr{I}_{2} \lim _{m, n \rightarrow \infty}\left\|g_{m n}(x), z\right\|=\|g(x), z\|
$$

Then, for every $(m, n) \in K$ we have
(i) If $f_{m n}(x) \geq 0$ then, $f(x) \geq 0$ and
(ii) If $f_{m n}(x) \leq g_{m n}(x)$ then $f(x) \leq g(x)$, where $K \subseteq \mathbb{N} \times \mathbb{N}$ and $K \in \mathscr{F}\left(\mathscr{I}_{2}\right)$.

Proof. (i) Suppose that $f(x)<0$. Select $\varepsilon=-\frac{f(x)}{2}$, for each $x \in X$. Since

$$
\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|
$$

so there exists the set M such that

$$
M=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\|<\varepsilon\right\} \in \mathscr{F}\left(\mathscr{I}_{2}\right)
$$

for each $x \in X$ and each nonzero $z \in Y$. Since $M, K \in \mathscr{F}\left(\mathscr{I}_{2}\right)$, then $M \cap K$ is a nonempty set in $\mathscr{F}\left(\mathscr{I}_{2}\right)$. So we can find out point $\left(m_{0}, n_{0}\right) \in K$ such that

$$
\left\|f_{m_{0} n_{0}}(x)-f(x), z\right\|<\varepsilon
$$

Since $f(x)<0$ and $\varepsilon=-\frac{f(x)}{2}$ for each $x \in X$, then we have $f_{m_{0} n_{0}}(x) \leq 0$. This is a contradiction to the fact that $f_{m n}(x)>0$ for every $(m, n) \in K$. Hence, we have $f(x)>0$, for each $x \in X$.
(ii) Suppose that $f(x)>g(x)$. Select $\varepsilon=\frac{f(x)-g(x)}{3}$, for each $x \in X$. So that the neighborhoods $\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right)$ and $\left(g\left(x_{0}\right)-\varepsilon, g\left(x_{0}\right)+\varepsilon\right)$ of $f(x)$ and $g(x)$, respectively, are disjoints. Since for each $x \in X$ and each nonzero $z \in Y$,

$$
\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\| \text { and } \mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|g_{m n}(x), z\right\|=\|g(x), z\|
$$

and $\mathscr{F}\left(\mathscr{I}_{2}\right)$ is a filter on $\mathbb{N} \times \mathbb{N}$, therefore we have

$$
A=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\|<\varepsilon\right\} \in \mathscr{F}\left(\mathscr{I}_{2}\right)
$$

and

$$
B=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|g_{m n}(x)-g(x), z\right\|<\varepsilon\right\} \in \mathscr{F}\left(\mathscr{I}_{2}\right)
$$

This implies that $\emptyset \neq A \cap B \cap K \in \mathscr{F}\left(\mathscr{I}_{2}\right)$. There exists a point $\left(m_{0}, n_{0}\right) \in K$ such that

$$
\left\|f_{m n}(x)-f(x), z\right\|<\varepsilon \text { and }\left\|g_{m n}(x)-g(x), z\right\|<\varepsilon
$$

Since $f(x)>g(x)$ and $\varepsilon=\frac{f(x)-g(x)}{3}$ for each $x \in X$, then we have

$$
f_{m_{0} n_{0}}(x)>g_{m_{0} n_{0}}(x)
$$

This is a contradiction to the fact $f_{m n}(x) \leq g_{m n}(x)$ for every $(m, n) \in K$. Thus, we have $f(x) \leq g(x)$, for each $x \in X$.
Definition 3.7. The double sequence of functions $\left\{f_{m n}\right\}$ in 2-normed space $(X,\|,\|$.$) is said to be \mathscr{I}_{2}^{*}$-convergent (pointwise sense) to f, if there exists a set $M \in \mathscr{F}\left(\mathscr{I}_{2}\right)\left(\right.$ i.e., $\left.H=\mathbb{N} \times \mathbb{N} \backslash M \in \mathscr{I}_{2}\right)$ such that for each $x \in X$, each nonzero $z \in Y$ and all $(m, n) \in M$

$$
\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|
$$

and we write

$$
\mathscr{I}_{2}^{*}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\| \quad \text { or } \quad f_{m n} \xrightarrow{\|\ldots,\|_{Y}} \mathscr{I}_{2}^{*} f .
$$

