ON Z-CONVERGENCE OF SEQUENCES OF FUNCTIONS IN
2-NORMED SPACES

MUKADDES ARSLAN AND ERDINC DUNDAR

ABsTRACT. In this paper, we study concepts of convergence and ideal convergence of
sequence of functions and investigate relationships between them and some properties
such as linearity in 2-normed spaces. Also, we prove a decomposition theorem for ideal

convergent sequences of functions in 2-normed spaces.

1. INTRODUCTION

Throughout the paper, N denotes the set of all positive integers and R the set of all
real numbers. The concept of convergence of a sequence of real numbers has been extended
to statistical convergence independently by Fast [8] and Schoenberg [26].

The idea of Z-convergence was introduced by Kostyrko et al. [20] as a generalization
of statistical convergence which is based on the structure of the ideal Z of subset of N [8, 9].
Gokhan et al. [13] introduced the notion of pointwise and uniform statistical convergent of
double sequences of real-valued functions. Gezer and Karakug [12] investigated Z-pointwise
and uniform convergence and Z*-pointwise and uniform convergence of function sequences
and they examined the relation between them. Balaz et al. |2]| investigated Z-convergence
and Z-continuity of real functions. Balcerzak et al. 3] studied statistical convergence and
ideal convergence for sequences of functions Diindar and Altay [5, 6] studied the concepts
of pointwise and uniformly Z-convergence and Z5-convergence of double sequences of func-
tions and investigated some properties about them. Furthermore, Diindar |7] investigated
some results of Zo-convergence of double sequences of functions.

The concept of 2-normed spaces was initially introduced by Géhler [10, 11] in the
1960’s. Since then, this concept has been studied by many authors. Giirdal and Pehli-
van [17] studied statistical convergence, statistical Cauchy sequence and investigated some
properties of statistical convergence in 2-normed spaces. Sahiner et al. [28] and Giirdal [19]
studied Z-convergence in 2-normed spaces. Giirdal and Acik [18] investigated Z-Cauchy
and Z*-Cauchy sequences in 2-normed spaces. Sarabadan and Talebi [24] presented various
kinds of statistical convergence and Z-convergence for sequences of functions with values in
2-normed spaces and also defined the notion of Z-equistatistically convergence and study
Z-equistatistically convergence of sequences of functions. Recently, Savag and Giirdal [25]
concerned with Z-convergence of sequences of functions in random 2-normed spaces and
introduce the concepts of ideal uniform convergence and ideal pointwise convergence in the
topology induced by random 2-normed spaces, and gave some basic properties of these con-
cepts. Arslan and Diindar [1] investigated the concepts of Z-convergence, Z*-convergence,
Z-Cauchy and Z*-Cauchy sequences of functions in 2-normed spaces. Also, Yegiil and
Diindar [30] studied statistical convergence of sequence of functions in 2-normed spaces.
Futhermore, a lot of development have been made in this area (see [4, 21, 22, 23, 27, 29]).
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2. DEFINITIONS AND NOTATIONS

Now, we recall the concept of 2-normed space, ideal convergence and some funda-
mental definitions and notations (See [2, 3, 8, 9, 14, 15, 16, 17, 18, 19, 20, 24, 28]).
If K C N, then K, denotes the set {k € K : k < n} and |K,| denotes the cardinality
of K. The natural density of K is given by 0(K) = lim,, 2|K,|, if it exists.
The number sequence x = (z) is statistically convergent to L provided that for
every € > 0 the set
K=K():={keN: |z, —L| > ¢}
has natural density zero; in this case, we write st — limx = L.
Let X # (. A class Z of subsets of X is said to be an ideal in X provided:
(i) 0 e,
(i) A,B €T implies AUB € T,
(ii) AeZ, B C Aimplies B € T.
7 is called a nontrivial ideal if X & 7.
Let X # (. A non empty class F of subsets of X is said to be a filter in X provided:
(i) 0¢F,
(ii) A, B € F implies AN B € F,
(ii) Ae F, AC B implies B € F.

Lemma 2.1 ([20]). If Z is a nontrivial ideal in X, X # 0, then the class
FIZ)={McCcX:3AeI)(M=X\A)}

is a filter on X, called the filter associated with T.

A nontrivial ideal Z in X is called admissible if {x} € Z, for each z € X.

Example 2.1. Let Zy be the family of all finite subsets of N. Then, Ly is an admissible
itdeal in N and Iy convergence is the usual convergence.

