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Abstract. Boos, Leiger and Zeller [1,2] defined the concept of e-conver-
gence. In this paper we introduce the concepts of e-limit superior and inferior for
real double sequences and prove some fundamental properties of e-limit superior
and inferior. In addition to these results we define e-core for double sequences.
Also, we show that that if A is a nonnegative Ce-regular matrix then the e-core of
Ax is contained in e-core of x, provided that Ax exists.

1. Introduction

By Ω, we denote the set of all complex valued double sequences, i.e.,

Ω =
{
x = (xmn) : xmn ∈ C for all m,n ∈ N

}
,

which is a vector space with co-ordinatewise addition and scalar multiplica-
tion of double sequences, where N and C denote the set of positive integers
and the complex field, respectively. Any vector subspace of Ω is called a
double sequence space. The space Mu of all bounded double sequences is
defined by

Mu =
{
x = (xmn) ∈ Ω : ‖x‖∞ = sup

m,n∈N
|xmn| < ∞

}

which is a Banach space with the norm ‖ · ‖∞. Consider the sequence
x = (xmn) ∈ Ω. If for every ε > 0 there exists n0 = n0(ε) ∈ N such that
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|xmn− �| < ε for all m,n > n0 then we say that the double sequence x is con-
vergent in the Pringsheim’s sense to the limit � and write P- limm,n xmn = �.
By Cp, we denote the space of all convergent double sequences in the Pring-
sheim’s sense. It is well-known that there are such sequences in the space Cp
but not in the space Mu. So, we may mention the space Cbp of the double
sequences which are both convergent in the Pringsheim’s sense and bounded,
i.e., Cbp = Cp ∩Mu. Móricz [8] proved that Cbp is a Banach space with the
norm ‖ · ‖∞. By Cbp0, we denote the space of double sequences which are
both convergent to zero in the Pringsheim’s sense and bounded.

Boos, Legier and Zeller [1,2] introduced and investigated the notion of e-
convergence of double sequences, which is essentially weaker than the Pring-
sheim convergence. Zeltser [16] characterized SM-methods (see [12,14]) map-
ping bounded or convergent sequences into e-, be- or c-convergent double se-
quences, as well as 4-dimensional matrices being conservative with respect
to the one of these notions of convergence. A double sequence x = (xkl) ∈ Ω
is said to be e-convergent to a number a if

∀ ε > 0 ∃ l0 ∈ N, ∀ l � l0, ∃ kl ∈ N � ∀ k � kl ⇒ |xkl − a| < ε.

The space of all double sequences converging in this way is denoted by Ce.
More precisely,

Ce :=
{
x = (xkl) ∈ Ω | ∃ a ∈ C, ∀ ε > 0 ∃ l0 ∈ N, ∀ l � l0,

∃ kl ∈ N � ∀ k � kl ⇒ |xkl − a| < ε
}

=
{
x = (xkl) ∈ Ω | ∃ a ∈ C : lim

l
lim
k

|xkl − a| = 0
}
.

The subspace

Cbe =
{
x ∈ Ce | ∀ l ∈ N : (xkl)k ∈ l∞

}
of Ce, where l∞ is the space of all bounded sequences.

Definition 1.1 [16]. A real double sequence x = (xkl) is said to be e-
bounded if liml limk |xkl| < ∞. That is, a real double sequence x = (xkl) is
said to be e-bounded if there exists M > 0 such that

∃ l0 ∈ N, ∀ l � l0, ∃ kl ∈ N � ∀ k � kl ⇒ |xkl| < M.

Patterson [11] gave the definition of subsequence, the Pringsheim limit
inferior and limit superior of double sequences.

Definition 1.2 [11]. Let x = (xkl) be a double sequence of real numbers
and for each n, let αn = supn{xkl : k, l � n}. The Pringsheim limit superior
of x is defined as follows:
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(i) if αn = +∞ for each n, then P- lim supx := +∞;
(ii) if αn < +∞ for some n, then P- lim supx := infn{αn}.
Similarly, let βn = infn{xkl : k, l � n}. Then the Pringsheim limit infe-

rior of x = (xkl) is defined as follows:
(i) if βn = −∞ for each n, then P- lim inf x := −∞;
(ii) if βn > −∞ for some n, then P- lim inf x := supn{βn}.
Definition 1.3. A number α is called an e-limit point of the double

sequence x = (xkl) provided that there exists a subsequence y = (ykl) of
x = (xkl) that has e-limit α: e- limkl ykl = α.

