University of Nis, Faculty of Sciences and Mathematics

Regularly Ideal Convergence and Regularly Ideal Cauchy Double Sequences in 2-Normed Spaces

Author(s): Yurdal Sever and Erdinç Dündar

Source: Filomat, Vol. 28, No. 5, The Algerian-Turkish International days on Mathematics 2013, ATIM2013 (2014), pp. 907-915

Published by: University of Nis, Faculty of Sciences and Mathematics

Stable URL: https://www.jstor.org/stable/10.2307/24896856

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

University of Nis, Faculty of Sciences and Mathematics is collaborating with JSTOR to digitize, preserve and extend access to Filomat

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Regularly Ideal Convergence and Regularly Ideal Cauchy Double Sequences in 2-Normed Spaces

Yurdal Severa, Erdinç Dündara

^a Afyon Kocatepe University, Faculty of Arts and Sciences, Department of Mathematics 03200 Afyonkarahisar, Turkey

Abstract. In this paper, we introduce the notions of (I_2, I) , (I_2^*, I^*) -convergence and (I_2, I) , (I_2^*, I^*) -Cauchy double sequence in regular sense in 2-normed spaces. Also, we study some properties of these concepts.

1. Introduction, Notations and Definitions

Throughout the paper $\mathbb N$ and $\mathbb R$ denote the set of all positive integers and the set of all real numbers, respectively. The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [6] and Schoenberg [26]. This concept was extended to the double sequences by Mursaleen and Edely [17]. The idea of I-convergence was introduced by Kostyrko et al. [15] as a generalization of statistical convergence which is based on the structure of the ideal I of subset of the set of natural numbers [6, 7]. Nuray and Ruckle [21] independently introduced the same with another name generalized statistical convergence. Das et al. [2] introduced the concept of I_2 -convergence of double sequences in a metric space and studied some properties. Dündar and Altay [4] studied the concepts of I_2 -Cauchy and I_2^* -Cauchy for double sequences and they gave the relation between I_2 and I_2^* -convergence of double sequences of functions defined between linear metric spaces. A lot of development have been made in this area after the works of [3, 16, 18–20, 25, 27–29].

The concept of 2-normed spaces was initially introduced by Gähler [8, 9] in the 1960's. Since then, this concept has been studied by many authors, see for instance [10–12, 14]. Şahiner et al. [27] and Gürdal [14] studied I-convergence in 2-normed spaces. Gürdal and Açık [13] investigated I-Cauchy and I^* -Cauchy sequences in 2-normed spaces. Sarabadan et al. [23, 24] investigated I_2 and I_2^* -convergence of double sequences in 2-normed spaces. They also examined the concepts I_2 -limit points and I_2 -cluster points in 2-normed spaces. Dündar and Sever [5] introduced the notions of I_2 and I_2^* -Cauchy double sequences, and studied their some properties with (AP2) in 2-normed spaces.

In this paper, we introduce the notions of (I_2, I) , (I_2^*, I^*) -convergence and (I_2, I) , (I_2^*, I^*) -Cauchy double sequence in regular sense in 2-normed spaces. Also, we study some properties of these concepts.

Now, we recall the concept of ideal, ideal convergence of sequences, double sequences, 2-normed space and some fundamental definitions and notations (See [1, 2, 8, 11, 13, 15, 22–24]).

2010 Mathematics Subject Classification. Primary 40A35, 40B05; Secondary 46A70 Keywords. Ideal; Double Sequences; I_2 -Convergence; I_2 -Cauchy; 2-normed spaces Received: 24 September 2013; Revised 21 January 2014; Accepted: 30 January 2014

Communicated by Eberhard Malkowsky

Email addresses: yurdalsever@hotmail.com (Yurdal Sever), erdincdundar79@gmail.com (Erdinç Dündar)

A double sequence $x = (x_{mn})_{m,n \in \mathbb{N}}$ of real numbers is said to be *convergent* to $L \in \mathbb{R}$ in Pringsheim's sense, if for any $\varepsilon > 0$ there exists $N_{\varepsilon} \in \mathbb{N}$ such that $|x_{mn} - L| < \varepsilon$ whenever $m, n > N_{\varepsilon}$. In this case we write $P - \lim_{m,n\to\infty} x_{mn} = L$ or $\lim_{m,n\to\infty} x_{mn} = L$.

Let $X \neq \emptyset$. A class I of subsets of X is said to be an *ideal* in X provided:

- (i) $\emptyset \in \mathcal{I}$,
- (ii) $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$,
- (iii) $A \in \mathcal{I}$, $B \subset A$ implies $B \in \mathcal{I}$.

I is called a *nontrivial ideal* if $X \notin I$.

Let $X \neq \emptyset$. A non empty class \mathcal{F} of subsets of X is said to be a *filter* in X provided:

- (i) $\emptyset \notin \mathcal{F}$,
- (ii) $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$,
- (iii) $A \in \mathcal{F}$, $A \subset B$ implies $B \in \mathcal{F}$.

If *I* is a nontrivial ideal in X, $X \neq \emptyset$, then the class

$$\mathcal{F}(I) = \{M \subset X : (\exists A \in I)(M = X \setminus A)\}\$$

is a filter on X, called the filter associated with I.

