

Communications in Advanced Mathematical Sciences Vol. II, No. 2, 154-160, 2019 Research Article e-ISSN:2651-4001

DOI: 10.33434/cams.553548

On \mathscr{I}_2 -Cauchy Double Sequences in Fuzzy Normed Spaces

Erdinç Dündar 1*, Muhammed Recai Türkmen²

Abstract

In this paper, we investigate relationship between \mathscr{I}_2 -convergence and \mathscr{I}_2 -Cauchy double sequences in fuzzy normed spaces. After, we introduce the concepts of \mathscr{I}_2^* -Cauchy double sequences and study relationships between \mathscr{I}_2 -Cauchy and \mathscr{I}_2^* -Cauchy double sequences in fuzzy normed spaces.

Keywords: Double sequences, Fuzzy normed space, \mathscr{I}_2 -Cauchy, \mathscr{I}_2 -convergence.

2010 AMS: Primary 34C41, 40A35, Secondary 40G15

¹Department of Mathematics, Faculty of Science and Literature, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey, ORCID: 0000-²Department of Mathematics, Faculty of Education, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey, ORCID: <u>0</u>000-

*Corresponding author: edundar@aku.edu.tr

Received: 14 April 2019, Accepted: 20 May 2019, Available online: 27 June 2019

1. Introduction and background

Throughout the paper \mathbb{N} and \mathbb{R} denote the set of all positive integers and the set of all real numbers, respectively. The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [1] and Schoenberg [2]. A lot of developments have been made in this area after the various studies of researchers [3, 4]. The idea of \mathscr{I} -convergence was introduced by Kostyrko et al. [5] as a generalization of statistical convergence which is based on the structure of the ideal \mathscr{I} of subset of the set of natural numbers \mathbb{N} . Das et al. [6] introduced the concept of \mathscr{I} -convergence of double sequences in a metric space and studied some properties of this convergence. A lot of developments have been made in this area after the works of [7, 8, 9, 10].

The concept of ordinary convergence of a sequence of fuzzy numbers was firstly introduced by Matloka [11] and proved some basic theorems for sequences of fuzzy numbers. Nanda [12] studied the sequences of fuzzy numbers and showed that the set of all convergent sequences of fuzzy numbers are a complete metric space. Sençimen and Pehlivan [13] introduced the notions of statistically convergent sequence and statistically Cauchy sequence in a fuzzy normed linear space. Hazarika [14] studied the concepts of \mathscr{I} -convergence and \mathscr{I} -Cauchy sequence in a fuzzy normed linear space. Dündar and Talo [15, 16] introduced the concepts of \mathscr{I} -convergence and \mathscr{I} -Cauchy sequence for double sequences of fuzzy numbers and studied some properties and relations of them. Hazarika and Kumar [17] introduced the notion of \mathscr{I} -convergence and \mathscr{I} -Cauchy double sequences in a fuzzy normed linear space. Dündar and Türkmen [18] studied some properties of \mathscr{I} -convergence and \mathscr{I} -convergence of double sequences in fuzzy normed spaces. A lot of developments have been made in this area after the various studies of researchers [19, 20, 21, 22].

Now, we recall the concept of ideal, convergence, statistical convergence, ideal convergence of sequence, double sequence and fuzzy normed and some basic definitions (see [1, 3, 4, 13, 15, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]).

Fuzzy sets are considered with respect to a nonempty base set X of elements of interest. The essential idea is that each element $x \in X$ is assigned a membership grade u(x) taking values in [0,1], with u(x) = 0 corresponding to nonmembership,

0 < u(x) < 1 to partial membership, and u(x) = 1 to full membership. According to Zadeh [35], a fuzzy subset of X is a nonempty subset $\{(x, u(x)) : x \in X\}$ of $X \times [0, 1]$ for some function $u : X \to [0, 1]$. The function u itself is often used for the fuzzy set.

A fuzzy set u on \mathbb{R} is called a fuzzy number if it has the following properties:

- 1. u is normal, that is, there exists an $x_0 \in \mathbb{R}$ such that $u(x_0) = 1$;
- 2. *u* is fuzzy convex, that is, for $x, y \in \mathbb{R}$ and $0 \le \lambda \le 1$, $u(\lambda x + (1 \lambda)y) \ge \min[u(x), u(y)]$;
- 3. *u* is upper semicontinuous;
- 4. $supp u = cl\{x \in \mathbb{R} : u(x) > 0\}$, or denoted by $[u]_0$, is compact.