Example 1.4. The following is an example of x = (xkl) which is e-
convergent; however, x is not P-convergent. Define

xkl :=

⎧⎪⎨
⎪⎩
k, k = l,

1, k < l,

0, k > l.

Then, it is easy to see that e- limkl xkl = 0, whereas P- limkl xkl does not
exist.

Let λ be the space of double sequences, converging with respect to some
linear convergence rule υ- lim : λ → C. The sum of a double series

∑
i,j xij

with respect to this rule is defined by υ-
∑

ij xij = υ- limm,n
∑m

i=1
∑n

j=1 xij .
Let λ, μ be two spaces of double sequences, converging with respect to the
linear convergence rules υ1- lim and υ2- lim, respectively, and let A = (amnkl)
also be a four dimensional matrix of complex numbers. Define the set

λ
(υ2)
A =

{
(xkl) ∈ Ω : Ax =

(
υ2 −

∑
k,l

amnklxkl

)
m,n∈N

exists and Ax ∈ λ

}
.

(1.1)

Then, we say, with the notation of (1.1), that A maps the space λ into the
space μ if μ ⊂ λ

(υ2)
A and denote the set of all four dimensional matrices, map-

ping the space λ into the space μ, by (λ : μ). It is trivial that for any matrix
A ∈ (λ : μ), (amnkl)k,l∈N is in the β(υ2)-dual λβ(υ2) of the space λ for all m,n

∈ N. An infinite matrix A is said to be Cυ-conservative if Cυ ⊂ (Cv)A. For
more details on double sequences, 3-dimensional and 4-dimensional matrices,
we refer to [6,13,15–18].

We refer the reader to [16] for the basic terminology. Denote by w the
vector space of all number sequences

ϕ := {x ∈ w : ∃ k0 ∈ N ∀ k > k0 : xk = 0}.
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We write ekl (k, l ∈ N) for the double sequence with

eklij :=

{
1, if (k, l) = (i, j),

0, otherwise.

Let

e =
∑
k,l

ekl, el =
∑
k

ekl (l ∈ N) and ek =
∑
l

ekl (k ∈ N)

and Φ = span{ekl : k, l ∈ N}, that is, Φ := {x ∈ Ω : ∃ k0 ∈ N : k � k0 or
l � k0 ⇒ xkl = 0}.

Theorem 1.5 [16, p. 106]. A 3-dimensional matrix B = (bmnk) maps w
into Ce if and only if the following conditions hold:

(i) b(m,n) := (bmnk)k ∈ ϕ for every m;n ∈ N,
(ii) for every k ∈ N, the limit bk := e- limm,n bmnk exist,
(iii) there exists N ∈ N such that

∀n � N ∃K(n) ∈ N : k > K(n) ⇒ bmnk = 0 (m ∈ N),

(iv) there exist N,K ∈ N such that limm bmnk = 0 k � K, n � N .
Under these circumstances, b := (bk) ∈ ϕ and e- limm,n [Bz]mn = Σkbkzk
(z ∈ w).

Theorem 1.6 [16, p. 110]. (a) A 4-dimensional matrix A = (amnkl) is
Ce-conservative if and only if the following conditions hold:

(i) a(m,n) = (amnkl)kl ∈ Φ for every m,n ∈ N,
(ii) for every l0 ∈ N, the matrix (amnkl)m,n,k maps w into Ce,
(iii) the limit v := e- limm,n

∑
kl amnkl exists,

(iv) there exists n0 ∈ N such that

∀n � n0 ∃L(n) ∈ N : a(m,n) =
L(n)∑
l=1

a(m,n)el (m ∈ N),

(v) there exists L,N ∈ N such that l � L, n � N ⇒ limm amnkl = 0
(k ∈ N),

(vi) there exists N ′ ∈ N and mn such that

sup
n�N ′

m�mn

∑
kl

|amnkl| < ∞.
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Under these circumstances, a = (akl) = (e- limm,n amnkl) ∈ Φ, and

e- lim
m,n

[Ax]mn =
∑
kl

aklxkl +
(
v −

∑
kl

akl

)
e- lim

m,n
xmn (x ∈ Ce).

