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WIJSMAN Z-INVARIANT CONVERGENCE OF SEQUENCES OF
SETS

NIMET PANCAROGLU AKIN, ERDINC DUNDAR AND FATIH NURAY

ABSTRACT. In this paper, we study the concepts of Wijsman Z-invariant con-
vergence (Z)V), Wijsman Z*-invariant convergence (Z:"), Wijsman p-strongly
invariant convergence ([WVs]p) of sequences of sets and investigate the re-

lationships between Wijsman invariant convergence, [WVy]p, ZV and Z:W.

Also, we introduce the concepts of Igv—Cauchy sequence and I;W—Cauchy
sequence of sets.

1. INTRODUCTION

Throughout the paper N denotes the set of all positive integers and R the set of
all real numbers. The concept of convergence of a sequence of real numbers has been
extended to statistical convergence independently by Fast [11], Schoenberg [28] and
studied by many authors. Nuray and Ruckle |20] indepedently introduced the same
with another name generalized statistical convergence. The idea of Z-convergence
was introduced by Kostyrko et al. |[13] as a generalization of statistical convergence
which is based on the structure of the ideal Z of subset of N.

Nuray and Rhoades [19] extended the notion of convergence of set sequences to
statistical convergence and gave some basic theorems. Ulusu and Nuray [34] defined
the Wijsman lacunary statistical convergence of set sequences and considered its
relation with Wiijsman statistical convergence defined by Nuray and Rhoades. Kisi
and Nuray [12] introduced a new convergence notion, for sequence of sets called
Wijsman Z-convergence. The concept of convergence of sequence of numbers has
been extended by several authors to convergence of set sequences (see, [4H612933,
36L137]).

Several authors including Raimi [26], Schaefer [27], Mursaleen [17], Savas [30],
Pancaroglu and Nuray [24] and some authors have studied invariant convergent
sequences. Nuray et al. [22] defined the concepts of o-uniform density of subsets A
of the set N, Z,-convergence and investigated relationships between Z,-convergence
and invariant convergence also Z,-convergence and [V, ],-convergence. The concept
of strongly o-convergence was defined by Mursaleen [16]. Savag and Nuray [32]
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introduced the concepts of o-statistical convergence and lacunary o-statistical con-
vergence and gave some inclusion relations. Recently, the concept of strong o-
convergence was generalized by Savag [30]. Nuray and Ulusu [23] investigated la-
cunary Z-invariant convergence and lacunary Z-invariant Cauchy sequence of real
numbers.

In this paper, we study the concepts of Wijsman Z-invariant convergence (Z2V),
Wijsman Z*-invariant convergence (I*ZV), Wijsman p-strongly invariant conver-
gence ([WV,],) and investigate the relationships between Wijsman invariant con-
vergence, [W V5], IV and I*XV. Also, we introduce the concepts of Z,-Cauchy

g

sequence and Z*-Cauchy sequence of sets.

2. DEFINITIONS AND NOTATIONS

Now, we recall the ideal convergence, invariant convergence, sequence of sets and
basic definitions and concepts (See [1H3L[8HLOL13L{15L{19L[21H27L[35H37]).

Let X # 0. A class Z of subsets of X is called an ideal if and only if

(i) 0 ez,
(ii) A,B € Z implies AUB € 7,
(i) A€ Z, B C A implies B € T.

An ideal is called nontrivial if N ¢ Z and nontrivial ideal is called admissible if
{n} €T for each n € N.
Let X # (). A non empty class F of subsets of X is called a filter if and only if

(i) 0 ¢ 7,
(ii) A, B € F implies AN B € F,
(i) A€ F, AcC B implies B € F.

If 7 is a nontrivial ideal in X, X # (), then the class
FZ)y={MCcX:3AeI)(M=X\A)}

is a filter on X, called the filter associated with Z.

Let Z C 2V be an admissible ideal. A sequence x = (z}) of elements of R is said
to be Z-convergent to L € R if for every € >0, A(e) ={keN: |z — L| >c} €T
If © = (z) is Z-convergent to L, then we write Z — limz = L.

Let o be a mapping of the set of positive integers into itself. A continuous linear
functional ¢ on /., the space of real bounded sequences, is said to be an invariant
mean or a o-mean if and only if

(1) ¢(x) > 0, when the sequence x = (x,,) has z,, > 0 for all n,
(2) ¢(e) =1, where e = (1,1,1,...), and
(3) d(wo(n)) = ¢(xn) forall z € lu.