Let $L(\mathbb{R})$ be set of all fuzzy numbers. If $u \in L(\mathbb{R})$ and u(t) = 0 for t < 0, then u is called a non-negative fuzzy number. We write $L^*(\mathbb{R})$ by the set of all non-negative fuzzy numbers. We can say that $u \in L^*(\mathbb{R})$ iff $u_{\alpha}^- \geq 0$ for each $\alpha \in [0,1]$. Clearly we have $0 \in L(\mathbb{R})$. For $u \in L(\mathbb{R})$, the α level set of u is defined by

$$[u]_{\alpha} = \left\{ \begin{array}{ll} \{x \in \mathbb{R} : u(x) \geq \alpha\}, & \text{if } \alpha \in (0,1] \\ supp u, & \text{if } \alpha = 0. \end{array} \right.$$

A partial order \leq on $L(\mathbb{R})$ is defined by $u \leq v$ if $u_{\alpha}^- \leq v_{\alpha}^-$ and $u_{\alpha}^+ \leq v_{\alpha}^+$ for all $\alpha \in [0,1]$.

Arithmetic operation for $t \in \mathbb{R}, \oplus, \ominus, \odot$ and \oslash on $L(\mathbb{R}) \times L(\mathbb{R})$ are defined by

$$(u \oplus v)(t) = \sup_{s \in \mathbb{R}} \{u(s) \wedge v(t-s)\}, \qquad (u \ominus v)(t) = \sup_{s \in \mathbb{R}} \{u(s) \wedge v(s-t)\},$$

$$(u \odot v)(t) = \sup_{s \in \mathbb{R}, s \neq 0} \{u(s) \land v(t/s)\} \text{ and } (u \odot v)(t) = \sup_{s \in \mathbb{R}} \{u(st) \land v(s)\}.$$

For $k \in \mathbb{R}^+$, ku is defined as ku(t) = u(t/k) and $0u(t) = \tilde{0}$, $t \in \mathbb{R}$.

Some arithmetic operations for α -level sets are defined as follows:

$$u, v \in L(\mathbb{R})$$
 and $[u]_{\alpha} = [u_{\alpha}^-, u_{\alpha}^+]$ and $[v]_{\alpha} = [v_{\alpha}^-, v_{\alpha}^+]$, $\alpha \in (0, 1]$. Then,

$$[u \oplus v]_{\alpha} = [u_{\alpha}^{-} + v_{\alpha}^{-}, u_{\alpha}^{+} + v_{\alpha}^{+}], [u \ominus v]_{\alpha} = [u_{\alpha}^{-} - v_{\alpha}^{+}, u_{\alpha}^{+} - v_{\alpha}^{-}],$$

$$[u \oplus v]_{\alpha} = [u_{\alpha}^{-}, v_{\alpha}^{-}, u_{\alpha}^{+} + v_{\alpha}^{+}], [u \oplus v]_{\alpha} = [u_{\alpha}^{-}, v_{\alpha}^{+}, u_{\alpha}^{+} + v_{\alpha}^{-}], [u \oplus v]_{\alpha} = [u_{\alpha}^{-} - v_{\alpha}^{+}, u_{\alpha}^{+} - v_{\alpha}^{-}], [u \oplus v]_{\alpha} = [u_{\alpha}^{-}, v_{\alpha}^{-}, u_{\alpha}^{+}, u_{\alpha}^{+} - v_{\alpha}^{-}], [u \oplus v]_{\alpha} = [u_{\alpha}^{-}, v_{\alpha}^{-}, u_{\alpha}^{+}, v_{\alpha}^{+}] \text{ and } [\tilde{1} \oslash u]_{\alpha} = [\frac{1}{u_{\alpha}^{+}}, \frac{1}{u_{\alpha}^{-}}], u_{\alpha}^{-} > 0.$$

For $u, v \in L(\mathbb{R})$, the supremum metric on $L(\mathbb{R})$ defined as

$$D\left(u,v\right) = \sup_{0 < \alpha < 1} \max\left\{ \left| u_{\alpha}^{-} - v_{\alpha}^{-} \right|, \left| u_{\alpha}^{+} - v_{\alpha}^{+} \right| \right\}.$$

It is known that *D* is a metric on $L(\mathbb{R})$ and $(L(\mathbb{R}), D)$ is a complete metric space.

A sequence $x = (x_k)$ of fuzzy numbers is said to be convergent to the fuzzy number x_0 , if for every $\varepsilon > 0$ there exists a positive integer k_0 such that $D(x_k, x_0) < \varepsilon$ for $k > k_0$ and a sequence $x = (x_k)$ of fuzzy numbers convergent to levelwise to x_0 if and only if $\lim_{k \to \infty} [x_k]_{\alpha} = [x_0]_{\alpha}^-$ and $\lim_{k \to \infty} [x_k]_{\alpha} = [x_0]_{\alpha}^+$, where $[x_k]_{\alpha} = [(x_k)_{\alpha}^-, (x_k)_{\alpha}^+]$ and $[x_0]_{\alpha} = [(x_0)_{\alpha}^-, (x_0)_{\alpha}^+]$, for every $\alpha \in (0,1).$

Let X be a vector space over \mathbb{R} , $\|.\|: X \to L^*(\mathbb{R})$ and the mappings L; R (respectively, left norm and right norm): $[0,1] \times [0,1] \to [0,1]$ be symetric, nondecreasing in both arguments and satisfy L(0,0) = 0 and R(1,1) = 1.

