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ABSTRACT. Statistical convergence and statistical Cauchy sequence in 2-normed space
were studied by Giirdal and Pehlivan [M. Giirdal, S. Pehlivan, Statistical convergence
in 2-normed spaces, Southeast Asian Bulletin of Mathematics, (33) (2009), 257-264].
In this paper, we get analogous results of statistical convergence and statistical Cauchy
sequence of functions and investigate some properties and relationships between them in
2-normed spaces.

1. INTRODUCTION

Throughout the paper, N denotes the set of all positive integers, R the set of all real
numbers. The concept of convergence of a sequence of real numbers has been extended
to statistical convergence independently by Fast [7] and Schoenberg [24]. Gé&khan et al.
[12] introduced the concepts of pointwise statistical convergence and statistical Cauchy
sequence of real-valued functions. Balcerzak et al. [2] studied statistical convergence and
ideal convergence for sequence of functions. Balaz et al. [1] investigated Z-convergence
and Z-continuity of real functions. Gezer and Karakug [11] investigated Z-pointwise and
uniform convergence and Z*-pointwise and uniform convergence of function sequences and
then they examined the relation between them. Gékhan et al. [13] introduced the notion of
pointwise and uniform statistical convergence of double sequences of real-valued functions.
Diindar and Altay [4, 5] studied the concepts of pointwise and uniformly Z-convergence and
T*-convergence of double sequences of functions and investigated some properties about
them. Furthermore, Diindar [6] investigated some results of Zs-convergence of double
sequences of functions.

The concept of 2-normed spaces was initially introduced by Géhler [9, 10] in the
1960’s. Giirdal and Pehlivan [16] studied statistical convergence, statistical Cauchy se-
quence and investigated some properties of statistical convergence in 2-normed spaces.
Sharma and Kumar [22] introduced statistical convergence, statistical Cauchy sequence,
statistical limit points and statistical cluster points in probabilistic 2-normed space. Savas
and Giirdal [23]| concerned with Z-convergence of sequences of functions in random 2-
normed spaces and introduce the concepts of ideal uniform convergence and ideal pointwise
convergence in the topology induced by random 2-normed spaces. Sarabadan and Talebi
[21] presented various kinds of statistical convergence and Z-convergence for sequences of
functions with values in 2-normed spaces and also defined the notion of Z-equistatistically
convergence and study Z-equistatistically convergence of sequences of functions. Sahiner
et al. [25] and Giirdal [18] studied Z-convergence in 2-normed spaces. Giirdal and Agk
[17] investigated Z-Cauchy and Z*-Cauchy sequences in 2-normed spaces. Futhermore, a
lot of development have been made in this area (see [3, 14, 15, 19, 20]).
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2. DEFINITIONS AND NOTATIONS

Now, we recall the concept of density, statistical convergence, 2-normed space and
some fundamental definitions and notations (See [2, 8, 10, 11, 12, 14, 15, 16, 21, 22]|).

If K C N, then K,, denotes the set {k € K : kK < n} and |K,,| denotes the cardinality
of K. The natural density of K is given by 6(K) = TA}E{.IO%‘K"L if it exists.

Clearly, finite subsets have natural density zero and §(K¢) =1 — §(K) where K¢ =
N\K, i.e., the complement of K. If K1 C Ky and K; and K3 have natural densities then
5(K1) < (5(K2) Moreover, if (5(K1) = 5(K2) =1, then (5(K1 N KQ) =1.

The number sequence x = (zy) is statistically convergent to L provided that for
every € > 0 the set

K=K():={keN:|zy—L| >¢}
has natural density zero; in this case, we write st —limx = L.
We note following theorem which is useful in establishing our results.

Theorem 2.1. [8] The following statements are equivalent:
(i) x is statistically convergent sequence;
(i) x is statistically Cauchy sequence;
(iii) x is sequence for which there is a convergent sequence y such that x, = yn,
for a.a. n.

Let X be a real vector space of dimension d, where 2 < d < oco. A 2-norm on X is a
function |-, -] : X x X — R which satisfies the following statements:
(i) [|z,y|l = 0 if and only if x and y are linearly dependent.
(i) flz,yll = lly, .
(iii) [az,yll = lalllz,yl, a € R.
(iv) [,y + 2l < llz,yll + llz, 2]
The pair (X, ||-,]|) is then called a 2-normed space. As an example of a 2-normed
space we may take X = R? being equipped with the 2-norm ||z,y|| := the area of the
parallelogram based on the vectors x and y which may be given explicitly by the formula

lz,yll = |z1y2 — z2y1l; = = (x1,22),y = (y1,92) € R?.