A nontrivial ideal \mathcal{I} in X is called *admissible* if $\{x\} \in \mathcal{I}$ for each $x \in X$.

Throughout the paper we take I as a nontrivial admissible ideal in \mathbb{N} .

Let $I \subset 2^{\mathbb{N}}$ be a nontrivial ideal and (X, ρ) be a metric space. A sequence (x_n) of elements of X is said to be *I*-convergent to $L \in X$, if for each $\varepsilon > 0$ we have $A(\varepsilon) = \{n \in \mathbb{N} : \rho(x_n, L) \ge \varepsilon\} \in I$.

Throughout the paper we take I_2 as a nontrivial admissible ideal in $\mathbb{N} \times \mathbb{N}$.

A nontrivial ideal $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ is called strongly admissible if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to I_2 for each $i \in \mathbb{N}$.

It is evident that a strongly admissible ideal is also admissible.

Let $I_2^0 = \{A \subset \mathbb{N} \times \mathbb{N} : (\exists m(A) \in \mathbb{N})(i, j \ge m(A) \Rightarrow (i, j) \notin A)\}$. Then I_2^0 is a nontrivial strongly admissible ideal and clearly an ideal I_2 is strongly admissible if and only if $I_2^0 \subset \overline{I_2}$.

Let (X, ρ) be a linear metric space and $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})$ in X is said to be I_2 -convergent to $L \in X$, if for any $\varepsilon > 0$ we have $A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : \mathbb{N} \times \mathbb{N} : \mathbb{N} \times \mathbb{N} = \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \mathbb{N} \times \mathbb{N} = \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} = \mathbb{N} \times \mathbb{N} \times \mathbb{N} = \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} = \mathbb{N} \times \mathbb{N} \times \mathbb{N} = \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} = \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} = \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} = \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} = \mathbb{N} \times \mathbb{N$ $\rho(x_{mn}, L) \ge \varepsilon \} \in \mathcal{I}_2$ and is written $\mathcal{I}_2 - \lim_{m,n \to \infty} x_{mn} = L$. If $\mathcal{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ is a strongly admissible ideal, then usual convergence implies \mathcal{I}_2 -convergence.

Let I_2 be an ideal of $\mathbb{N} \times \mathbb{N}$ and I be an ideal of \mathbb{N} , then a double sequence $x = (x_{mn})$ in \mathbb{C} , which is the set of complex numbers, is said to be regularly (I_2, I) -convergent $(r(I_2, I)$ -convergent), if it is I_2 -convergent in Pringsheim's sense and for every $\varepsilon > 0$, the following statements hold: $\{m \in \mathbb{N} : |x_{mn} - L_n| \ge \varepsilon\} \in \mathcal{I}$ for

some $L_n \in \mathbb{C}$, for each $n \in \mathbb{N}$ and $\{n \in \mathbb{N} : |x_{mn} - K_m| \ge \varepsilon\} \in I$ for some $K_m \in \mathbb{C}$, for each $m \in \mathbb{N}$. We say that an admissible ideal $I \subset 2^{\mathbb{N}}$ satisfies the property (AP), if for every countable family of mutually disjoint sets $\{A_1, A_2, ...\}$ belonging to I, there exists a countable family of sets $\{B_1, B_2, ...\}$ such that $A_j \Delta B_j$ is a finite set for $j \in \mathbb{N}$ and $B = \bigcup_{j=1}^{\infty} B_j \in I$. (hence $B_j \in I$ for each $j \in \mathbb{N}$).

We say that an admissible ideal $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ satisfies the property (AP2), if for every countable family of mutually disjoint sets $\{A_1, A_2, ...\}$ belonging to I_2 , there exists a countable family of sets $\{B_1, B_2, ...\}$ such that $A_j \Delta B_j \in \mathcal{I}_2^0$, i.e., $A_j \Delta B_j$ is included in the finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $B = \bigcup_{j=1}^{\infty} B_j \in \mathcal{I}_2$ (hence $B_j \in \mathcal{I}_2$ for each $j \in \mathbb{N}$).

Let X be a real vector space of dimension d, where $2 \le d < \infty$. A 2-norm on X is a function $\|\cdot,\cdot\|$: $X \times X \to \mathbb{R}$ which satisfies (i) ||x, y|| = 0 if and only if x and y are linearly dependent; (ii) ||x, y|| = ||y, x||; (iii) $\|\alpha x, y\| = |\alpha| \|x, y\|, \alpha \in \mathbb{R}$; (iv) $\|x, y + z\| \le \|x, y\| + \|x, z\|$. The pair $(X, \|\cdot, \cdot\|)$ is then called a 2-normed space. As an example of a 2-normed space we may take $X = \mathbb{R}^2$ being equipped with the 2-norm ||x, y|| := the area of the parallelogram spanned by the vectors *x* and *y*, which may be given explicitly by the formula

$$||x, y|| = |x_1y_2 - x_2y_1|, \quad x = (x_1, x_2), \quad y = (y_1, y_2).$$

The sequence $(x_n)_{n\in\mathbb{N}}$ in 2-normed space $(X,\|\cdot,\cdot\|)$ is said to be convergent to $L\in X$, if for each $\varepsilon>0$ and nonzero $z\in X$, $||x_n-L,z||<\varepsilon$. In this case we write $\lim_{n\to\infty}||x_n-L,z||=0$ or $\lim_{n\to\infty}x_n=L$.