The quadruple (X, ||.||, L, R) is called fuzzy normed linear space (briefly FNS) and ||.|| a fuzzy norm if the following axioms are satisfied

- 1. $||x|| = \widetilde{0}$ iff x = 0,
- 2. $||rx|| = |r| \odot ||x||$ for $x \in X$, $r \in \mathbb{R}$,
- 3. For all $x, y \in X$

(a)
$$\|x+y\| (s+t) \ge L(\|x\| (s), \|y\| (t))$$
, whenever $s \le \|x\|_1^-, t \le \|y\|_1^-$ and $s+t \le \|x+y\|_1^-$, (b) $\|x+y\| (s+t) \le R(\|x\| (s), \|y\| (t))$, whenever $s \ge \|x\|_1^-, t \ge \|y\|_1^-$ and $s+t \ge \|x+y\|_1^-$.

(b)
$$||x+y|| (s+t) \le R(||x|| (s), ||y|| (t))$$
, whenever $s \ge ||x||_1^-, t \ge ||y||_1^-$ and $s+t \ge ||x+y||_1^-$

Let $(X, \|.\|_C)$ be an ordinary normed linear space. Then, a fuzzy norm $\|.\|$ on X can be obtained by

$$||x||(t) = \begin{cases} 0, & \text{if } 0 \le t \le a \, ||x||_C \text{ or } t \ge b \, ||x||_C \\ \frac{t}{(1-a)||x||_C} - \frac{a}{1-a}, & \text{if } a \, ||x||_C \le t \le ||x||_C \\ \frac{-t}{(b-1)||x||_C} + \frac{b}{b-1}, & \text{if } ||x||_C \le t \le b \, ||x||_C \end{cases}$$

where $||x||_C$ is the ordinary norm of $x \neq 0$, 0 < a < 1 and $1 < b < \infty$. For x = 0, define $||x|| = \widetilde{0}$. Hence, (X, ||.||) is a fuzzy normed linear space.

Let us consider the topological structure of an *FNS* $(X, \|.\|)$. For any $\varepsilon > 0$, $\alpha \in [0, 1]$ and $x \in X$, the (ε, α) – neighborhood of x is the set $\mathcal{N}_x(\varepsilon, \alpha) = \{ y \in X : ||x - y||_{\alpha}^+ < \varepsilon \}.$

Let $(X, \|.\|)$ be an *FNS*. A sequence $(x_n)_{n=1}^{\infty}$ in X is convergent to $x \in X$ with respect to the fuzzy norm on X and we denote by $x_n \stackrel{FN}{\to} x$, provided that $(D) - \lim_{n \to \infty} ||x_n - x|| = \widetilde{0}$; i.e., for every $\varepsilon > 0$ there is an $N(\varepsilon) \in \mathbb{N}$ such that $D\left(||x_n - x||, \widetilde{0}\right) < \varepsilon$ for all $n \ge N(\varepsilon)$. This means that for every $\varepsilon > 0$ there is an $N(\varepsilon) \in \mathbb{N}$ such that for all $n \ge N(\varepsilon)$, $\sup_{\alpha \in [0,1]} \|x_n - x\|_{\alpha}^+ = \|x_n - x\|_0^+ < \varepsilon$.

Let $(X, \|.\|)$ be an *FNS*. Then a double sequence (x_{jk}) is said to be convergent to $x \in X$ with respect to the fuzzy norm on *X* if for every $\varepsilon > 0$ there exist a number $N = N(\varepsilon)$ such that $D(||x_{jk} - x||, \widetilde{0}) < \varepsilon$, for all $j, k \ge N$.

In this case, we write $x_{jk} \xrightarrow{FN} x$. This means that, for every $\varepsilon > 0$ there exist a number $N = N(\varepsilon)$ such that $\sup_{\alpha \in [0,1]} ||x_{jk} - x||_{\alpha}^+ = 1$

 $||x_{jk}-x||_0^+ < \varepsilon$, for all $j,k \ge N$. In terms of neighnorhoods, we have $x_{jk} \xrightarrow{FN} x$ provided that for any $\varepsilon > 0$, there exists a number $N = N(\varepsilon)$ such that $x_{jk} \in \mathcal{N}_x(\varepsilon, 0)$, whenever $j, k \ge N$.

Let $X \neq \emptyset$. A class \mathscr{I} of subsets of X is said to be an ideal in X provided:

(i) $\emptyset \in \mathscr{I}$, (ii) $A, B \in \mathscr{I}$ implies $A \cup B \in \mathscr{I}$, (iii) $A \in \mathscr{I}$, $B \subset A$ implies $B \in \mathscr{I}$.