(b) A = (amnkl) is Ce-regular if and only if the conditions; (i)–(vi) hold
with akl = 0 (k, l ∈ N) and v = 1.

By using the definitions of Pringsheim limit inferior, limit superior and
the Pringsheim core of a double sequence with the notion of the regular-
ity of four dimensional matrices, Patterson [11] gave some results on core
of double sequences. Mursaleen [9], Mursaleen and Edely [10] defined the
almost strong regularity of matrices for double sequences, applied these ma-
trices to establish a core theorem, introduced the M -core for double se-
quences, and determined those four dimensional matrices transforming ev-
ery bounded double sequence x = (xkl) into one whose core is a subset of
the M -core of x. Recently, Çakan and Altay [4] investigated statistical core
for double sequences and studied an inequality related to the statistical and
P-cores of bounded double sequences. Gökhan, Çolak and Mursaleen [5] gen-
eralized the Pringsheim core for bounded double sequences and gave some
core theorems via matrix classes. Çakan, Altay and Mursaleen [3] intro-
duced σ-convergence of a double sequence and defined the σ-core for double
sequences and determined a class of four-dimensional matrices such that
P-core(Ax) ⊂ σ-core(x) for all x ∈ Mu. Kumar [7] defined I-limit inferior,
I-limit superior and I-core for real double sequences.

In this paper we introduce the concepts of e-limit superior and inferior
for real double sequences and prove some fundamental properties of e-limit
superior and inferior. In addition to these results we define e-core for double
sequences. Also, we show that if A is a nonnegative Ce-regular matrix then
the e-core of Ax is contained in the e-core of x, provided that Ax exists.

2. Main result

Definition 2.1. Let x = (xkl) be a double sequence of real numbers.
e-limit superior of x = (xkl) is defined by

e- lim supx :=

{
inf Bx, Bx �= ∅,
∞, otherwise.

and e-limit inferior of x = (xkl) is defined by

e- lim inf x :=

{
supAx, Ax �= ∅,
−∞, otherwise,
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where

Ax :=
{
a ∈ R : ∃ l0 ∈ N, ∀ l � l0, ∃ kl ∈ N � ∀ k � kl : xkl > a

}
and

Bx :=
{
b ∈ R : ∃ l0 ∈ N, ∀ l � l0, ∃ kl ∈ N � ∀ k � kl : xkl < b

}
.

Clearly, if a real double sequence x = (xkl) is e-bounded, then Ax �= ∅
and Bx �= ∅. Therefore e- lim inf x and e- lim supx are both finite numbers.

Theorem 2.2. Let x = (xkl) be a double sequence of real numbers. If
u = e- lim supx is finite, then for every ε > 0 ∃ l0 ∈ N, ∀ l � l0, ∃ kl ∈ N �
∀ k � kl ⇒ xkl < u+ ε.

Proof. Let e- lim supx = u. Then u = inf Bx. By the definition of infi-
mum, given ε > 0, there exists uε ∈ Bx such that uε � u+ ε. Since uε ∈ Bx

and taking into consideration the definition of the set Bx, ∃ l0 ∈ N, ∀ l � l0,
∃ kl ∈ N � ∀ k � kl we get xkl < uε. Therefore, for every ε > 0 ∃ l0 ∈ N,
∀ l � l0, ∃ kl ∈ N � ∀ k � kl we obtain that xkl < u+ ε. �

The proof of the following theorem is the same as above and so we omit it.

Theorem 2.3. Let x = (xkl) be a double sequence of real numbers.
If e- lim inf x = v is finite, then given ε > 0, ∃ l0 ∈ N, ∀ l � l0, ∃ kl ∈ N

� ∀ k � kl ⇒ xkl > v − ε.

The proof of the following lemma is the same as the proof for convergence
in Pringsheim sense and so we omit it.