The double sequence $(x_{mn})_{m,n\in\mathbb{N}}$ in 2-normed space $(X,\|\cdot,\cdot\|)$ is said to be convergent to $L\in X$ in Pringsheim's sense, if for each $\varepsilon>0$ and nonzero $z\in X$, $\|x_{mn}-L,z\|<\varepsilon$. In this case we write $P-\lim_{m,n\to\infty}\|x_{mn}-L,z\|=0$ or $P-\lim_{m,n\to\infty}x_{mn}=L$.

Let $I \subset 2^{\mathbb{N}}$ be a nontrivial ideal. The sequence (x_n) in 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be I-convergent to $L \in X$, if for each $\varepsilon > 0$ and nonzero $z \in X$, $A(\varepsilon) = \{n \in \mathbb{N} : \|x_n - L, z\| \ge \varepsilon\} \in I$. In this case we write $I - \lim_{n \to \infty} \|x_n - L, z\| = 0$ or $I - \lim_{n \to \infty} x_n = L$.

Let $I \subset 2^{\mathbb{N}}$ be a nontrivial ideal. The sequence (x_n) in 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be I^* -convergent to $L \in X$, if there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}, M \in F(I)$ such that $\lim_{k \to \infty} \|x_{m_k} - L, z\| = 0$, for each nonzero $z \in X$.

Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $I \subset 2^{\mathbb{N}}$ be an admissible ideal. The sequence (x_n) is said to be I-Cauchy sequence in X, if for each $\varepsilon > 0$ and nonzero $z \in X$ there exists a number $N = N(\varepsilon, z)$ such that $\{n \in \mathbb{N} : \|x_n - x_N, z\| \ge \varepsilon\} \in I$.

Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $I \subset 2^{\mathbb{N}}$ be an admissible ideal. The sequence (x_n) is said to be I^* -Cauchy sequence in X, if there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}, M \in F(I)$ such that $\lim_{k,p\to\infty} \|x_{m_k} - x_{m_p}, z\| = 0$, for each nonzero $z \in X$.

Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{nm})_{m,n \in \mathbb{N}}$ in 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be I_2 -convergent to $L \in X$, if for each $\varepsilon > 0$ and nonzero $z \in X$, $A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : \|x_{mn} - L, z\| \ge \varepsilon\} \in I_2$. In this case we write $I_2 - \lim_{m,n \to \infty} x_{mn} = L$.

Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})_{m,n \in \mathbb{N}}$ in 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be I_2^* -convergent to $L \in X$, if there exists a set $M \in F(I_2)$ (i.e. $H = \mathbb{N} \times \mathbb{N} \setminus M \in I_2$) such that $\lim_{m,n \to \infty} ||x_{mn} - L, z|| = 0$, for $(m,n) \in M$ and for each nonzero $z \in X$. In this case we write $I_2^* - \lim_{m,n \to \infty} x_{mn} = L$.

Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})$ in X is said to be I_2 -Cauchy if for each $\varepsilon > 0$ and nonzero z in X there exist $s = s(\varepsilon, z)$, $t = t(\varepsilon, z) \in \mathbb{N}$ such that

$$A(\varepsilon) := \{ (m, n) \in \mathbb{N} \times \mathbb{N} : ||x_{mn} - x_{st}, z|| \ge \varepsilon \} \in \mathcal{I}_2.$$

Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $x = (x_{mn})$ in X is said to be I_2^* -Cauchy sequence if there exists a set $M \in \mathcal{F}(I_2)$ (i.e., $H = \mathbb{N} \times \mathbb{N} \setminus M \in I_2$) such that for each $\varepsilon > 0$ and for all (m, n), $(s, t) \in M$,

$$||x_{mn} - x_{st}, z|| < \varepsilon$$
, for each nonzero z in X,

where $m, n, s, t > k_0 = k_0(\varepsilon) \in \mathbb{N}$. In this case we write

$$\lim_{m,n,s,t\to\infty}||x_{mn}-x_{st},z||=0.$$

Now, we begin with quoting the following lemmas due to Sarabadan et al. [24] and Dündar, Sever [5] which are needed throughout the paper.

Lemma 1.1. [24, Theorem 4.3] Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal with property (AP2) and $(X, \|\cdot, \cdot\|)$ be a finite dimensional 2-normed space, then for a double sequence $x = (x_{mn})$ of X, $I_2 - \lim_{m,n \to \infty} x_{mn} = L$ implies $I_2^* - \lim_{m,n \to \infty} x_{mn} = L$.

Lemma 1.2. [5, Theorem 3.2] Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. If $x = (x_{mn})$ in X is I_2 -convergent then $x = (x_{mn})$ is I_2 -Cauchy double sequence.