 \mathscr{I} is called a nontrivial ideal if $X \notin \mathscr{I}$. A nontrivial ideal \mathscr{I} in X is called admissible if $\{x\} \in \mathscr{I}$ for each $x \in X$.

A nontrivial ideal \mathscr{I}_2 of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to \mathscr{I}_2 for each $i \in \mathbb{N}$. It is evident that a strongly admissible ideal is also admissible. Throughout the paper we take \mathscr{I}_2 as a strongly admissible ideal in $\mathbb{N} \times \mathbb{N}$.

Let $\mathscr{I}_2^0 = \{A \subset \mathbb{N} \times \mathbb{N} : (\exists m(A), (i, j) \geq m(A) \Rightarrow (i, j) \notin A)\}$. Then \mathscr{I}_2^0 is a nontrivial strongly admissible ideal and clearly an ideal $\bar{\mathscr{I}}_2$ is strongly admissible if and only if $\mathscr{I}_2^0 \subset \mathscr{I}_2$.

Let $X \neq \emptyset$. A non empty class \mathscr{F} of subsets of X is said to be a filter in X provided:

(i) $\emptyset \notin \mathscr{F}$, (ii) $A, B \in \mathscr{F}$ implies $A \cap B \in \mathscr{F}$, (iii) $A \in \mathscr{F}$, $A \subset B$ implies $B \in \mathscr{F}$.

Let \mathscr{I} is a nontrivial ideal in $X, X \neq \emptyset$, then the class $\mathscr{F}(\mathscr{I}) = \{M \subset X : (\exists A \in \mathscr{I})(M = X \setminus A)\}$ is a filter on X, called the filter associated with \mathcal{I} .

Let (X, ρ) be a linear metric space and $\mathscr{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})$ in Xis said to be \mathscr{I}_2 -convergent to $L \in X$, if for any $\varepsilon > 0$ we have $A(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn},L) \ge \varepsilon\} \in \mathscr{I}_2$ and we write $\mathscr{I}_2 - \lim_{m,n \to \infty} x_{mn} = L.$

Let $(X, \|.\|)$ be fuzzy normed space. A sequence $x = (x_m)_{m \in \mathbb{N}}$ in X is said to be \mathscr{I} – convergent to $L \in X$ with respect to fuzzy norm on X if for each $\varepsilon > 0$, the set $A(\varepsilon) = \{m \in \mathbb{N} : ||x_m - L||_0^+ \ge \varepsilon\}$ belongs to \mathscr{I} . In this case, we write $x_m \xrightarrow{F \mathscr{I}} L$. The element *L* is called the \mathscr{I} -limit of (x_m) in *X*.

Let $(X, \|.\|)$ be a fuzzy normed space. A double sequence $x = (x_{mn})_{(m,n) \in \mathbb{N} \times \mathbb{N}}$ in X is said to be \mathscr{I}_2 – convergent to $L_1 \in X$ with respect to fuzzy norm on X if for each $\varepsilon > 0$, the set $A(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||x_{mn} - L_1||_0^+ \ge \varepsilon\} \in \mathscr{I}_2$. In this case, we write $x_{mn} \xrightarrow{F\mathscr{I}_2} L_1$ or $x_{mn} \to L_1(F\mathscr{I}_2)$ or $F\mathscr{I}_2 - \lim_{m \to \infty} x_{mn} = L_1$. The element L_1 is called the $F\mathscr{I}_2$ -limit of (x_{mn}) in X. In

terms of neighborhoods, we have $x_{mn} \xrightarrow{F\mathscr{I}_2} L_1$ provided that for each $\varepsilon > 0$, $\{(m,n) \in \mathbb{N} \times \mathbb{N} : x_{mn} \notin \mathscr{N}_{L_1}(\varepsilon,0)\} \in \mathscr{I}_2$. A useful interpretation of the above definition is the following;

$$x_{mn} \xrightarrow{F \mathscr{I}_2} L_1 \Leftrightarrow F \mathscr{I}_2 - \lim_{m,n \to \infty} ||x_{mn} - L_1||_0^+ = 0.$$

Note that $F \mathscr{I}_2 - \lim_{m \to \infty} ||x_{mn} - L_1||_0^+ = 0$ implies that

$$F\mathscr{I}_{2} - \lim \|x_{mn} - L_{1}\|_{\alpha}^{-} = F\mathscr{I}_{2} - \lim \|x_{mn} - L_{1}\|_{\alpha}^{+} = 0,$$

for each $\alpha \in [0,1]$, since $0 \le \|x_{mn} - L_1\|_{\alpha}^- \le \|x_{mn} - L_1\|_{\alpha}^+ \le \|x_{mn} - L_1\|_0^+$ holds for every $m, n \in \mathbb{N}$ and for each $\alpha \in [0,1]$. Let $(X, \|.\|)$ be a fuzzy normed space. A double sequence $x = (x_{mn})$ in X is said to be \mathscr{I}_2 -Cauchy (or $F\mathscr{I}_2$ -Cauchy) double sequence with respect to the fuzzy norm on X if, for each $\varepsilon > 0$, there exists integers $p = p(\varepsilon)$ and $q = q(\varepsilon)$ such that the set $\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \left\| x_{mn} - x_{pq} \right\|_{0}^{+} \geq \varepsilon \right\}$ belongs to \mathscr{I}_{2} .