The mappings o are one-to-one and such that ¢™(n) # n for all positive integers
n and m, where ¢ (n) denotes the mth iterate of the mapping o at n. Thus ¢
extends the limit functional on ¢, the space of convergent sequences, in the sense
that ¢(x) = limx for all € ¢. In the case o is translation mappings o(n) = n+1,
the o-mean is often called a Banach limit and V,,, the set of bounded sequences all
of whose invariant means are equal, is the set of almost convergent sequences [14].
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It can be shown [31] that
1 m
Vo = {13 = (zp) €l : W}gnoo - Zxak(n) = L, uniformly in n}
k=1
A bounded sequence x = () is said to be strongly o-convergent to L if
1 n—1
nll)rr;o - ,;J |Z ok () — L| = 0, uniformly in m

and in this case, we write x;, — L[V,]. By [V,], we denote the set of all strongly
o-convergent sequences.
In the case, o(n) = n + 1, the space [V,] is reduced to the space [¢] of strongly
almost convergent sequences.
The concept of strong o-convergence was generalized by Savag [30] as below:
1 m
Volp = {z = (xp) : mlgnoo - kz |Zgk () — L|P = 0 uniformly in n},
=1
where 0 < p < co. If p =1, then [V;], = [V5]. It is known that [V;], C ls.
A sequence x = () is o-statistically convergent to L if for every € > 0,

1
lim —){k <m: [Tk — L > 5}) = 0, uniformly in n.
m—o0 M

In this case, we write S, —lima = L or x5 — L(S,).
Nuray et al. [22] introduced the concepts of o-uniform density and Z,-convergence.
Let A C N and

Sp = n}riln AN {o(m),o*(m),...,a"(m)} }

and
Sp = max |An{a(m),o*(m),...,a™(m)}|.

If the following limits exists

V(A) = Tim 5, V(4) = lim 2°

n—o0 N n—oo n

then they are called a lower and an upper o-uniform density of the set A, respec-
tively. If V(A) = V(A), then V(A) = V.(A) = V(A) is called the o-uniform density
of A.

Denote by Z, the class of all A C N with V(A4) = 0.

A sequence (xy) is said to be Z,-convergent to the number L if for every £ > 0,
A.={k:|z,—L| >} €T,,

that is, V(A.) = 0. In this case, we write Z, — limx, = L.
Throughout the paper, we suppose that (X, p) is a metric space, Z C 2V is an
admissible ideal and A, Ay are any non-empty closed subsets of X.
For any point x € X and any non-empty subset A of X, we define the distance
from x to A by
d(z, A) = ;Ielg p(z,a).
A sequence { Ay} is Wijsman convergent to A if lim d(x, Ag) = d(x, A), for each

k—o0

x € X. In this case, we write W — lim A, = A.
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A sequence {Ay} is bounded if supd(x, Ax) < oo, for each x € X. L., denotes
k

the set of bounded sequences of sets.
A sequence {Ay} is said to be Wijsman invariant convergent to A if for each
rzeX

1 : .
n11—>Irolo - Z d(x, Agk(m)) = d(z, A), uniformly in m.
k=1
A sequence {Ay} is said to be Wijsman strongly invariant convergent to A, if
for each = € X,

RS . :
nh_{rgo - ; |d(z, Agk (1)) — d(z, A)| = 0, uniformly in m.

A sequence {Ay} is said to be Wijsman invariant statistical convergent to A, if
for every € > 0 and for each x € X,

nh_)ngo %HO <k <n:ld(x, Agkm)) — d(z, A)| > e}| = 0, uniformly in m.

In this case, we write Ay — A(W'S,) and the set of all Wijsman invariant statistical
convergent sequences of sets will be denoted W S,,.

Let Z C 2Y be an admissible ideal. A sequence {Aj} is said to be Wijsman
Z-convergent to A if for every e > 0 A(e,x) = {k : |d(z, Ax) — d(x, A)| > e} € T.

Let (X, p) be a separable metric space and Z C 2V be an admissible ideal. A
sequence {Ay} is Wijsman Z*-convergent to A if and only if there exists a set M =
{m1 <mg <--- <my <---} € F(Z) such that for each z € X, lerI;od(x,Amk) =
d(z, A).

A sequence {4} is Wijsman Z-Cauchy sequence if for each € > 0 and for each
x € X, there exists a number N = N(¢) such that {n € N: |d(z, A,) —d(z, An)| >
et el

A sequence { Ay} is Wijsman Z*-Cauchy sequence if there exists a set M € F(Z),
M = {m = (m;): m; < m;t1,i € N} C N such that the subsequence Ay = {A.,, }
is Wijsman Cauchy in X that is, i 1}13100 |d(x, Am,,) — d(z, Ay, )| = 0.