Lemma 2.4. For any real-valued double sequence x, e- lim sup(−x) =
−(e- lim inf x)

Theorem 2.5. For any real-valued double sequence x, e- lim inf x �
e- lim supx.

Proof. If e- lim supx = −∞, then we have Bx = R and Ax = ∅. This
implies that e- lim inf x = −∞. If e- lim supx = ∞, then we have nothing to
prove. Assume that e- lim supx is finite. Let a ∈ Ax and b ∈ Bx. Thus, we
can find xkl such that a < xkl < b. That is, any member of Bx is greater
than all members of Ax. This completes the proof. �

Theorem 2.6. For any real-valued double sequence x,

e- lim supx = e- lim inf x = � if and only if e- limx = �.
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Proof. Let e- limx = �. Then for any ε > 0, ∃ l0 ∈ N, ∀ l � l0, ∃ kl ∈ N

� ∀ k � kl

�− ε < xkl < �+ ε,

which implies that �+ ε ∈ Bx and �− ε ∈ Ax. Thus we obtain

�− ε � e- lim inf x = supAx � e- lim supx = inf Bx � �+ ε.(2.1)

Since ε is arbitrary, e- lim supx = e- lim inf x = � holds.
On the other hand, let e- lim supx = e- lim inf x = �. So, for any ε > 0

∃ l1 ∈ N, ∀ l � l1, ∃ kl ∈ N � ∀ k � kl ⇒ xkl < �+ ε and ∃ l2 ∈ N, ∀ l � l2,
∃ kl ∈ N � ∀ k � kl ⇒ xkl > �− ε. Let �0 = max{�1, �2}. Then ∀ l � l0, ∃ kl
∈ N � ∀ k � kl we get �− ε < xkl < �+ ε, that is, |xkl − �| < ε. This means
that e- limx = �. �

Theorem 2.7. If x = (xkl) and y = (ykl) are two e-bounded real double
sequences, then we have:

(i) e- lim sup(x+ y) � e- lim supx+ e- lim sup y,
(ii) e- lim inf(x+ y) � e- lim inf x+ e- lim inf y.

Proof. (i) Since x = (xkl) and y = (ykl) are e-bounded real dou-
ble sequences, e- lim supx and e- lim sup y are both finite. Suppose that
e- lim supx = α, e- lim sup y = β and

B(x+y) :=
{
b ∈ R : ∃ l0 ∈ N, ∀ l � l0, ∃ kl ∈ N � ∀ k � kl ⇒
xkl + ykl < b

}
.

For given ε > 0,

∃ l1 ∈ N, ∀ l � l1, ∃ kl ∈ N � ∀ k � kl ⇒ xkl < α+ ε/2

and

∃ l2 ∈ N, ∀ l � l2, ∃ kl ∈ N � ∀ k � kl ⇒ ykl < β + ε/2.

Let l0 = max{l1, l2}. Then
∀ l � l0, ∃ kl ∈ N � ∀ k � kl ⇒ xkl + ykl < α+ β + ε.

Therefore we get α+ β + ε ∈ B(x+y). So,

e- lim sup(x+ y) = inf B(x+y) � α+ β + ε.

Since ε is arbitrary, we obtain

e- lim sup(x+ y) � e- lim supx+ e- lim sup y.

(ii) It can be proved by the same way as above. �
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Theorem 2.8. P- lim inf x � e- lim inf x � e- lim supx � P- lim supx.

Proof. Let P- lim supx = α. Since α = infn supk,l�n xkl, given ε > 0
there exists nε such that

sup
k,l�nε

xkl < α+ ε.

Hence for all k, l � nε we get xkl < α+ ε. Therefore l � l0 = nε, ∃ kl = nε

∈ N � ∀ k � kl ⇒ xkl < α+ ε. This means that α+ ε ∈ Bx. So

e- lim supx = inf Bx � α+ ε.

Hence ε is arbitrary and we obtain e- lim supx � α. Similarly, it can be
shown that P- lim inf x � e- lim inf x. �

Example 2.9. The following is an example of a sequence x = (xkl) which
has finite e- lim sup and e- lim inf; however, P- lim sup and P- lim inf are not
finite. Define

xkl :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

k, k = l,

−k, k = l + 1,

1, k < l + 1 and k + l is even,

−1, k < l + 1 and k + l is odd,

0, k > l.

