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Abstract. Statistical convergence and statistical Cauchy sequence in 2-normed space
were studied by Gürdal and Pehlivan [M. Gürdal, S. Pehlivan, Statistical convergence
in 2-normed spaces, Southeast Asian Bulletin of Mathematics, (33) (2009), 257�264].
In this paper, we get analogous results of statistical convergence and statistical Cauchy
sequence of functions and investigate some properties and relationships between them in
2-normed spaces.

1. Introduction

Throughout the paper, N denotes the set of all positive integers, R the set of all real

numbers. The concept of convergence of a sequence of real numbers has been extended

to statistical convergence independently by Fast [7] and Schoenberg [24]. Gökhan et al.

[12] introduced the concepts of pointwise statistical convergence and statistical Cauchy

sequence of real-valued functions. Balcerzak et al. [2] studied statistical convergence and

ideal convergence for sequence of functions. Baláz et al. [1] investigated I-convergence
and I-continuity of real functions. Gezer and Karaku³ [11] investigated I-pointwise and

uniform convergence and I∗-pointwise and uniform convergence of function sequences and

then they examined the relation between them. Gökhan et al. [13] introduced the notion of

pointwise and uniform statistical convergence of double sequences of real-valued functions.

Dündar and Altay [4, 5] studied the concepts of pointwise and uniformly I-convergence and
I∗-convergence of double sequences of functions and investigated some properties about

them. Furthermore, Dündar [6] investigated some results of I2-convergence of double

sequences of functions.

The concept of 2-normed spaces was initially introduced by Gähler [9, 10] in the

1960's. Gürdal and Pehlivan [16] studied statistical convergence, statistical Cauchy se-

quence and investigated some properties of statistical convergence in 2-normed spaces.

Sharma and Kumar [22] introduced statistical convergence, statistical Cauchy sequence,

statistical limit points and statistical cluster points in probabilistic 2-normed space. Sava³

and Gürdal [23] concerned with I-convergence of sequences of functions in random 2-

normed spaces and introduce the concepts of ideal uniform convergence and ideal pointwise

convergence in the topology induced by random 2-normed spaces. Sarabadan and Talebi

[21] presented various kinds of statistical convergence and I-convergence for sequences of

functions with values in 2-normed spaces and also de�ned the notion of I-equistatistically
convergence and study I-equistatistically convergence of sequences of functions. �ahiner

et al. [25] and Gürdal [18] studied I-convergence in 2-normed spaces. Gürdal and Aç�k

[17] investigated I-Cauchy and I∗-Cauchy sequences in 2-normed spaces. Futhermore, a

lot of development have been made in this area (see [3, 14, 15, 19, 20]).
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2. Definitions and Notations

Now, we recall the concept of density, statistical convergence, 2-normed space and

some fundamental de�nitions and notations (See [2, 8, 10, 11, 12, 14, 15, 16, 21, 22]).

If K ⊆ N, then Kn denotes the set {k ∈ K : k ≤ n} and |Kn| denotes the cardinality
of Kn. The natural density of K is given by δ(K) = lim

n→∞
1
n |Kn|, if it exists.

Clearly, �nite subsets have natural density zero and δ(Kc) = 1− δ(K) where Kc =

N\K, i.e., the complement of K. If K1 ⊆ K2 and K1 and K2 have natural densities then

δ(K1) ≤ δ(K2). Moreover, if δ(K1) = δ(K2) = 1, then δ(K1 ∩K2) = 1.

The number sequence x = (xk) is statistically convergent to L provided that for

every ε > 0 the set

K = K(ε) := {k ∈ N : |xk − L| ≥ ε}
has natural density zero; in this case, we write st− limx = L.

We note following theorem which is useful in establishing our results.

Theorem 2.1. [8] The following statements are equivalent:

(i) x is statistically convergent sequence;

(ii) x is statistically Cauchy sequence;

(iii) x is sequence for which there is a convergent sequence y such that xn = yn,

for a.a. n.

Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm on X is a

function ∥·, ·∥ : X ×X → R which satis�es the following statements:

(i) ∥x, y∥ = 0 if and only if x and y are linearly dependent.