Lemma 1.3. [5, Theorem 3.4] Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. If $x = (x_{mn})$ in X is I_2^* -Cauchy double sequence then $x = (x_{mn})$ is I_2 -Cauchy double sequence.

2. Main Results

The proof of the following lemma is similar to the proof of [2, Theorem 1], so we omit it.

Lemma 2.1. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. Then for $x = (x_{mn})$ be a double sequence of X, $I_2^* - \lim_{m,n \to \infty} x_{mn} = L$ implies $I_2 - \lim_{m,n \to \infty} x_{mn} = L$.

Lemma 2.2. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. Then for $x = (x_{mn})$ be a double sequence of $X, L \in X$ and for each nonzero $z \in X$,

$$P - \lim_{m,n \to \infty} ||x_{mn} - L, z|| = 0$$
 implies $I_2 - \lim_{m,n \to \infty} ||x_{mn} - L, z|| = 0$.

Proof. Let

$$P - \lim_{m,n \to \infty} ||x_{mn} - L, z|| = 0.$$

For each $\varepsilon > 0$ and nonzero $z \in X$ there exists $k_0 = k_0(\varepsilon) \in \mathbb{N}$ such that $||x_{mn} - L, z|| < \varepsilon$ for all $m, n \ge k_0$. Then,

$$\begin{split} A(\varepsilon) &= \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||x_{mn} - L, z|| \geq \varepsilon \} \\ &\subset \Big(\mathbb{N} \times \{1,2,\ldots,(k_0-1)\} \cup \{1,2,\ldots,(k_0-1)\} \times \mathbb{N} \Big). \end{split}$$

Since I_2 is a strongly admissible ideal we have $(\mathbb{N} \times \{1, 2, \dots, (k_0 - 1)\} \cup \{1, 2, \dots, (k_0 - 1)\} \times \mathbb{N}) \in I_2$ and so $A(\varepsilon) \in I_2$. Hence, this completes the proof. \square

Now, we study certain properties of regularly convergence, regularly (I_2 , I)-convergence and regularly (I_2 , I)-Cauchy double sequences in 2-normed spaces.

Definition 2.3. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. A double sequence (x_{mn}) in X is said to be regularly convergent, if it is convergent in Pringsheim's sense and the limits

$$\lim_{m\to\infty} x_{mn}$$
, $(n\in\mathbb{N})$ and $\lim_{n\to\infty} x_{mn}$, $(m\in\mathbb{N})$,

exist for each fixed $n \in \mathbb{N}$ and $m \in \mathbb{N}$, respectively. Note that if (x_{mn}) is regularly convergent to L in X, then the limits

$$\lim_{n\to\infty}\lim_{m\to\infty}x_{mn} \ and \ \lim_{m\to\infty}\lim_{n\to\infty}x_{mn}$$

exist and are equal to L. In this case we write

$$r - \lim_{m \to \infty} x_{mn} = L \quad or \quad x_{mn} \stackrel{r}{\to} L.$$

Definition 2.4. Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal, $I \subset 2^{\mathbb{N}}$ be an admissible ideal and $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. A double sequence (x_{mn}) in X is said to be regularly (I_2, I) -convergent $(r(I_2, I)$ -convergent), if it is I_2 -convergent in Pringsheim's sense and for each $\varepsilon > 0$ and nonzero $z \in X$, the following statements hold:

$$\{m \in \mathbb{N} : ||x_{mn} - L_n, z|| \ge \varepsilon\} \in \mathcal{I} \tag{1}$$

for some $L_n \in X$, for each $n \in \mathbb{N}$ and

$$\{n \in \mathbb{N} : ||x_{mn} - K_m, z|| \ge \varepsilon\} \in \mathcal{I} \tag{2}$$

for some $K_m \in X$, for each $m \in \mathbb{N}$.

If (x_{mn}) is regularly (I_2, I) -convergent $(r(I_2, I)$ -convergent) to $L \in X$, then the limits $I - \lim_{n \to \infty} \lim_{m \to \infty} x_{mn}$ and $I - \lim_{m \to \infty} \lim_{m \to \infty} x_{mn}$ exist and are equal to L.

Theorem 2.5. Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal, $I \subset 2^{\mathbb{N}}$ be an admissible ideal and $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. If a double sequence (x_{mn}) in X is regularly convergent, then (x_{mn}) is $r(I_2, I)$ -convergent.

Proof. Let (x_{mn}) be regularly convergent. Then (x_{mn}) is convergent in Pringsheim's sense and the limits $\lim_{m\to\infty}x_{mn}$ $(n\in\mathbb{N})$ and $\lim_{n\to\infty}x_{mn}$ $(m\in\mathbb{N})$ exist. By Lemma 2.2, (x_{mn}) is I_2 -convergent. Also, for each $\varepsilon>0$ and nonzero $z\in X$, there exist $m=m_0(\varepsilon)$ and $n=n_0(\varepsilon)$ such that

$$||x_{mn} - L_n, z|| < \varepsilon$$

for some L_n and each fixed $n \in \mathbb{N}$ for every $m \ge m_0$ and

$$||x_{mn} - K_m, z|| < \varepsilon$$

for some K_m and each fixed $m \in \mathbb{N}$ for every $n \ge n_0$. Then, since I is an admissible ideal so for each $\varepsilon > 0$ and nonzero $z \in X$, we have

$$\{m \in \mathbb{N} : ||x_{mn} - L_n, z|| \ge \varepsilon\} \subset \{1, 2, \dots, m_0 - 1\} \in \mathcal{I},$$

$$\{n\in\mathbb{N}: ||x_{mn}-K_m,z||\geq \varepsilon\}\subset \{1,2,\ldots,n_0-1\}\in \mathcal{I}.$$