In this study, we suppose X to be a 2-normed space having dimension d; where
2 <d < 0.

Let (X,]|.,.]]) be a finite dimensional 2-normed space and u = {uy,--- ,uq} be a
basis of X. We can define the norm ||.||s on X by

|z]|co = max{||z,u;|| : i =1,...,d}.

Associated to the derived norm ||.||oc, we can define the (closed) balls B, (z,¢) cen-
tered at x having radius € by

Bu(x,e) ={y: |z — yllo < e},

where ||z — ylloo = max{||z —y,u;|,j =1,...,d}.
Let X be a 2-normed space. A sequence (z,,) in X is said to be convergent to L € X
if for every z € X,

lim ||z, — L,z|| = 0.
n—oo

In this case, we write lgn Zn, = L and call L the limit of (z,,).
n—oo
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Let {x,} be a sequence in 2-normed space (X, ||.,.||). The sequence (x,) is said to
be statistically convergent to L, if for every € > 0, the set

{neN:|z,—L,z| > ¢}
has natural density zero for each nonzero z in X, in other words (z,,) statistically converges

to L in 2-normed space (X, |.,.||) if

1
lim —|{n: ||z, — L, z|| > e}| =0,

n—oon,

for each nonzero z in X. It means that for each z € X,

|lzn, — L, 2| < e, a.a. n.

In this case we write st — 1i_>m |zn, 2| = ||L, 2]
n—,oo
A sequence () in 2-normed space (X, ||.,.||) is said to be statistically Cauchy se-

quence in X | if for every € > 0 and every nonzero z € X there exists a number N = N (e, 2)
such that
S({n eN: ||lzn —an, 2| = €}) =0,
i.e., for each nonzero z € X,
lxn — 2N, 2]| < e, a.a. n.

Let X and Y be two 2-normed spaces and assume that functions f, : X — Y and
f: X — Y are given. The sequence of functions {f,}nen is said to be convergent to f
if fn(z) ”—”}; f(x) for each x € X. We write f, H—H}; f. This can be expressed by the

formula

(Vy € Y)(Vx € X)(Ve > 0)(3ng € N)(Yn > ng)|| fn(z) — f(z,9)] <e.

3. MAIN RESULTS

In this paper, we study concepts of convergence, statistical convergence and statisti-
cal Cauchy sequence of functions and investigate some properties and relationships between
them in 2-normed spaces.

Throughout the paper, we let X and Y be two 2-normed spaces, { fn }nen and {gn nen
be two sequences of functions and f, g be two functions from X to Y.

Definition 3.1. The sequence {fn}nen is said to be (pointwise) statistical convergent to
£, if for every e > 0,

Tim ~[{n €N | fule) — (), 2] > £} =0,

for each x € X and each nonzero z € Y. It means that for each x € X and each nonzero
zeY,
| fn(z) — f(x), 2] <e, a.a. n.

In this case, we write
. fl--1
st— lim || fo(2) = 2] = || f(2), 2] or fo “F s f.
n—oo

Remark 3.1. {f,}nen is any sequence of functions and f is any function from X to'Y,
then set

{neN:|fulx)— f(x),z]| > e, for each x € X and each z €Y} =1,

since if z = I (0 vektor), || fn(z) — f(x), 2] = 0 2 € so the above set is empty.
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Theorem 3.1. If for each x € X and each nonzero z €Y,
st — lim || fu(z), 2| = [|f(2), 2] and st — Tim [|fu(2), 2] = [lg(), 2],
n—00 n—0o0
then ||fn(z), 2| = |lgn(z), 2|| (i.e., f =g), for each x € X and each nonzero z € Y.
Proof 3.1. Assume f #g. Then f —g # 6), so there exists a z € Y such that f,g and z

are linearly independent (such a z exists since d > 2). Therefore, for each x € X and each
nonzero z € Y,

|f(x) —g(x),z|| =2, with > 0.