(ii) ∥x, y∥ = ∥y, x∥.
(iii) ∥αx, y∥ = |α|∥x, y∥, α ∈ R.
(iv) ∥x, y + z∥ ≤ ∥x, y∥+ ∥x, z∥.

The pair (X, ∥·, ·∥) is then called a 2-normed space. As an example of a 2-normed

space we may take X = R2 being equipped with the 2-norm ∥x, y∥ := the area of the

parallelogram based on the vectors x and y which may be given explicitly by the formula

∥x, y∥ = |x1y2 − x2y1|; x = (x1, x2), y = (y1, y2) ∈ R2.

In this study, we suppose X to be a 2-normed space having dimension d; where

2 ≤ d < ∞.

Let (X, ∥., .∥) be a �nite dimensional 2-normed space and u = {u1, · · · , ud} be a

basis of X. We can de�ne the norm ∥.∥∞ on X by

∥x∥∞ = max{∥x, ui∥ : i = 1, ..., d}.

Associated to the derived norm ∥.∥∞, we can de�ne the (closed) balls Bu(x, ε) cen-

tered at x having radius ε by

Bu(x, ε) = {y : ∥x− y∥∞ ≤ ε},

where ∥x− y∥∞ = max{∥x− y, uj∥, j = 1, ..., d}.
Let X be a 2-normed space. A sequence (xn) in X is said to be convergent to L ∈ X,

if for every z ∈ X,

lim
n→∞

∥xn − L, z∥ = 0.

In this case, we write lim
n→∞

xn = L and call L the limit of (xn).
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Let {xn} be a sequence in 2-normed space (X, ∥., .∥). The sequence (xn) is said to

be statistically convergent to L, if for every ε > 0, the set

{n ∈ N : ∥xn − L, z∥ ≥ ε}

has natural density zero for each nonzero z in X, in other words (xn) statistically converges

to L in 2-normed space (X, ∥., .∥) if

lim
n→∞

1

n

∣∣{n : ∥xn − L, z∥ ≥ ε}
∣∣ = 0,

for each nonzero z in X. It means that for each z ∈ X,

∥xn − L, z∥ < ε , a.a. n.

In this case we write st− lim
n→∞

∥xn, z∥ = ∥L, z∥.
A sequence (xn) in 2-normed space (X, ∥., .∥) is said to be statistically Cauchy se-

quence in X, if for every ε > 0 and every nonzero z ∈ X there exists a number N = N(ε, z)

such that

δ
(
{n ∈ N : ∥xn − xN , z∥ ≥ ε}

)
= 0,

i.e., for each nonzero z ∈ X,

∥xn − xN , z∥ < ε, a.a. n.

Let X and Y be two 2-normed spaces and assume that functions fn : X → Y and

f : X → Y are given. The sequence of functions {fn}n∈N is said to be convergent to f

if fn(x)
∥.,.∥Y−→ f(x) for each x ∈ X. We write fn

∥.,.∥Y−→ f . This can be expressed by the

formula

(∀y ∈ Y )(∀x ∈ X)(∀ε > 0)(∃n0 ∈ N)(∀n ≥ n0)∥fn(x)− f(x, y)∥ < ε.

3. Main Results

In this paper, we study concepts of convergence, statistical convergence and statisti-

cal Cauchy sequence of functions and investigate some properties and relationships between

them in 2-normed spaces.

Throughout the paper, we letX and Y be two 2-normed spaces, {fn}n∈N and {gn}n∈N
be two sequences of functions and f, g be two functions from X to Y .

De�nition 3.1. The sequence {fn}n∈N is said to be (pointwise) statistical convergent to

f, if for every ε > 0,

lim
n→∞

1

n

∣∣{n ∈ N : ∥fn(x)− f(x), z∥ ≥ ε}
∣∣ = 0,

for each x ∈ X and each nonzero z ∈ Y . It means that for each x ∈ X and each nonzero

z ∈ Y ,

∥fn(x)− f(x), z∥ < ε, a.a. n.

In this case, we write

st− lim
n→∞

∥fn(x)− z∥ = ∥f(x), z∥ or fn
∥.,.∥Y−→ st f.