An admissible ideal Z C 2V is said to satisfy the condition (AP) if for every
countable family of mutually disjoint sets {7, Fa, - -} belonging to Z there exists
a countable family of sets {F}, Fy,---} such that E;AF; is a finite set for j € N
and F =2, Fy € L.

3. Main Results

Definition 3.1. A sequence {Ay} is said to be Wijsman Z-invariant convergent or
IV -convergent to A if for every e > 0, the set

A(e,z) ={k: |d(z, Ax) — d(z, A)| > &}

belongs to I, that is, V(A(e,z)) = 0. In this case, we write Ay — A(ZY) and
denote the set of all Wijsman Z-invariant convergent sequences of sets by TV .

Theorem 3.1. Let {A;} be a bounded sequence. If {Ay} is TV -convergent to A,
then {Ax} is Wijsman invariant convergent to A.
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Proof. Let m,n € N be arbitrary and € > 0. For each x € X, we estimate
d(z, Ag(m)) + d(z, Agz(m)) + -+ d(z, Ao-n(m))

t = —d(z,A)|.
(m,n, 7) - (2, 4)
Then, for each z € X we have
t(m7 n’ x) S tl(m7 n’ 'r) +t2(m7 n? I)’
where
1 n
t'(m,n, x) := - Z d(, Agi(my) — d(x, A)]
j=1
|d(vaaj(m/))_d(va)‘25
and
1 n
t2(m,n, x) == - > |d(z, A (m)) — d(z, A)].

=1
|d(z7Aaj(m))_d(sz)|<5

Therefore, we have t?(m,n,z) < ¢, for each x € X and for every m € N. The
boundedness of {Ay} implies that there exist L > 0 such that for each x € X,

‘d(vaoJ'(m))_d(xaA)' <L, (j,mEN),
then this implies that

L
tl(mvnvx) < *|{1 <js<n: |d($7Aaf(m)) - d(x7A)| > 5}|
n
o g maxy {L<j < n:|d(z, Agimy) — dl@, A)] 2 €}
< L. -
Sn
=L —.
n
Hence, {A} is Wijsman invariant convergent to A. O

Definition 3.2. Let (X,p) be a separable metric space. The sequence {A} is
Wijsman T*-invariant convergent or LW -convergent to A if there exists a set M =
{my < - <my <---} € F(Z,) such that for each x € X,

lim d(z, Ap,) = d(z, A).
k—o00

Theorem 3.2. If a sequence {Ay} is Z:W -convergent to A, then this sequence is
IV -convergent to A.

Proof. By assumption, there exists a set H € Z,, such that for M = N\ H = {m; <
<o <my < ---} we have

lim d(z, Ap,,) = d(z, A), (3.1)

k—o0

for each € X. Let € > 0 by , there exists kg € N such that for each x € X,
|d(x, Am,,) — d(z, A)| < ¢,
for each k > kg. Then, obviously
{keN:|d(z,Ax) —d(z,A)| > e} CHU{m1 <mg <+ < My, }. (3.2)

Since Z,, is admissible, the set on the right-hand side of (3.2) belongs to Z,. So
{Ay} is TV -convergent to A. O
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Theorem 3.3. Let Z, C 2" be an admissible ideal with the property (AP). If {Ax}
is TV -convergent to A, then {Ay} is T*W -convergent to A.

Proof. Suppose that Z, satisfies the property (AP). Let { Az} is Z)V-convergent to
A. Then, for € > 0 and for each x € X
{k : |d($7Ak) - d(.]j,A)| > 5} €Z,.
Put
1 1
By = {k: |d(z, Ag)—d(z, A)| > 1} and E, = {k : = < ld(w, A)=d(w, 4)| < nf}

for n > 2 and for each € X. Obviously E; N E; = 0, for i # j. By the property
(AP) there exists a sequence of {F), },en such that E;AF; are finite sets for j € N
and F = (Ujil F;) € I,. It is sufficient to prove that for M = N\ F' and for each
x € X, we have

lim d(x, Ag) = d(z, A), k€ M. (3.3)

k—o0

1
Let A > 0. Choose n € N such that
n+1

< A. Then, for each z € X,

n+1
{k : (=, Ap) — d(z, A)| > A} € | Bj.
j=1
Since E;AF;, j =1,2,...,n+ 1 are finite sets, there exists ko € N such that

n+1 n+1
(JL_Jle>m{kik>ko}=(jL_JlEj)ﬂ{k:k>ko}. (3.4)

If k > ko and k ¢ F, then k ¢ |J7) F; and by (3.4) k ¢ U7 E;. But then

J

1
d(z, Ax) — d(z, A — <A
(e, Ar) = dla, A)| < — <

so (3.3) holds and {Ay} is Z:"-convergent to A. O

Now, we define the concepts of Wijsman Z-invariant Cauchy sequence and Wi-
jsman Z*-invariant Cauchy sequence of sets.