We say that an admissible ideal $\mathscr{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ satisfies the property (AP2), if for every countable family of mutually disjoint sets $\{A_1, A_2, ...\}$ belonging to \mathcal{I}_2 , there exists a countable family of sets $\{B_1, B_2, ...\}$ such that $A_j \cap B_j \in \mathcal{I}_2^0$, i.e., $A_j \cap B_j$ is included in the finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $B = \bigcup_{j=1}^{\infty} B_j \in \mathscr{I}_2$ (hence $B_j \in \mathscr{I}_2$ for each $j \in \mathbb{N}$).

Lemma 1.1. ([27], Theorem 3.3) Let $\{P_i\}_{i=1}^{\infty}$ be a countable collection of subsets of $\mathbb{N} \times \mathbb{N}$ such that $P_i \in \mathscr{F}(\mathscr{I}_2)$ for each i, where $\mathcal{F}(\mathcal{I}_2)$ is a filter associated with a strongly admissible ideal \mathcal{I}_2 with the property (AP2). Then there exists a set $P \subset \mathcal{F}_2$ $\mathbb{N} \times \mathbb{N}$ such that $P \in \mathcal{F}(\mathcal{I}_2)$ and the set $P \setminus P_i$ is finite for all i.

Lemma 1.2. ([17], Theorem 3.5) Let $(X, \|.\|)$ be fuzzy normed space and \mathcal{I}_2 be a admissible ideal. Then, every \mathcal{I}_2 -convergent sequence is \mathcal{I}_2 -Cauchy sequence.

2. Main results

In this section, we investigate relationship between \mathscr{I}_2 -convergence and \mathscr{I}_2 -Cauchy double sequences in fuzzy normed spaces. After, we introduce the concepts of \mathscr{I}_2^* -Cauchy double sequences and study relationships between \mathscr{I}_2 -Cauchy and \mathscr{I}_2^* -Cauchy double sequences in fuzzy normed spaces.

Theorem 2.1. Let $(X, \|.\|)$ be a fuzzy normed space. Then, a double sequence (x_{mn}) is $F\mathcal{I}_2$ -convergent if and only if it is $F\mathcal{I}_2$ -Cauchy double sequence.

Proof. Hazarika and Kumar proved that every $F \mathcal{I}_2$ -convergent sequence is $F \mathcal{I}_2$ -Cauchy sequence in Lemma 1.2.

Assume that (x_{mn}) is $F\mathscr{I}_2$ -Cauchy double sequence. We prove that (x_{mn}) is $F\mathscr{I}_2$ -convergent. To this effect, let (ε_{pq}) be a strictly decreasing sequence of numbers converging to zero. Since (x_{mn}) is $F\mathscr{I}_2$ -Cauchy double sequence, there exist two strictly increasing sequences (k_p) and (l_q) of positive integers such that the set

$$A\left(\varepsilon_{pq}\right) = \left\{ \left(m, n\right) \in \mathbb{N} \times \mathbb{N} : \left\|x_{mn} - x_{k_{p}l_{q}}\right\|_{0}^{+} \ge \varepsilon_{pq} \right\}$$

belongs to \mathscr{I}_2 , $(p, q \in \mathbb{N})$. This implies that

$$\emptyset \neq \left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \left\| x_{mn} - x_{k_p l_q} \right\|_0^+ < \varepsilon_{pq} \right\} \tag{2.1}$$

belongs to $\mathscr{F}(\mathscr{I}_2)$, $(p,q \in \mathbb{N})$. Let p,q,s,t be four positive integers such that $p \neq q$ and $s \neq t$. By (2.1), both the sets

$$D(\varepsilon_{pq}) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : \left\| x_{mn} - x_{k_p l_q} \right\|_0^+ < \varepsilon_{pq} \}$$

and

$$C(\varepsilon_{st}) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||x_{mn} - x_{k_s l_t}||_0^+ < \varepsilon_{st}\}$$

are non empty sets in $\mathscr{F}(\mathscr{I}_2)$. Since $\mathscr{F}(\mathscr{I}_2)$ is a filter on $\mathbb{N} \times \mathbb{N}$, therefore $\emptyset \neq D(\varepsilon_{pq}) \cap C(\varepsilon_{st}) \in \mathscr{F}(\mathscr{I}_2)$. Thus, for each pair (p,q) and (s,t) of positive integers with $p \neq q$ and $s \neq t$, we can select a pair $(m_{(p,q),(s,t)}, n_{(p,q),(s,t)}) \in \mathbb{N} \times \mathbb{N}$ such that

$$\|x_{m_{pqst}n_{pqst}} - x_{k_pl_q}\|_0^+ < \varepsilon_{pq} \text{ and } \|x_{m_{pqst}n_{pqst}} - x_{k_sl_t}\|_0^+ < \varepsilon_{st}.$$