Remark 3.1. {fn}n∈N is any sequence of functions and f is any function from X to Y ,

then set

{n ∈ N : ∥fn(x)− f(x), z∥ ≥ ε, for each x ∈ X and each z ∈ Y } = ∅,

since if z =
−→
0 (0 vektor), ∥fn(x)− f(x), z∥ = 0 ̸≥ ε so the above set is empty.
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Theorem 3.1. If for each x ∈ X and each nonzero z ∈ Y,

st− lim
n→∞

∥fn(x), z∥ = ∥f(x), z∥ and st− lim
n→∞

∥fn(x), z∥ = ∥g(x), z∥,

then ∥fn(x), z∥ = ∥gn(x), z∥ (i.e., f = g), for each x ∈ X and each nonzero z ∈ Y .

Proof 3.1. Assume f ̸= g. Then f − g ̸= −→
0 , so there exists a z ∈ Y such that f, g and z

are linearly independent (such a z exists since d ≥ 2). Therefore, for each x ∈ X and each

nonzero z ∈ Y,

∥f(x)− g(x), z∥ = 2ε, with ε > 0.

Now, for each x ∈ X and each nonzero z ∈ Y, we get

2ε = ∥f(x)− g(x), z∥ = ∥(f(x)− fn(x)) + (fn(x)− g(x)), z∥
≤ ∥fn(x)− g(x), z∥+ ∥fn(x)− f(x), z∥

and so

{n : ∥fn(x)− g(x), z∥ < ε} ⊆ {n : ∥fn(x)− f(x), z∥ ≥ ε}.
But, for each x ∈ X and each nonzero z ∈ Y, δ({n : ∥fn(x) − g(x), z∥ < ε}) = 0, then

contradicting the fact that fn
∥.,.∥Y−→ st g.

Theorem 3.2. If {gn}(n∈N) is a convergent sequence of functions such that fn = gn a.a.

n, then {fn}(n∈N) is statistically convergent.

Proof 3.2. Suppose that for each x ∈ X and each nonzero z ∈ Y,

δ({n ∈ N : fn(x) ̸= gn(x)}) = 0 and lim
n→∞

∥gn(x), z∥ = ∥f(x), z∥,

then for every ε > 0,

{n ∈ N : ∥fn(x)−f(x), z∥ ≥ ε} ⊆ {n ∈ N : ∥gn(x)−f(x), z∥ ≥ ε}∪{n ∈ N : fn(x) ̸= gn(x)}.

Therefore,

δ({n ∈ N : ∥fn(x)− f(x), z∥ ≥ ε}) ≤ δ({n ∈ N : ∥gn(x)− f(x), z∥ ≥ ε)

+ δ({n ∈ N : fn(x) ̸= gn}) (1)

Since limn→∞ ∥gn(x), z∥ = ∥f(x), z∥, for each x ∈ X and each nonzero z ∈ Y. The set

{n ∈ N : ∥gn(x)− f(x), z∥ ≥ ε} contain �nite number of integers and so

δ({n ∈ N : ∥gn(x)− f(x), z∥ ≥ ε}) = 0.

Using inequality (1) we get for every ε > 0

δ({n ∈ N : ∥fn(x)− f(x), z∥ ≥ ε}) = 0,

for each x ∈ X and each nonzero z ∈ Y and so consequently

st− lim
n→∞

∥fn(x), z∥ = ∥f(x), z∥.

Theorem 3.3. Let α ∈ R. If for each x ∈ X and each nonzero z ∈ Y ,

st− lim
n→∞

∥fn(x), z∥ = ∥f(x), z∥ and st− lim
n→∞

∥gn(x), z∥ = ∥g(x), z∥,

then

(i) st− lim
n→∞

∥fn(x) + gn(x), z∥ = ∥f(x) + g(x), z∥ and

(ii) st− lim
n→∞

∥αfn(x), z∥ = ∥αf(x), z∥.
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Proof 3.3. (i) Suppose that