Theorem 3.8. For each $x \in X$ and nonzero $z \in Y$,

$$
\mathscr{I}_{2}^{*}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\| \text { implies } \mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|
$$

Proof. Since for each $x \in X$ and each nonzero $z \in Y$,

$$
\mathscr{I}_{2}^{*}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|
$$

so there exists a set $H \in \mathscr{I}_{2}$ such that for $M \in \mathscr{F}\left(\mathscr{I}_{2}\right)$ (i.e., $H=\mathbb{N} \times \mathbb{N} \backslash M \in \mathscr{I}_{2}$) we have

$$
\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|,(m, n) \in M
$$

Let $\varepsilon>0$. Then, for each $x \in X$ there exists a $k_{0}=k_{0}(\varepsilon, x) \in \mathbb{N}$ such that for each nonzero $z \in Y,\left\|f_{m n}(x)-f(x), z\right\|<\varepsilon$, for all (m, n) $\in M$ such that $m, n \geq k_{0}$. Then, clearly we have

$$
\begin{aligned}
A(\varepsilon, z) & =\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq \varepsilon\right\} \\
& \subset H \cup\left[M \cap\left(\left(\left\{1,2,3, \ldots,\left(k_{0}-1\right)\right\} \times \mathbb{N}\right) \cup\left(\mathbb{N} \times\left\{1,2,3, \ldots,\left(k_{0}-1\right)\right\}\right)\right)\right]
\end{aligned}
$$

for each $x \in X$, for each nonzero $z \in Y$. Since $\mathscr{I}_{2} \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal then

$$
H \cup\left[M \cap\left(\left(\left\{1,2,3, \ldots,\left(k_{0}-1\right)\right\} \times \mathbb{N}\right) \cup\left(\mathbb{N} \times\left\{1,2,3, \ldots,\left(k_{0}-1\right)\right\}\right)\right)\right] \in \mathscr{I}_{2}
$$

and so, $A(\varepsilon, z) \in \mathscr{I}_{2}$. This implies that $\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|$.

Theorem 3.9. Let $\mathscr{I}_{2} \subset 2^{\mathbb{N} \times \mathbb{N}}$ be an admissible ideal having the property (AP2). For each $x \in X$ and nonzero $z \in Y$,

$$
\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\| \text { implies } \mathscr{I}_{2}^{*}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|
$$

Proof. Let $\mathscr{I}_{2} \subset 2^{\mathbb{N} \times \mathbb{N}}$ be an admissible ideal having the property $(A P 2)$ and $\mathscr{I}_{2}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|$, for each $x \in X$ and each nonzero $z \in Y$. Then, for any $\varepsilon>0$

$$
A(\varepsilon, z)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq \varepsilon\right\} \in \mathscr{I}_{2}
$$

for each $x \in X$ and each nonzero $z \in Y$. Now, put

$$
A_{1}(\varepsilon, z)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq 1\right\}
$$

and

$$
A_{k}(\varepsilon, z)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}: \frac{1}{k} \leq\left\|f_{m n}(x)-f(x), z\right\|<\frac{1}{k-1}\right\}
$$

for $k \geq 2 . A_{i} \cap A_{j}=\emptyset$ for $i \neq j$ and $A_{i} \in \mathscr{I}_{2}$ for each $i \in \mathbb{N}$. By property (AP2) there exists a sequence $\left\{B_{k}\right\}_{k} \in \mathbb{N}$ of sets such that $A_{j} \triangle B_{j}$ is finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $B=\cup_{j=1}^{\infty} B_{j} \in \mathscr{I}_{2}$.
We shall prove that, for each $x \in X$ and each nonzero $z \in Y$

$$
\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x)-f(x), z\right\|=\|f(x), z\|,(m, n) \in M
$$

for $M=\mathbb{N} \times \mathbb{N} \backslash B \in \mathscr{F}\left(\mathscr{I}_{2}\right)$. Let $\delta>0$ be given. Choose $k \in \mathbb{N}$ such that $\frac{1}{k}<\delta$. Then, we have

$$
\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left\|f_{m n}(x)-f(x), z\right\| \geq \delta\right\} \subset \bigcup_{j=1}^{k} A_{j}
$$