Now, for each x € X and each nonzero z € Y, we get

2e = [|f(x) —g(@), 2| = [I(f(z) = ful2)) + (fulx) — g(2)), ||

< fn(@) = g(@), 2| + | fu(x) = f(2), 2|
and so
{n:fn(@) —g(2), 2| <e} S{n: |fu(z) = f(2), 2]| = }.

But, for each x € X and each nonzero z € Y, 6({n : || fu(z) — g(z),2|| < €}) = 0, then
contradicting the fact that fy H"'—”};St g.

Theorem 3.2. If {gn}men) s a convergenl sequence of functions such that fn, = gn a.a.
n, then {fn}meny is statistically convergent.

Proof 3.2. Suppose that for each x € X and each nonzero z € Y,
S({n € N (o) # gul@)}) =0 and Jim g (o). 2] = | () ],
then for every € > 0,
{neN:|[[fu(z)=f(2), 2] 2 e} S {n e N: |lgn(x)=f(2), 2]| = e}U{n e N: fu(z) # gn(2)}.
Therefore,

S({n € N: [[fule) — f@),2 2 €}) < d({neN:llgala) - fla),2] = e)
+ ({neN: fula) # ga}) 1)

Since limy, o0 [|gn (), 2| = || f(2), 2|, for each x € X and each nonzero z € Y. The set
{n € N:|\gn(z) — f(z),2|| > €} contain finite number of integers and so

6({n € Nt [lgn(z) — f(2), 2]l =2 €}) = 0.
Using inequality (1) we get for every e >0
6({n e N: [[fn(z) — f(2),2] 2 €}) = 0,
for each © € X and each nonzero z € Y and so consequently
st— tim |fule), 2]l = [1£(2). .
Theorem 3.3. Let o € R. If for each x € X and each nonzero z €'Y,
st— lim [|fal@), 2l = |£(@).2] and st~ lim [ga(a). 2] = [g(2). 2]

then
(i) st — lim || fu(@) + ga(@), 2] = | £(2) + g(x).2]| and
(i0) st — 1 [lafu(e). 2] = af(@).z].
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Proof 3.3. (i) Suppose that
st — Tim | fu(), <l = | f(2), 2] and st lim [lga(e), 2] = g(z), 2]
for each x € X and each nonzero z € Y. Then, 6(K1) =0 and §(K2) = 0 where
€
Ki = Ki(e,2) : {n € N: | ful@) = £(2), 2] = £}
and
Ky = Ko(e, 2) : {n EN: |lgn(z) — g(z), 2| > = }
for every € > 0, each x € X and each nonzero z € Y. Let
K =K(e,z) ={n e N: | (fu(z) + gn(x)) — (f(2) + 9(2)), z|| > €}.

To prove that 6(K) = 0, it suffices to show that K C K1 U Ky. Let ng € K then, for each
xz € X and each nonzero z € Y,

[(fno () + gno () = (f () + g(2)), 2[| = &. (2)

Suppose to the contrary, that ng € K1 U Ko, Then, ng € K1 and ng € Ko. If ng & Ky and
no € Ko then, for each x € X and each nonzero z € Y,

o @) = f(@). 2]l < 5 and lguy (@) = glx). 2] < 5.

2
Then, we get
(o (2) + gno () = (f (@) + 9(2)), 2l < |fno(2) = (@), 2l + llgno (2) — g(2), 2|
e €
< 54‘5
= g,

for each € X and each nonzero z € Y, which contradicts (2). Hence ng € K1 U Ky and
so K C K1 UK,.
(ii) Let « € R (o # 0) and for each x € X and each nonzero z € Y,

st — Tim || fu(2). 2] = /(). 2].

s({neni i@ - sl = 5} ) =0

Therefore, for each x € X and each nonzero z € Y, we have
{neN:lafu(z) —af(x),zl| =€} = {neN:|af|fu(z) - f(z),2] = e}
= {neN:n@ - 1wl 2 5

Hence, the right hand side of above equality equals 0. Therefore, for each x € X and each
nonzero z € Y, we have

Then, we get

st— lim_[lafa(e). 2] = lof (2). 2]

Now, we give the concept of statistical Cauchy sequence and investigate relationships
between statistical Cauchy sequence and statistical convergence in 2-normed space.