It follows that

$$\begin{aligned} \left\| x_{k_{p}l_{q}} - x_{k_{s}l_{t}} \right\|_{0}^{+} & \leq & \left\| x_{m_{pqst}n_{pqst}} - x_{k_{p}l_{q}} \right\|_{0}^{+} + \left\| x_{m_{pqst}n_{pqst}} - x_{k_{s}l_{t}} \right\|_{0}^{+} \\ & < & \varepsilon_{pq} + \varepsilon_{st} \to 0, \text{ as } p, q, s, t \to \infty. \end{aligned}$$

This implies that $(x_{k_p l_q})$ $(p, q \in \mathbb{N})$ is a Cauchy double sequence in fuzzy normed space, therefore it satisfies the Cauchy convergence criterion. Thus, the sequence $(x_{k_p l_q})$ converges to a finite limit L_1 that is,

$$\lim_{p,q\to\infty} x_{k_p l_q} = L_1.$$

Also, we have $\varepsilon_{pq} \to 0$ as $p, q \to \infty$, so for each $\varepsilon > 0$ we can choose the positive integers p_0, q_0 such that for $p \ge p_0$ and $q \ge q_0$,

$$\varepsilon_{p_0q_0} < \frac{\varepsilon}{2} \text{ and } \|x_{k_pl_q} - L_1\|_0^+ < \frac{\varepsilon}{2}.$$
 (2.2)

Now, we define the set

$$A(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||x_{mn} - L_1||_0^+ \ge \varepsilon\}.$$

We prove that $A(\varepsilon) \subset A(\varepsilon_{p_0q_0})$. Let $(m,n) \in A(\varepsilon)$, then by second half of (2.2) we have

$$\varepsilon \leq \|x_{mn} - L_1\|_0^+ \leq \|x_{mn} - x_{k_{p_0} l_{q_0}}\|_0^+ + \|x_{k_{p_0} l_{q_0}} - L_1\|_0^+$$

$$\leq \|x_{mn} - x_{k_{p_0} l_{q_0}}\|_0^+ + \frac{\varepsilon}{2}.$$

This implies that

$$\frac{\varepsilon}{2} \leq \left\| x_{mn} - x_{k_{p_0} l_{q_0}} \right\|_0^+$$

and therefore by first half of (2.2) we have

$$\varepsilon_{p_0q_0} \leq \left\| x_{mn} - x_{k_{p_0}l_{q_0}} \right\|_0^+.$$

This implies that $(m,n) \in A(\varepsilon_{p_0q_0})$ and therefore $A(\varepsilon)$ is contained in $A(\varepsilon_{p_0q_0})$. Since $A(\varepsilon_{p_0q_0})$ belongs to \mathscr{I}_2 therefore, $A(\varepsilon)$ belongs to \mathscr{I}_2 . This proves that (x_{mn}) is $F\mathscr{I}_2$ -convergent to L_1 .

Definition 2.2. Let $(X, \|.\|)$ be a fuzzy normed space. A double sequence $x = (x_{mn})$ in X is said to be \mathscr{I}_2^* -Cauchy (or $F\mathscr{I}_2^*$ -Cauchy) double sequence with respect to fuzzy norm on X if, there exists a set $M \in \mathscr{F}(\mathscr{I}_2)$ (i.e., $H = \mathbb{N} \times \mathbb{N} \setminus M \in \mathscr{I}_2$) and $k_0 = k_0(\varepsilon)$ such that for every $\varepsilon > 0$ and for $(m,n), (s,t) \in M$, $\|x_{mn} - x_{st}\|_0^+ < \varepsilon$, whenever $m,n,s,t > k_0$. In this case, we write $\lim_{m,n,s,t \to \infty} \|x_{mn} - x_{st}\|_0^+ = 0$.

Theorem 2.3. Let \mathscr{I}_2 be an admissible ideal of $\mathbb{N} \times \mathbb{N}$. If a double sequence (x_{mn}) in X is an $F\mathscr{I}_2^*$ -Cauchy sequence, then it is $F\mathscr{I}_2$ -Cauchy sequence.