Then, it is easy to see that Ax = (−∞,−1) and Bx = (1,+∞). So,
e- lim supkl xkl = 1 and e- lim infkl xkl = −1 but P- lim supkl xkl = +∞ and
P- lim infkl xkl = −∞.

In analogy to the P -core [11], statistical core [4] and I-core [7] we define
the e-core of double sequences as follows.

Definition 2.10. For any e-bounded real double sequence x = (xkl),
the e-core of x is defined as the closed interval [e- lim inf x, e- lim supx].
In case x is not e-bounded, e-core of the sequence x is defined by either
(−∞, e- lim supx], [e- lim inf x,∞) or (−∞,∞). e-core(x) will denote e-core
of the sequence x = (xkl).

From Theorem 2.8, it is clear that e-core(x) ⊂ P -core(x), for any real
double sequence x.

Theorem 2.11. Let x = (xkl), y = (ykl) be e-bounded double sequences.
If e- limkl |xkl − ykl| = 0, then e-core(x) = e-core(y).

Acta Mathematica Hungarica 144, 2014

243e-CORE OF DOUBLE SEQUENCES



e-CORE OF DOUBLE SEQUENCES 9

Proof. Suppose that e- lim supx = α, e- lim supy = β and e- limkl |xkl−
ykl| = 0. Then, for each ε > 0

∃ l1 ∈ N, ∀ l � l1, ∃ kl ∈ N � ∀ k � kl ⇒ ykl − ε/2 < xkl < ykl + ε/2,

∃ l2 ∈ N, ∀ l � l2, ∃ kl ∈ N � ∀ k � kl ⇒ ykl < β + ε/2

and

∃ l3 ∈ N, ∀ l � l3, ∃ kl ∈ N � ∀ k � kl ⇒ xkl < α+ ε/2.

Let l0 = max{l1, l2, l3}. Then
∀ l � l0, ∃ kl ∈ N � ∀ k � kl ⇒ xkl < β + ε

and

∀ l � l0, ∃ kl ∈ N � ∀ k � kl ⇒ ykl < α+ ε.

Therefore we get β + ε ∈ Bx and α+ ε ∈ By. So, α = inf Bx � β + ε and
β = inf By � α+ ε. Since ε is arbitrary, we obtain α � β and β � α. This
means that α = β. Similarly, it can be shown that e- lim inf x = e- lim inf y.
Therefore, e-core(x) = e-core(y). �

Theorem 2.12. Let A be a 4-dimensional Ce-regular matrix with posi-
tive real entries. Then,

(2.2) e- lim supAx � e- lim supx

for all real-valued bounded double sequences x = (xkl).

Proof. Let x = (xkl) be a double bounded sequence and let A be
a Ce-regular summability matrix. We need to show that e- lim sup(Ax)
� e- lim supx. Suppose that e- lim supx = �. So, for any ε > 0 ∃P1 ∈ N,
∀ l � P1, ∃ kl ∈ N � ∀ k � kl ⇒ xkl < �+ ε.

∞,∞∑
k,l=1,1

amnklxkl =
∞∑

l=P1

∞∑
k=kl

amnklxkl

+
∞∑

l=P1

k=kl−1∑
k=1

amnklxkl +
l=P1−1∑
l=1

∞∑
k=1

amnklxkl

� (�+ ε)
∞∑

l=P1

∞∑
k=kl

amnkl + ‖x‖
∞∑

l=P1

k=kl−1∑
k=1

amnkl + ‖x‖
l=P1−1∑
l=1

∞∑
k=1

amnkl
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Taking into account the condition of e-regularity and taking e- lim sup of
both side, we get

e- lim supAx � l + ε.

Since ε is arbitrary, we have (2.2). �
From Theorem 2.12 and Lemma 2.4 we obtain the following result.

Corollary 2.13. Let A be a 4-dimensional Ce-regular matrix with pos-
itive real entries. Then,

e-core(Ax) ⊂ e-core(x)

for all real-valued bounded double sequences x = (xkl).
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