Definition 3.3. A sequence {Ay} is said to be Wijsman Z-invariant Cauchy se-
quence or IV -Cauchy sequence if for every ¢ > 0 and for each x € X, there exists
a number N = N(g,z) € N such that

Ale,z) = {k: |d(z, A) — d(z, An)| > ¢} € T,
that is, V(A(e,z)) = 0.

Definition 3.4. A sequence {Ay} is said to be Wijsman Z*-invariant Cauchy se-
quence orI*gV-Cauchy sequence if there exists a set M = {my < --- <myp < ...} €
F(Z,) such that

lim |d(z, A, ) — d(z, Ay =0,

k,p—o0

for each z € X.

We give following theorems which show relationships between TV -convergence,
IV _Cauchy sequence and I*E/—Cauchy sequence. Their proof are similar to the
proof of Theorems in [7}[18], so we give them without proof.
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Theorem 3.4. If a sequence { Ay} is T}V -convergent, then {Ax} is an T} -Cauchy
sequence.

Theorem 3.5. If a sequence {Ay} is T*Y -Cauchy sequence, then {Ag} is TV -
Cauchy sequence.

Theorem 3.6. Let I, has the property (AP). Then the concepts IV -Cauchy
sequence and I*E/-Cauchy sequence coincides.

Definition 3.5. The sequence {Ay} is said to be Wijsman p-strongly invariant
convergent to A, if for each ¢ € X,

RS . .
nh_{r;o - ; |d(z, Agk (1)) — d(z, A)|P = 0, uniformly in m,

where 0 < p < co. In this case, we write Ay — A[WV,], and denote the set of all
Wigsman p-strongly invariant convergent sequences of sets by [WVy],.
Theorem 3.7. Let 7, C 2N be an admissible ideal and 0 < p < oco.

(i) If Ay, — A(WV,],), then Ay — A(ZV).

(ii) If {Ax} € Loo and Ay, — A(ZY), then A — A(WV,]p).

(iii) If {Ax} € Loo, then {Ay} is IV -convergent to A if and only if A, —
A(WVslp).

Proof. (i) If Ay — A([WV,],), then for € > 0 and for each x € X we can write

n

Z |d(.73, Azrj(m)) - d(l‘, A)|p > Z |d($, Acﬂ(m)) - d(l‘, A>|p
Jj=1 J=1
|d($7Agj(m))7d(IvA)|2€
2 €p|{j§n: |d(z7A0'J(m))7d(IvA)| ZEH
> e’max[{j <n:ld(x, Agi(m)) — d(z, A)| > €}
and
i mH{1 <5 <n:ldx, Avipm) — d(z, A)| >
LS @, Agsy) — dio, AP > v B (1<) <n:ld@ Agm) = da A)] 2 <}
n n
j=1
LS
n

Sh, .
for every m € N . This implies lim — = 0 and so {A} is (Z}V)-convergent to A.
n—oo

(ii) Suppose that {Ax} € Lo, and Ay — A(ZY). Let € > 0. By assumption
we have V(A.) = 0. Since {Ay} is bounded, there exists L > 0 such that for each
T e X,

‘d(xaAaJ(m)) - d(xaA)‘ < La
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for all j and m. Then, we have

1o 1 -

EZ'd(vaaj(m)) _d(fva”p = g Z |d(vaU-7(m)) _d(x7A)|p
j=1

i=1
|d(2,4,j (o)) — (. 4)| >

1 n
+ E Zl |d(x7AUf(m)) 7d($,A)|p
j=
ld(z,A 5 () —d(x,A)|<e
< 7, TaxXm H1<j <n:ld(z, Agigm)) —d(z, A)| > €} e

n

Sp
< L.— +¢&P,
n

for each x € X. Hence, for each z € X we obtain

n—oo N 4

1 n
lim — Z ld(z, Agi(m)) — d(x, A)|P = 0, uniformly in m.
Jj=1

(iii) This is immediate consequence of Parts (i) and (ii). O

Now, we may state the theorem related to the relationships between WS, and
IV without proof.

Theorem 3.8. A sequence {A} is WS, -convergent to A if and only if it is TV -
convergent to A.
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