Hence, (x_{mn}) is $r(I_2, I)$ -convergent in X. \square

Definition 2.6. Let I_2 be a strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$, I be an admissible ideal of \mathbb{N} and $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. A double sequence (x_{mn}) in X is said to be $r(I_2^*, I^*)$ -convergent, if there exist the sets $M \in \mathcal{F}(I_2)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M \in I_2$), $M_1 \in \mathcal{F}(I)$ and $M_2 \in \mathcal{F}(I)$ (i.e., $\mathbb{N} \setminus M_1 \in I$ and $\mathbb{N} \setminus M_2 \in I$) such that the limits

$$\lim_{\substack{m,n\to\infty\\(m,n)\in M}} x_{mn}, \quad \lim_{\substack{m\to\infty\\m\in M_1}} x_{mn} \quad and \quad \lim_{\substack{n\to\infty\\n\in M_2}} x_{mn}$$

exist for each fixed $n \in \mathbb{N}$ and $m \in \mathbb{N}$, respectively.

Theorem 2.7. Let I_2 be a strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$, I be an admissible ideal of \mathbb{N} and $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. If a double sequence (x_{mn}) in X is $r(I_2^*, I^*)$ -convergent, then it is $r(I_2, I)$ -convergent.

Proof. Let (x_{mn}) in X be $r(I_2^*, I^*)$ -convergent. Then, it is I_2^* -convergent and so, by Lemma 2.1, it is I_2 -convergent. Also, there exist the sets $M_1, M_2 \in \mathcal{F}(I)$ such that

$$(\forall z \in X) \ (\forall \varepsilon > 0) \ (\exists m_0 \in \mathbb{N}) \ (\forall m \ge m_0) \ (m \in M_1) \ ||x_{mn} - L_n, z|| < \varepsilon, \ (n \in \mathbb{N})$$

for some $L_n \in X$ and

$$(\forall z \in X) \ (\forall \varepsilon > 0) \ (\exists n_0 \in \mathbb{N}) \ (\forall n \ge n_0) \ (n \in M_2) \ ||x_{mn} - K_m, z|| < \varepsilon, \ (m \in \mathbb{N})$$

for some $K_m \in X$. Hence, for each $\varepsilon > 0$ and nonzero $z \in X$, we have

$$A(\varepsilon) = \{m \in \mathbb{N} : ||x_{mn} - L_n, z|| \ge \varepsilon\} \subset H_1 \cup \{1, 2, \dots, m_0 - 1\}, \ (n \in \mathbb{N}),$$

$$B(\varepsilon) = \{n \in \mathbb{N} : ||x_{mn} - K_m, z|| \ge \varepsilon\} \subset H_2 \cup \{1, 2, \dots, n_0 - 1\}, \ (m \in \mathbb{N}),$$

for $H_1, H_2 \in I$. Since I is an admissible ideal we get

$$H_1 \cup \{1, 2, \dots, (m_0 - 1)\} \in \mathcal{I}, \ H_2 \cup \{1, 2, \dots, n_0 - 1\} \in \mathcal{I}$$

and therefore $A(\varepsilon)$, $B(\varepsilon) \in \mathcal{I}$. This shows that the double sequence (x_{mn}) is $r(\mathcal{I}_2, \mathcal{I})$ -convergent in X. \square

Theorem 2.8. Let $I_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal with property (AP2), $I \subset 2^{\mathbb{N}}$ be an admissible ideal with property (AP) and $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. If a double sequence (x_{mn}) is $r(I_2, I)$ -convergent, then (x_{mn}) is $r(I_2^*, I^*)$ -convergent in X.

Proof. Let a double sequence (x_{mn}) in X be $r(I_2, I)$ -convergent. Then (x_{mn}) is I_2 -convergent and so (x_{mn}) is I_2 -convergent, by Lemma 1.1. Also, for each $\varepsilon > 0$ and nonzero $z \in X$ we have

$$A(\varepsilon) = \{ m \in \mathbb{N} : ||x_{mn} - L_n, z|| \ge \varepsilon \} \in \mathcal{I}$$

for some $L_n \in X$, for each $n \in \mathbb{N}$ and

$$C(\varepsilon) = \{ n \in \mathbb{N} : ||x_{mn} - K_m, z|| \ge \varepsilon \} \in \mathcal{I}$$

for some $K_m \in X$, for each $m \in \mathbb{N}$.