Since $A_{j} \triangle B_{j}, j=1,2, \ldots, k$ are included in finite union of rows and columns, there exis

$$
\left(\bigcup_{j=1}^{k} B_{j}\right) \cap\left\{(m, n) \in \mathbb{N} \times \mathbb{N}: m \geq n_{0} \wedge n \geq n_{0}\right\}=\left(\bigcup_{j=1}^{k} A_{j}\right) \cap\left\{(m, n) \in \mathbb{N} \times \mathbb{N}: m \geq m_{0} \wedge n \geq n_{0}\right\}
$$

If $m, n \geq n_{0}$ and $(m, n) \notin B$ then

$$
(m, n) \notin \bigcup_{j=1}^{k} B_{j} \text { and so }(m, n) \notin \bigcup_{j=1}^{k} A_{j}
$$

Thus, we have $\left\|f_{m n}(x)-f(x), z\right\|<\frac{1}{k}<\delta$ for each $x \in X$ and each nonzero $z \in Y$. This implies that

$$
\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|,(m, n) \in M
$$

and so we have

$$
\mathscr{I}_{2}^{*}-\lim _{m, n \rightarrow \infty}\left\|f_{m n}(x), z\right\|=\|f(x), z\|
$$

for each $x \in X$ and each nonzero $z \in Y$.