Throughout the paper, we let Z C 2N be an admissible ideal.
A sequence (fy,) of functions is said to be Z-convergent (pointwise) to f on D C R
if and only if for every € > 0 and each z € D,

{n:|fn(zx) = flz) 2 e} € L.

In this case, we will write f, A fon D.

A sequence (fy,) of functions is said to be Z*-convergent (pointwise) to f on D C R if
and only if Ve > 0 and Vz € D, 3K, ¢ T and Ing = ng(e,x) € K, : Vn > ng and n € K,
(@) — f(2)] <e.

Let X be a real vector space of dimension d, where 2 < d < oco. A 2-norm on X is a
function |-, -] : X x X — R which satisfies the following statements:

(i) ||z, y|| = 0 if and only if = and y are linearly dependent.
(i) flz,yll = lly, |-
(iii) [az,yl = lalllz,yl, a« € R.
(i) llz,y + 2l < llz,yll + [z, 2]
The pair (X, ||-, -||) is then called a 2-normed space. As an example of a 2-normed space we
may take X = R? being equipped with the 2-norm ||z, y|| := the area of the parallelogram
based on the vectors x and y which may be given explicitly by the formula

|z, yl| = |x1y2 — z2n]; = (z1,22),y = (Y1, 42) € R
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In this study, we suppose X to be a 2-normed space having dimension d; where
2<d< 0.
A sequence (z,,) in 2-normed space (X, ||-,||) is said to be convergent to L in X if

lim ||z, — L,y| =0,
n—oo

for every y € X. In such a case, we write lim,,_,o z, = L and call L the limit of (z,,).
A sequence (x,) in 2-normed space (X, ||-,-||) is said to be Z-convergent to L € X
if for each € > 0 and each nonzero z € X,

Ale,z) ={neN:|x, — L,z|| > e} € L.

In this case, we write Z — lim ||z, — L,z|| =0 or Z — lim ||z, z|| = || L, 2||-
n—00 n—0o0
A sequence (z,,) in 2-normed space (X, ||-,]|) is said to be Z*-convergent to L € X

if and only if there exists a set M € F, M = {m; < mg < -+- < my < ---} such that

lim ||z, — L, z|| = 0, for each nonzero z € X.
n—oo

Let X and Y be two 2-normed spaces, {f,} be a sequence of functions and f be

a function from X to Y. {f,} is said to be convergent to f if f,(z) Ay f(x) for each

xz € X. We write f, ”L”‘f f- This can be expressed by the formula

(Vz € Y)(Vx € X)(Ve > 0)(Ing € N)(Vn > ng)|| fu(z) — f(x), 2] <e.

Let X and Y be two 2-normed spaces, {f,} be a sequence of functions and f be
a function from X to Y. {f,} is said to be Z-pointwise convergent to f, if for every
e > 0 and each nonzero z € Y, A(g,z) = {n € N : | fu(z) — f(x),z]]| > €} € T or
7- nlg]go||fn(x) — f(z),z|ly =0 (in (Y,].,.]ly)), for each z € X. In this case, we write

In H"'—HX;Z f- This can be expressed by the formula

(Vz € Y)(Ve > 0)(IM € I)(Yno € N\M)(Vz € X)(¥n > no)|| fn(z) — f(2),2|| <e.

Let X and Y be two 2-normed spaces, {f,} be a sequence of functions and f be a
function from X to Y. {f,} is said to be pointwise Z*-convergent to f, if there exists a
set M € F(Z), (e, N\\M € 7), M = {m1 < mg < --- < my < ---}, such that for each
x € X and each nonzero z € Y kli)ngo | frn(x), 2|l = || (), 2| and we write

" = lim [|fu(2), 2] = [If(z), 2] or fn 5.

An admissible ideal Z C 2" is said to satisfy the condition (AP) if for every countable
family of mutually disjoint sets { A1, A, ...} belonging to Z there exists a countable family
of sets { By, Ba, ...} such that A;AB; is a finite set for j € Nand B = J;2, B; € Z.

Now we begin with quoting the lemmas due to Arslan and Diindar [1] which are
needed throughout the paper.

Lemma 2.2 ([1]). Let X and Y be two 2-normed spaces, {fn} be a sequence of functions
and f be a function from X to Y. For each x € X and each nonzero z € Y,

T~ 1 || fu(a). 2 = [ £(2). 2] implies T — limy ool fu(2). 2] = | £(2). 2].