Now put for each nonzero $z \in X$

$$\begin{array}{lcl} A_1 & = & \{m \in \mathbb{N} : ||x_{mn} - L_n, z|| \geq 1\}, \\ A_k & = & \left\{m \in \mathbb{N} : \frac{1}{k} \leq ||x_{mn} - L_n, z|| < \frac{1}{k-1}\right\} \end{array}$$

for $k \ge 2$, for some $L_n \in X$ and for each $n \in \mathbb{N}$. It is clear that $A_i \cap A_j = \emptyset$ for $i \ne j$ and $A_i \in I$ for each $i \in \mathbb{N}$. By the property (AP) there is a countable family of sets $\{B_1, B_2, \ldots\}$ in I such that $A_j \triangle B_j$ is a finite set for each $j \in \mathbb{N}$ and $B = \bigcup_{j=1}^{\infty} B_j \in I$.

We prove that

$$\lim_{\substack{m\to\infty\\m\in M}} ||x_{mn}-L_n,z||=0, \text{ for some } L_n \text{ and for each } n\in\mathbb{N}$$

for each nonzero $z \in X$ and for $M = \mathbb{N} \setminus B \in \mathcal{F}(I)$. Let $\delta > 0$ be given. Choose $k \in \mathbb{N}$ such that $1/k < \delta$. Then, for each nonzero $z \in X$ we have

$$\{m \in \mathbb{N} : ||x_{mn} - L_n, z|| \ge \delta\} \subset \bigcup_{j=1}^k A_j \text{ for some } L_n \text{ and for each } n \in \mathbb{N}.$$

Since $A_j \triangle B_j$ is a finite set for $j \in \{1, 2, ..., k\}$, there exists $m_0 \in \mathbb{N}$ such that

$$\left(\bigcup_{j=1}^k B_j\right) \cap \{m: m \ge m_0\} = \left(\bigcup_{j=1}^k A_j\right) \cap \{m: m \ge m_0\}.$$

If $m \ge m_0$ and $m \notin B$ then

$$m \notin \bigcup_{j=1}^k B_j$$
 and so $m \notin \bigcup_{j=1}^k A_j$.

Thus, for each nonzero $z \in X$ we have $||x_{mn} - L_n, z|| < \frac{1}{k} < \delta$ for some L_n and for each $n \in \mathbb{N}$. This implies that

$$\lim_{\substack{m\to\infty\\m\in M}}\|x_{mn}-L_n,z\|=0.$$

Hence, for each nonzero $z \in X$ we have

$$I^* - \lim_{m \to \infty} ||x_{mn} - L_n, z|| = 0$$

for some L_n and for each $n \in \mathbb{N}$.

Similarly, for the set $C(\varepsilon) = \{n \in \mathbb{N} : ||x_{mn} - K_m, z|| \ge \varepsilon\} \in \mathcal{I}$, for each nonzero $z \in X$ we have

$$I^* - \lim_{n \to \infty} ||x_{mn} - K_m, z|| = 0$$

for K_m and for each $m \in \mathbb{N}$. Hence, a double sequence (x_{mn}) is $r(I_2^*, I^*)$ -convergent. \square

Now, we give the definitions of $r(I_2, I)$ -Cauchy sequence and $r(I_2^*, I^*)$ -Cauchy sequence.

Definition 2.9. Let I_2 be a strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$, I be an admissible ideal of \mathbb{N} and $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. A double sequence (x_{mn}) in X is said to be regularly (I_2, I) -Cauchy $(r(I_2, I)$ -Cauchy), if it is I_2 -Cauchy in Pringsheim's sense and for each $\varepsilon > 0$ and nonzero $z \in X$ there exist $k_n = k_n(\varepsilon, z) \in \mathbb{N}$ and $l_m = l_m(\varepsilon, z) \in \mathbb{N}$ such that the following statements hold:

$$A_1(\varepsilon) = \{ m \in \mathbb{N} : ||x_{mn} - x_{k_n n}, z|| \ge \varepsilon \} \in I, (n \in \mathbb{N}),$$

$$A_2(\varepsilon) = \{ n \in \mathbb{N} : ||x_{mn} - x_{ml_m}, z|| \ge \varepsilon \} \in I, (m \in \mathbb{N}).$$

Definition 2.10. Let I_2 be a strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$, I be an admissible ideal of \mathbb{N} and $(X, \| \cdot, \cdot \|)$ be a linear 2-normed space. A double sequence (x_{mn}) is said to be regularly (I_2^*, I^*) -Cauchy $(r(I_2^*, I^*)$ -Cauchy), if there exist the sets $M \in \mathcal{F}(I_2)$, $M_1 \in \mathcal{F}(I)$ and $M_2 \in \mathcal{F}(I)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M \in I_2$, $\mathbb{N} \setminus M_1 \in I$ and $\mathbb{N} \setminus M_2 \in I$), for each $\varepsilon > 0$ and nonzero $z \in X$ there exist $N = N(\varepsilon)$, $s = s(\varepsilon)$, $t = t(\varepsilon)$, $(s, t) \in M$, $k_n = k_n(\varepsilon)$, $l_m = l_m(\varepsilon) \in \mathbb{N}$ such that

$$||x_{mn} - x_{st}, z|| < \varepsilon$$
, for (m, n) , $(s, t) \in M$,
 $||x_{mn} - x_{k_n n}, z|| < \varepsilon$, for each $m \in M_1$ and for each $n \in \mathbb{N}$,
 $||x_{mn} - x_{ml_m}, z|| < \varepsilon$, for each $n \in M_2$ and for each $m \in \mathbb{N}$,

whenever $m, n, s, t, k_n, l_m \ge N$.