st− lim
n→∞

∥fn(x), z∥ = ∥f(x), z∥ and st− lim
n→∞

∥gn(x), z∥ = ∥g(x), z∥

for each x ∈ X and each nonzero z ∈ Y . Then, δ(K1) = 0 and δ(K2) = 0 where

K1 = K1(ε, z) :
{
n ∈ N : ∥fn(x)− f(x), z∥ ≥ ε

2

}
and

K2 = K2(ε, z) :
{
n ∈ N : ∥gn(x)− g(x), z∥ ≥ ε

2

}
for every ε > 0, each x ∈ X and each nonzero z ∈ Y . Let

K = K(ε, z) = {n ∈ N : ∥(fn(x) + gn(x))− (f(x) + g(x)), z∥ ≥ ε}.

To prove that δ(K) = 0, it su�ces to show that K ⊂ K1 ∪K2. Let n0 ∈ K then, for each

x ∈ X and each nonzero z ∈ Y,

∥(fn0(x) + gn0(x))− (f(x) + g(x)), z∥ ≥ ε. (2)

Suppose to the contrary, that n0 ̸∈ K1 ∪K2. Then, n0 ̸∈ K1 and n0 ̸∈ K2. If n0 ̸∈ K1 and

n0 ̸∈ K2 then, for each x ∈ X and each nonzero z ∈ Y,

∥fn0(x)− f(x), z∥ <
ε

2
and ∥gn0(x)− g(x), z∥ <

ε

2
.

Then, we get

∥(fn0(x) + gn0(x))− (f(x) + g(x)), z∥ ≤ ∥fn0(x)− f(x), z∥+ ∥gn0(x)− g(x), z∥

<
ε

2
+

ε

2
= ε,

for each x ∈ X and each nonzero z ∈ Y, which contradicts (2). Hence n0 ∈ K1 ∪K2 and

so K ⊂ K1 ∪K2.

(ii) Let α ∈ R (α ̸= 0) and for each x ∈ X and each nonzero z ∈ Y,

st− lim
n→∞

∥fn(x), z∥ = ∥f(x), z∥.

Then, we get

δ

({
n ∈ N : ∥fn(x)− f(x), z∥ ≥ ε

|α|

})
= 0.

Therefore, for each x ∈ X and each nonzero z ∈ Y, we have

{n ∈ N : ∥αfn(x)− αf(x), z∥ ≥ ε} = {n ∈ N : |α|∥fn(x)− f(x), z∥ ≥ ε}

=

{
n ∈ N : ∥fn(x)− f(x), z∥ ≥ ε

|α|

}
.

Hence, the right hand side of above equality equals 0. Therefore, for each x ∈ X and each

nonzero z ∈ Y, we have

st− lim
n→∞

∥αfn(x), z∥ = ∥αf(x), z∥.

Now, we give the concept of statistical Cauchy sequence and investigate relationships

between statistical Cauchy sequence and statistical convergence in 2-normed space.

De�nition 3.2. The sequences of functions {fn} is said to be statistically Cauchy sequence,

if for every ε > 0 and each nonzero z ∈ Y, there exist a number k = k(ε, z) such that

δ({n ∈ N : ∥fn(x)− fk(x), z∥ ≥ ε}) = 0

for each x ∈ X i.e.,

∥fn(x)− fk(x), z∥ < ε, a.a. n.
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Theorem 3.4. Let {fn}n≥1 be a statistically Cauchy sequence of functions in a �nite di-

mensional 2-normed space (X, ∥., .∥). Then, there exists a convergent sequence of functions

{gn}n≥1 in (X, ∥., .∥) such that fn = gn, for a.a. n.

Proof 3.4. First note that {fn}n≥1 is a statistically Cauchy sequence of functions in

(X, ∥.∥∞). Choose a natural number k(1) such that the closed ball B1
u = Bu(fk(1)(x), 1)

contains fn(x) for a.a. n and for each x ∈ X. Then, choose a natural number k(2) such

that the closed ball B2 = Bu(fk(1)(x),
1
2) contains fn(x) for a.a. n and for each x ∈ X.