Definition 3.2. The sequences of functions { f,} is said to be statistically Cauchy sequence,
if for every € > 0 and each nonzero z € Y, there exist a number k = k(e, z) such that

6({n e Nt |[fu(z) — fe(x),2] = €}) =0
for each z € X i.e.,

| fu(z) — fr(2), 2] <&, a.a. n.
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Theorem 3.4. Let {fn}n>1 be a statistically Cauchy sequence of functions in a finite di-
mensional 2-normed space (X, |.,.||). Then, there exists a convergent sequence of functions
{gn}n>1 in (X,|.,.]]) such that fn, = gn, for a.a. n.

Proof 3.4. First note that {fn}n>1 ts a statistically Cauchy sequence of functions in
(X, [l-llsc). Choose a natural number k(1) such that the closed ball B, = By(fya)(x),1)
contains fn(x) for a.a. n and for each x € X. Then, choose a natural number k(2) such
that the closed ball By = Bu(fi1)(z), 3) contains f(x) for a.a. n and for each z € X.
Note that B2 = BL N By also contains fn(x) for a.a. n and for each x € X. Thus, by
continuing of this process, we can obtain a sequence {B]'}m>1 of nested closed balls such
that diam (BI") < 5. Therefore,

() B = {h(x)},
m=1

where h is a function from X to Y. Since each B)' contains fn(z) for a.a. n and for each
x € X, we can choose a sequence of strictly increasing natural numbers { Sy, }m>1 such that
for each x € X,

%]{neN:fn(x) ZB'} < %, if n>Sp.

Put Ry, = {n € N:n > 8,, fulx) € B'} for each x € X, for all m > 1
and R = |J;°_ Rm. Now, for each x € X, define the sequence of functions {gn}n>1 as
following

[ h(=z), i neR
gn(@) = { fn(x), otherwise.
Note that, li_}m gn() = h(x), for each = € X. In fact, for each ¢ > 0 and for each

x € X, choose a natural number m such that € > % > 0. Then, for each n > Sy, and for
each x € X, gn(x) = h(z) or gn(x) = fu(x) € Bl' and so in each case

1
gm—1 :

lgn(2) = h(2)]leo < diam(By") <

Since, for each x € X, {n € N: g,(x) # fu(x)} C{n e N: f,(z) € B]'}, we have

€ N gu(e) £ ful)}] < THn € N fule) @ B <

and so

0({n € N: gn(z) # fu(x)}) = 0.
Thus, gn(z) = fu(x) for a.a. n and for each x € X in (X, |.]|s0). Suppose that {uq,...,uq}
is a basis for (X, ||.,.|]). Since, for each x € X,
lim {|gn(z) = h(2)|lec =0 and [[gn(z) = h(2), uill < |lgn(z) = h(z)]

n—oo

for all 1 <17 < d, then we have

lim_{|gn(z) — h(z), z]lec = 0,

n—oo

for each x € X and each nonzero z € X. It completes the proof.

Theorem 3.5. The sequence {f,} is statistically convergent if and only if {fn} is a sta-

tistically Cauchy sequence of functions.
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Proof 3.5. Assume that f be function from X toY and st — li_}rn | fr(x), 2] = || f(x), 2]
n—oo

for each © € X and each nonzero z € Y and € > 0. Then, for each x € X and each

nonzero z € Y, we have
a.a. mn.

|fale) = F(@), 2 < 5,

If k = k(e, 2) is chosen so that for each x € X and each nonzero z € Y,

() = fl@), 2l < 5,

and so we have

[fn(2) = fu(@), 2l <l fu(2) = f(2), 2]l + [ £ (2) = fr(2), 2]]

< € n €
2 2
= &, a.a. n.

Hence, {fn} is statistically Cauchy sequence of functions.

Now, assume that { f,} is statistically Cauchy sequence of function. By Theorem 3.4,
there exists a convergent sequence {gnnen from X toY such that fn, = gn for a.a. n. By
Theorem 3.2, we have

st —lim || fo(2), 2[| = [|f(2), ]|

for each x € X and each nonzero z € Y.

Now, as an immediate consequence of Theorem 3.2 we give the following theorem
without the proof.

Theorem 3.6. If st —lim || f,,(x), z|| = || f(x), z|| for each x € X and each nonzero z € Y,
then { fn}nen has a subsequence of function {fn,} such that

Tim | fo,(2), 21 = 7). 2]

for each x € X and each nonzero z € Y.
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