References

[1] M. Arslan, E. Dündar, \mathscr{I}-Convergence and \mathscr{I}-Cauchy Sequence of Functions In 2-Normed Spaces, Konuralp J. Math., 6(1) (2018), 57-62.
[2] M. Arslan, E. Dündar, On \mathscr{I}-Convergence of sequences of functions in 2-normed spaces, Southeast Asian Bull. Math., 42 (2018), 491-502.
[3] M. Arslan, E. Dündar, Rough convergence in 2-normed spaces, Bull. Math. Anal. Appl., 10(3) (2018), 1-9.
[4] V. Baláz, J. C̆erven̆anský, P. Kostyrko, T. S̆alát, \mathscr{I}-convergence and \mathscr{I}-continuity of real functions, Acta Math., Faculty of Natural Sciences, Constantine the Philosopher University, Nitra, 5 (2004), 43-50.
[5] H. Çakalli, S. Ersan, New types of continuity in 2-normed spaces, Filomat, 30(3) (2016), 525-532.
[6] P. Das, P. Kostyrko, W. Wilczyński, P. Malik, \mathscr{I} and \mathscr{I}^{*}-convergence of double sequences, Math. Slovaca, 58(5) (2008), 605-620.
[7] E. Dündar, B. Altay, \mathscr{I}_{2}-convergence of double sequences of functions, Electron. J. Math. Anal. Appl., 3(1) (2015), 111-121.
[8] E. Dündar, B. Altay, \mathscr{I}_{2}-convergence and \mathscr{I}_{2}-Cauchy of double sequences, Acta Math. Sci., 34B(2) (2014), 343-353.
[9] E. Dündar, B. Altay, \mathscr{I}_{2}-uniform convergence of double sequences of functions Filomat, 30(5) (2016), 1273-1281.
[10] E. Dündar, B. Altay, Multipliers for bounded \mathscr{I}_{2}-convergent of double sequences, Math. Comput. Modelling, 55(3-4) (2012), 1193-1198.
[11] E. Dündar, On some results of \mathscr{I}_{2}-convergence of double sequences of functions, Math. Anal. Sci. Appl. E-notes, 3(1) (2015), 44-52.
[12] E. Dündar. Ö. Talo, \mathscr{I}_{2}-convergence of double sequences of fuzzy numbers, Iran. J. Fuzzy Syst., 10(3) (2013), 37-50.
[13] E. Dündar, M. Arslan, S. Yegül, On \mathscr{I}-Uniform Convergence of Sequences of Functions In 2-Normed Spaces, (Under Review).
[14] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
[15] J.A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.
[16] S. Gähler, 2-metrische Räume und ihre topologische struktur, Math. Nachr. 26 (1963), 115-148.
[17] S. Gähler, 2-normed spaces, Math. Nachr. 28 (1964), 1-43.
[18] F. Gezer, S.Karakuş, \mathscr{I} and \mathscr{I}^{*} convergent function sequences, Math. Commun. 10 (2005), 71-80.
[19] A. Gökhan, M. Güngör, M. Et, Statistical convergence of double sequences of real-valued functions, Int. Math. Forum, 2(8) (2007), 365-374.
[20] H. Gunawan, M. Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math. 27(3) (2001), 321-329.
[21] M. Gürdal, S. Pehlivan, The statistical convergence in 2-Banach spaces, Thai J. Math. 2(1) (2004), 107-113.
[22] M. Gürdal, S. Pehlivan, Statistical convergence in 2-normed spaces, Southeast Asian Bull. Math., 33 (2009), 257-264.
[23] M. Gürdal, I.Açık On \mathscr{I}-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl. 11(2) (2008), 349-354.
[24] M. Gürdal, On ideal convergent sequences in 2-normed spaces, Thai J. Math. 4(1) (2006), 85-91.
[25] P. Kostyrko, T. S̆alát, W. Wilczyński, \mathscr{I}-convergence, Real Anal. Exchange, 26(2) (2000), 669-686.
[26] M. Mursaleen, A. Alotaibi, On \mathscr{I}-convergence in random 2-normed spaces, Math. Slovaca, 61(6) (2011), 933-940.
[27] N. Pancaroğlu, E. Dündar, F. Nuray, Wijsman \mathscr{I}-Invariant Convergence of Sequences of Sets, Bull. Math. Anal. Appl., (Accepted - in press).
[28] N. Pancaroğlu, E. Dündar, U. Ulusu, Wijsman Lacunary \mathscr{I}-Invariant Convergence of Sequences of Sets, (Under Review).
[29] S. Sarabadan, S. Talebi, Statistical convergence and ideal convergence of sequences of functions in 2-normed spaces, Internat. J. Math. Math. Sci. 2011 (2011), 10 pages.
[30] A. Şahiner, M. Gürdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math. 11 (2007), 1477-1484.
[31] E. Savaş, M. Gürdal, Ideal Convergent Function Sequences in Random 2-Normed Spaces, Filomat, 30(3) (2016), 557-567.
[32] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
[33] Y. Sever, E. Dündar, Regularly ideal convergence and regularly ideal Cauchy double sequences in 2-normed spaces, Filomat, 28(5) (2015), 907-915.
[34] S. Tortop, E. Dündar, Wijsman \mathscr{I}_{2} invariant convergence of Double Sequences of Sets, 9(4) (2018), 90-100.
[35] U. Ulusu, E. Dündar, F. Nuray, Lacunary \mathscr{I}_{2}-Invariant Convergence and Some Properties, Internat. J. Anal. Appl., 16(3) (2018), $317-327$.
[36] U. Ulusu, E. Dündar, \mathscr{I}-Lacunary Statistical Convergence of Sequences of Sets, Filomat, 28(8) (2013), 1567-1574.
[37] M. R. Türkmen and M. C̣nar, Lambda Statistical Convergence in Fuzzy Normed Linear Spaces, J. Intel. Fuzzy Sys., 34(6) (2018), 4023-4030
[38] M. R. Türkmen and E. Dündar, On Lacunary Statistical Convergence of Double Sequences and Some Properties in Fuzzy Normed Spaces, J. Intel. Fuzzy Sys., DOI: 10.3233/JIFS-18841 (Pre-press).
[39] S. Yegül, E. Dündar, On Statistical Convergence of Sequences of Functions In 2-Normed Spaces, J. Class. Anal., (2017); 10(1):49-57.
[40] S. Yegül, E. Dündar, Statistical Convergence of Double Sequences of Functions and Some Properties In 2-Normed Spaces, Facta Univ. Ser. Math. Inform., 33(5) (2018), 705-719.