Proof. Suppose that (x_{mn}) is an $F\mathscr{I}_2^*$ -Cauchy sequence. Then, there exists a set $M \in \mathscr{F}(\mathscr{I}_2)$ (i.e., $H = \mathbb{N} \times \mathbb{N} \setminus M \in \mathscr{I}_2$) and $k_0 = k_0(\varepsilon)$ such that for every $\varepsilon > 0$ and for $(m,n), (s,t) \in M \|x_{mn} - x_{st}\|_0^+ < \varepsilon$, whenever $m, n, s, t \geq k_0$. Then,

$$A(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||x_{mn} - x_{st}||_{0}^{+} \ge \varepsilon\}$$

$$\subset H \cup [M \cap ((\{1,...,k_{0}\} \times \mathbb{N}) \cup (\mathbb{N} \times \{1,...,k_{0}\}))].$$

Since \mathcal{I}_2 be an admissible ideal, then

$$H \cup [M \cap ((\{1,...,k_0\} \times \mathbb{N}) \cup (\mathbb{N} \times \{1,...,k_0\}))] \in \mathscr{I}_2.$$

Therefore, we have $A(\varepsilon) \in \mathscr{I}_2$. This shows that (x_{mn}) is $F\mathscr{I}_2$ -Cauchy sequence in X.

Theorem 2.4. Let \mathcal{I}_2 be an admissible ideal of $\mathbb{N} \times \mathbb{N}$ with the property (AP2) and (x_{mn}) be a double sequence in X. Then, the concepts \mathcal{I}_2 —Cauchy double sequence with respect to fuzzy norm on X and \mathcal{I}_2^* -Cauchy double sequence with respect to fuzzy norm on X coincide.

Proof. If a double sequence is $F\mathscr{I}_2^*$ -Cauchy, then it is $F\mathscr{I}_2$ -Cauchy by Theorem 2.3, where \mathscr{I}_2 need not have the property (AP2). Now, it is sufficient to prove that a double sequence (x_{mn}) in X is a $F\mathscr{I}_2^*$ -Cauchy double sequence under assumption that it is an $F\mathscr{I}_2$ -Cauchy double sequence. Let (x_{mn}) be an $F\mathscr{I}_2$ -Cauchy double sequence in X. Then, there exists $s = s(\varepsilon), t = t(\varepsilon) \in \mathbb{N}$ such that for every $\varepsilon > 0$,

$$A(\varepsilon) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||x_{mn} - x_{st}||_{0}^{+} \ge \varepsilon\} \in \mathscr{I}_{2}.$$

Let

$$P_i = \left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \|x_{mn} - x_{s_i t_i}\|_0^+ < \frac{1}{i} \right\},\,$$

where $s_i = s(1 \setminus i)$, $(i \in \mathbb{N})$, $t_i = t(1 \setminus i)$. It is clear that $P_i \in \mathscr{F}(\mathscr{I}_2)$ for all $i \in \mathbb{N}$. Since \mathscr{I}_2 has the property (AP2), then by Lemma 1.1 there exists a set $P \subset \mathbb{N} \times \mathbb{N}$ such that $P \in \mathscr{F}(\mathscr{I}_2)$ and $P \setminus P_i$ is finite for all $i \in \mathbb{N}$. Now we show that

$$\lim_{m,n,s,t\to\infty} ||x_{mn} - x_{st}||_0^+ = 0,$$

for (m,n), $(s,t) \in P$. To prove this, let $\varepsilon > 0$ and $j \in \mathbb{N}$ such that $j > 2/\varepsilon$. If (m,n), $(s,t) \in P$ then $P \setminus P_i$ is a finite set, so there exists N = N(j) such that (m,n), $(s,t) \in P_i$ for all m,n,s,t > N(j). Therefore,

$$||x_{mn}-x_{s_it_i}||_0^+ < \frac{1}{j} \text{ and } ||x_{st}-x_{s_it_i}||_0^+ < \frac{1}{j},$$

for all m, n, s, t > N(j). Hence it follows that

$$||x_{mn} - x_{st}||_{0}^{+} \leq ||x_{mn} - x_{s_{i}t_{i}}||_{0}^{+} + ||x_{st} - x_{s_{i}t_{i}}||_{0}^{+}$$

$$\leq \frac{1}{j} + \frac{1}{j} = \frac{2}{j} < \varepsilon,$$

for all m, n, s, t > N(j). Thus, for any $\varepsilon > 0$ there exists $N = N(\varepsilon)$ such that for m, n, s, t > N(j) and $(m, n), (s, t) \in P$ we have $||x_{mn} - x_{st}||_0^+ < \varepsilon$.

This shows that the double sequence (x_{mn}) in X is an $F\mathscr{I}_2^*$ -Cauchy double sequence in fuzzy normed spaces.