Theorem 2.11. Let I_2 be a strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$ and I be an admissible ideal of \mathbb{N} and $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. If a double sequence (x_{mn}) in X is $r(I_2^*, I^*)$ -Cauchy, then it is $r(I_2, I)$ -Cauchy.

Proof. Since a double sequence (x_{mn}) in X is $r(I_2^*, I^*)$ -Cauchy, it is I_2^* -Cauchy. We know that I_2^* -Cauchy implies I_2 -Cauchy by Lemma 1.3. Also, since the double sequence (x_{mn}) is $r(I_2^*, I^*)$ -Cauchy so there exist the sets $M_1, M_2 \in \mathcal{F}(I)$ and for each $\varepsilon > 0$ and nonzero $z \in X$ there exist $k_n = k_n(\varepsilon) \in \mathbb{N}$ and $l_m = l_m(\varepsilon) \in \mathbb{N}$ such that

$$||x_{mn} - x_{k_n n}, z|| < \varepsilon$$
, for each $m \in M_1$ and for each $n \in \mathbb{N}$, $||x_{mn} - x_{ml_m}, z|| < \varepsilon$, for each $n \in M_2$ and for each $m \in \mathbb{N}$,

for $N = N(\varepsilon) \in \mathbb{N}$ and $m, n, k_n, l_m \ge N$. Therefore, for $H_1 = \mathbb{N} \setminus M_1 \in \mathcal{I}, H_2 = \mathbb{N} \setminus M_2 \in \mathcal{I}$ we have

$$A_1(\varepsilon) = \{ m \in \mathbb{N} : ||x_{mn} - x_{k_n n}, z|| \ge \varepsilon \} \subset H_1 \cup \{1, 2, \dots, N - 1\}, \ (n \in \mathbb{N})$$

for $m \in M_1$ and

$$A_2(\varepsilon) = \{ n \in \mathbb{N} : ||x_{mn} - x_{ml_m}, z|| \ge \varepsilon \} \subset H_2 \cup \{1, 2, \dots, N-1\}, \ (m \in \mathbb{N}) \}$$

for $n \in M_2$. Since I is an admissible ideal,

$$H_1 \cup \{1, 2, \dots, N-1\} \in I$$
 and $H_2 \cup \{1, 2, \dots, N-1\} \in I$.

Hence, we have $A_1(\varepsilon)$, $A_2(\varepsilon) \in I$ and (x_{mn}) is $r(I_2, I)$ -Cauchy double sequence. \square

Theorem 2.12. Let I_2 be a strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$ and I be an admissible ideal of \mathbb{N} and $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. If a double sequence (x_{mn}) in X is $r(I_2, I)$ -convergent, then (x_{mn}) is $r(I_2, I)$ -Cauchy double sequence.

Proof. Let (x_{mn}) be a $r(I_2, I)$ -convergent double sequence in X. Then (x_{mn}) is I_2 -convergent and by Lemma 1.2, it is I_2 -Cauchy double sequence. Also for each $\varepsilon > 0$ and nonzero $z \in X$, we have

$$A_1\Big(\frac{\varepsilon}{2}\Big) = \Big\{m \in \mathbb{N} : ||x_{mn} - L_n, z|| \ge \frac{\varepsilon}{2}\Big\} \in \mathcal{I}$$

for some L_n , for each $n \in \mathbb{N}$ and

$$A_2\Big(\frac{\varepsilon}{2}\Big) = \Big\{n \in \mathbb{N}: \|x_{mn} - K_m, z\| \geq \frac{\varepsilon}{2}\Big\} \in \mathcal{I}$$

for some K_m , for each $m \in \mathbb{N}$. Since I is an admissible ideal, the sets

$$A_1^c \Big(\frac{\varepsilon}{2}\Big) = \Big\{ m \in \mathbb{N} : \|x_{mn} - L_n, z\| < \frac{\varepsilon}{2} \Big\}, \, (n \in \mathbb{N})$$

for some L_n and

$$A_2^c\Bigl(\frac{\varepsilon}{2}\Bigr) = \Bigl\{n \in \mathbb{N} : ||x_{mn} - K_m, z|| < \frac{\varepsilon}{2}\Bigr\}, \, (m \in \mathbb{N})$$

for some K_m , are nonempty and belong to $\mathcal{F}(I)$. For $k_n \in A_1^c(\frac{\varepsilon}{2})$, $(n \in \mathbb{N} \text{ and } k_n > 0)$ we have

$$||x_{k_nn}-L_n,z||<\frac{\varepsilon}{2}$$

for some L_n . Now, for each $\varepsilon > 0$ and nonzero $z \in X$ we define the set

$$B_1(\varepsilon) = \{ m \in \mathbb{N} : ||x_{mn} - x_{k_n n}, z|| \ge \varepsilon \}, \ (n \in \mathbb{N}),$$

where $k_n = k_n(\varepsilon) \in \mathbb{N}$. Let $m \in B_1(\varepsilon)$. Then for $k_n \in A_1^{\varepsilon}(\frac{\varepsilon}{2})$, $(n \in \mathbb{N} \text{ and } k_n > 0)$ we have

$$\varepsilon \le ||x_{mn} - x_{k_n n}, z|| \le ||x_{mn} - L_n, z|| + ||x_{k_n n} - L_n, z||$$

$$< ||x_{mn} - L_n, z|| + \frac{\varepsilon}{2}$$

for some L_n . This shows that

$$\frac{\varepsilon}{2} < ||x_{mn} - L_n, z|| \text{ and so } m \in A_1(\frac{\varepsilon}{2}).$$