Note that B2
u = B1

u ∩ B2 also contains fn(x) for a.a. n and for each x ∈ X. Thus, by

continuing of this process, we can obtain a sequence {Bm
u }m≥1 of nested closed balls such

that diam (Bm
u ) ≤ 1

2m . Therefore,

∞∩
m=1

Bm
u = {h(x)},

where h is a function from X to Y. Since each Bm
u contains fn(x) for a.a. n and for each

x ∈ X, we can choose a sequence of strictly increasing natural numbers {Sm}m≥1 such that

for each x ∈ X,
1

n
|{n ∈ N : fn(x) ̸∈ Bm

u }| < 1

m
, if n > Sm.

Put Rm = {n ∈ N : n > Sm, fn(x) ̸∈ Bm
u } for each x ∈ X, for all m ≥ 1

and R =
∪∞

m=1Rm. Now, for each x ∈ X, de�ne the sequence of functions {gn}n≥1 as

following

gn(x) =

{
h(x), if n ∈ R

fn(x), otherwise.

Note that, lim
n→∞

gn(x) = h(x), for each x ∈ X. In fact, for each ε > 0 and for each

x ∈ X, choose a natural number m such that ε > 1
m > 0. Then, for each n > Sm and for

each x ∈ X, gn(x) = h(x) or gn(x) = fn(x) ∈ Bm
u and so in each case

∥gn(x)− h(x)∥∞ ≤ diam(Bm
u ) ≤ 1

2m−1
.

Since, for each x ∈ X, {n ∈ N : gn(x) ̸= fn(x)} ⊆ {n ∈ N : fn(x) ̸∈ Bm
u }, we have

1

n
|{n ∈ N : gn(x) ̸= fn(x)}| ≤

1

n
|{n ∈ N : fn(x) ̸∈ Bm

u }| < 1

m
,

and so

δ({n ∈ N : gn(x) ̸= fn(x)}) = 0.

Thus, gn(x) = fn(x) for a.a. n and for each x ∈ X in (X, ∥.∥∞). Suppose that {u1, ..., ud}
is a basis for (X, ∥., .∥). Since, for each x ∈ X,

lim
n→∞

∥gn(x)− h(x)∥∞ = 0 and ∥gn(x)− h(x), ui∥ ≤ ∥gn(x)− h(x)∥∞

for all 1 ≤ i ≤ d, then we have

lim
n→∞

∥gn(x)− h(x), z∥∞ = 0,

for each x ∈ X and each nonzero z ∈ X. It completes the proof.

Theorem 3.5. The sequence {fn} is statistically convergent if and only if {fn} is a sta-

tistically Cauchy sequence of functions.
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Proof 3.5. Assume that f be function from X to Y and st− lim
n→∞

∥fn(x), z∥ = ∥f(x), z∥
for each x ∈ X and each nonzero z ∈ Y and ε > 0. Then, for each x ∈ X and each

nonzero z ∈ Y , we have

∥fn(x)− f(x), z∥ <
ε

2
, a.a. n.

If k = k(ε, z) is chosen so that for each x ∈ X and each nonzero z ∈ Y ,

∥fk(x)− f(x), z∥ <
ε

2
,

and so we have

∥fn(x)− fk(x), z∥ ≤ ∥fn(x)− f(x), z∥+ ∥f(x)− fk(x), z∥

<
ε

2
+

ε

2
= ε, a.a. n.

Hence, {fn} is statistically Cauchy sequence of functions.

Now, assume that {fn} is statistically Cauchy sequence of function. By Theorem 3.4,

there exists a convergent sequence {gn}n∈N from X to Y such that fn = gn for a.a. n. By

Theorem 3.2, we have

st− lim ∥fn(x), z∥ = ∥f(x), z∥
for each x ∈ X and each nonzero z ∈ Y .

Now, as an immediate consequence of Theorem 3.2 we give the following theorem

without the proof.

Theorem 3.6. If st− lim ∥fn(x), z∥ = ∥f(x), z∥ for each x ∈ X and each nonzero z ∈ Y ,

then {fn}n∈N has a subsequence of function {fni} such that

lim
i→∞

∥fni(x), z∥ = ∥f(x), z∥

for each x ∈ X and each nonzero z ∈ Y .
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