References

- [1] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
- ^[2] I.J. Schoenberg, *The integrability of certain functions and related summability methods*, Amer. Math. Monthly **66** (1959), 361–375.
- [3] M. Mursaleen, O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), 223–231.
- [4] D. Rath, B.C. Tripaty, *On statistically convergence and statistically Cauchy sequences*, Indian J. Pure Appl. Math. **25**(4) (1994), 381–386.
- [5] P. Kostyrko, T. Šalát, W. Wilczyński, *I-convergence*, Real Anal. Exchange, **26**(2) (2000), 669–686.
- [6] P. Das, P. Kostyrko, W. Wilczyński, P. Malik, I and I*-convergence of double sequences, Math. Slovaca, 58(5) (2008), 605–620.
- [7] P. Das, P. Malik, On extremal *I*-limit points of double sequences, Tatra Mt. Math. Publ., **40** (2008), 91–102.
- [8] V. Kumar, On I and I*-convergence of double sequences, Math. Commun. 12 (2007), 171–181.
- [9] T. Šalát, B.C. Tripaty, M. Ziman, On *I-convergence field*, Ital. J. Pure Appl. Math. 17 (2005), 45–54.
- [10] B. Tripathy, B.C. Tripathy, On *I-convergent double sequences*, Soochow J. Math. **31** (2005), 549–560.
- [11] M. Matloka, Sequences of fuzzy numbers, Busefal, **28** (1986), 28–37.
- [12] S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets Syst. 33 (1989), 123–126.
- [13] C. Şençimen, S. Pehlivan, *Statistical convergence in fuzzy normed linear spaces*, Fuzzy Sets and Systems, **159** (2008), 361–370.
- [14] B. Hazarika, On ideal convergent sequences in fuzzy normed linear spaces, Afrika Mat., 25(4) (2013), 987–999.
- [15] E. Dündar, Ö. Talo, \mathcal{I}_2 -convergence of double sequences of fuzzy numbers, Iran. J. Fuzzy Syst., 10(3) (2013), 37–50
- [16] E. Dündar, Ö. Talo, Ö., \mathcal{I}_2 -Cauchy Double Sequences of Fuzzy Numbers, Gen. Math. Notes, 16(2) (2013), 103–114.
- [17] B. Hazarika, V. Kumar, Fuzzy real valued *I*-convergent double sequences in fuzzy normed spaces, J. Intell. Fuzzy Syst., **26** (2014), 2323–2332.
- [18] E. Dündar, M. R. Türkmen, On \mathscr{I}_2 -Convergence and \mathscr{I}_2^* -Convergence of Double Sequences in Fuzzy Normed Spaces, Konuralp J. Math., (in press).
- [19] V. Kumar, K. Kumar, On the ideal convergence of sequences of fuzzy numbers, Inform. Sci. 178 (2008), 4670–4678.
- [20] S.A. Mohiuddine, H. Sevli, M. Cancan, *Statistical convergence of double sequences in fuzzy normed spaces*, Filomat, **26**(4) (2012), 673–681.
- [21] M. R. Türkmen, E. Dündar, On Lacunary Statistical Convergence of Double Sequences and Some Properties in Fuzzy Normed Spaces, J. Intell. Fuzzy Syst., **36**(1) (2019), 467-472.
- [22] R. Saadati, On the I-fuzzy topological spaces, Chaos, Solitons Fractals, 37 (2008), 1419–1426.
- ^[23] T.Bag, S.K. Samanta, Fixed point theorems in Felbin's type fuzzy normed linear spaces, J. Fuzzy Math., **16**(1) (2008), 243–260.
- [24] B. Bede, S.G. Gal, Almost periodic fuzzy-number-valued functions, Fuzzy Sets Syst., 147(2004), 385–403.
- [25] P. Diamond, P. Kloeden, *Metric Spaces of Fuzzy Sets-Theory and Applications*, World Scientific Publishing, Singapore, (1994).

- [26] E. Dündar, B. Altay, \mathcal{I}_2 -convergence and \mathcal{I}_2 -Cauchy of double sequences, Acta Math. Sci., **34**(2) (2014), 343–353.
- [27] E. Dündar, B. Altay, On some properties of \mathcal{I}_2 -convergence and \mathcal{I}_2 -Cauchy of double sequences, Gen. Math. Notes, 7(1) (2011), 1–12.
- ^[28] J.-X. Fang, H. Huang, *On the level convergence of a sequence of fuzzy numbers*, Fuzzy Sets and Systems, **147** (2004), 417–415.
- [29] C. Felbin, Finite-dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48(2) (1992), 239–248.
- [30] Ö. Kişi, $\mathscr{I}_2 \lambda^-$ -statistically convergence of double sequences in fuzzy normed spaces, J. Intell. Fuzzy Syst., **36**(2) (2019), 1–12.
- [31] M. Mizumoto, K. Tanaka, *Some properties of fuzzy numbers*, Advances in Fuzzy Set Theory and Applications, North-Holland (Amsterdam), **1979**, 153–164.
- [32] A. Nabiev, S. Pehlivan, M. Gürdal, On *I-Cauchy sequences*, Taiwanese J. Math. **11**(2) (2007) 569–5764.
- [33] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289–321.
- [34] E. Savaş, M. Mursaleen, On statistically convergent double sequences of fuzzy numbers, Inform. Sci. 162 (2004), 183–192
- [35] L.A. Zadeh, *Fuzzy sets*, Inform. Control **8**(1965), 338–353.