Hence, we have $B_1(\varepsilon) \subset A_1(\frac{\varepsilon}{2})$.

Similarly, for each $\varepsilon > 0$, nonzero $z \in X$ and for $l_m \in A_2^c(\frac{\varepsilon}{2})$ $(m \in \mathbb{N} \text{ and } l_m > 0)$ we have

$$||x_{ml_m}-K_m,z||<\frac{\varepsilon}{2},\ (m\in\mathbb{N})$$

for some K_m . Therefore, it can be seen that

$$B_2(\varepsilon) = \{ m \in \mathbb{N} : ||x_{ml_m} - K_m, z|| \ge \varepsilon \} \subset A_2(\frac{\varepsilon}{2}).$$

Hence, we have $B_1(\varepsilon)$, $B_2(\varepsilon) \in I$. This shows that (x_{mn}) is $r(I_2, I)$ -Cauchy double sequence. \square

References

- [1] B. Altay, F. Başar, Some new spaces of double sequences, J. Math. Anal. Appl. 309 (1) (2005), 70–90.
- [2] P. Das, P. Kostyrko, W. Wilczyński, P. Malik, I and I^* -convergence of double sequences, Math. Slovaca, **58**(5) (2008), 605–620.
- [3] P. Das, P. Malik, On extremal I-limit points of double sequences, Tatra Mt. Math. Publ. 40 (2008), 91–102.
- [4] E. Dündar, B. Altay, On Some Properties of I_2 -Convergence and I_2 -Cauchy of Double Sequences Gen. Math. Notes, **7**(1) (2011), 1–12.
- [5] E. Dündar, Y. Sever, I₂-Cauchy Double Sequences In 2-Normed Spaces, (Submitted to journal)
- [6] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
- [7] J.A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313.
- [8] S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr. 26 (1963), 115–148.
- [9] S. Gähler, 2-normed spaces, Math. Nachr, 28 (1964), 1-43.
- [10] H. Gunawan, M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27 (10) (2001), 631–639.
- [11] H. Gunawan, M. Mashadi, On Finite Dimensional 2 -normed spaces, Soochow J. Math. 27 (3) (2001), 321–329.
- [12] M. Gürdal, S. Pehlivan, The Statistical Convergence in 2-Banach Spaces, Thai J. Math., 2(1) (2004), 107–113.
 [13] M. Gürdal, I. Açık, On *I*-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl. 11 (2) (2008), 349–354.
- [14] M. Gürdal, On ideal convergent sequences in 2-normed spaces, Thai J. Math. 4 (1) (2006), 85–91.
- [15] P. Kostyrko, T. Šalát, W. Wilczyński, I-convergence, Real Anal. Exchange, 26 (2) (2000), 669–686.
- [16] V. Kumar, On I and I^* -convergence of double sequences, Math. Commun. 12 (2007), 171–181.
- [17] M. Mursaleen, O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), 223–231.
- [18] M. Mursaleen, S.A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports, 12 (62)(4) (2010), 359–371.
- [19] M. Mursaleen, S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62 (2012), 49-62.
- [20] M. Mursaleen, A. Alotaibi, On *I*-convergence in random 2-normed spaces, Math. Slovaca, 61 (6) (2011), 933–940.

- [21] F. Nuray, W.H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000), 513–527.
- [22] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289–321.
- [23] S. Sarabadan, S. Talebi, On *I*-convergence of double sequences in 2-normed spaces, Int. J. Comtemp. Math. Sciences, 7 (14) (2012), 673–684.
- [24] S. Sarabadan, F.A. Arani, S. Khalehoghli, A condition for the equivalence of I and I^* -convergence in 2-normed spaces, Int. J. Comtemp. Math. Sciences, 6 (43) (2011), 2147–2159.
- [25] S. Sarabadan, S. Talebi, Statistical convergence and ideal convergence of sequences of functions in 2-normed spaces, International Journal of Mathematics and Mathematical Sciences, vol(2011) (2011), 10 pages.
- [26] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
- [27] A. Şahiner, M. Gürdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math. 11 (2007), 1477–1484.
- [28] B. Tripathy, B.C. Tripathy, On *I*-convergent double sequences, Soochow J. Math. 31 (2005), 549–560.
- [29] B.C. Tripathy, M. Sen, S. Nath, *I*-convergence in probabilistic n-normed space, Soft Comput. 16 (2012), 1021–1027.