Lemma 2.3 ([1]). Let Z C 2N be an admissible ideal having the property (AP), X and Y
be two 2-normed spaces, { fn} be a sequence of functions and f be a function from X to Y.
If the sequence of functions {fn} is Z-convergent, then it is Z*-convergent.
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3. MaIN RESuULTS

In this paper, we study concepts of convergence, Z-convergence, Z*-convergence of
functions and investigate relationships between them and some properties such as linearity
in 2-normed spaces.

Throughout the paper, we let Z C 2Y be an admissible ideal, X and Y be two
2-normed spaces, {fn}nen and {gn}nen be two sequences of functions and f, g be two
functions from X to Y.

Theorem 3.1. For each x € X and each nonzero z € Y we have

lim || fu(2), 2[| = [|f(x), 2] implies I — lim || fu(2), 2]l = [ f(z), 2]

n—oo n—oo
Proof. Let £ > 0 be given. Since

Tm || fu(2). 2] = [1F(2). 2],
for each x € X and each nonzero z € Y, therefore, there exists a positive integer kg =
ko(e,x) such that || f,(x) — f(x), z|]| < &, whenever n > ko. This implies that the set
Ale,2) = {n € N || ful@) — f(2),2 = ell} € {1,2, e, (ko — 1)}

Since 7 be an admissible ideal and Zy C Z, then {1,2,..., (ko — 1)} € Z. Hence, it is clear
that A(e, z) € Z and consequently we have

T tim [fale), 2] = 1 (2). 2],
for each z € X and each nonzero z € Y. (|
Theorem 3.2. If Z-limit of any sequence of functions {fn} exists, then it is unique.

Proof. Let a sequence { f,} of functions and f, g be two functions from X to Y. Assume
that

T~ lim [[fu(eo). =l = | f(z0). 2]l and T~ Tim_|[fu(zo). | = lg(o). 2],

where f(xo) # g(xo) for a z9 € X and each nonzero z € Y. Since f(xo) # g(xo), so
we may suppose that f(xzg) > g(zg). Select ¢ = M, so that the neighborhoods
(f(xo) —e, f(zo) +¢) and (g(x0) — &, g(x0) +¢€) of points f(zo) and g(zo), respectively are
disjoints. Since for o € X and each nonzero z € Y,

T = lim [ fu(zo), 2| = [|f(z0), 2]} and T — lim_|lgn(z0), z[| = [lg(zo), =[],
then, we have
A(e, 2) = {n e N: [[fu(z0) — f(20), 2| 2 e} € T
and
B(e,z) ={n e N: || fu(xo) — g(x0), 2| > ¢} € T.
This implies that the sets
A(g, 2) = {n € N: |[fa(z0) — f(0), 2| <&}
and
Bf(e, 2) = {n e N: || fu(z0) — g(20), 2| <&}
belong to F(Z) and A¢(e, z) N B(e, z) is a nonempty set in F(Z) for zyp € X and each
nonzero z € Y. Since A°(e, 2)NB(e, 2) # 0, we obtain a contradiction on the fact that the

neighborhoods (f(zo) — ¢, f(z0) + ¢) and (g(zo) — €, g(z0) + €) of points f(xg) and g(xo),
respectively are disjoints. Hence, it is clear that for zg € X and each nonzero z € Y,

[fn(0), 2[| = llgn(20), 2]l
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and consequently we have || f,(z), z|| = ||gn(x), z||, (i-e., f = g), for each x € X and each
nonzero z € Y. O

Theorem 3.3. For each x € X and each nonzero z € Y,
(i) I T~ tim || fu(2). 2] = | F(2).2] and T~ lim |lga(). 2] = lg(x), =], then
T = lim [[fo(2) + gn(2), 2[| = [|f(2) + g(z), z]-
(i) T~ tim [le.fu(@). 2] = [le.f(2). 2], ¢ € B.

(i) T — Tim || fu(@).ga (@), 2| = |f(2)-9(z), 2].
n—oo
Proof. (i) Let € > 0 be given. Since
T— lim || fa(@), 2]l = | £(@), 2l and Z— lim |lga(). 2] = lg(), =]
n—00 n—oo
for each z € X and each nonzero z € Y. Therefore,

A(%,z) _ {n EN: | fulz) — f(z), 2] > %} €T

and

B(g,z) - {n eN: |lgn(@) — gla), 2] > %} ez

and by the definition of ideal we have

5 €
Now, for each x € X and each nonzero z € Y we define the set
Cle2) = (n € N+ [(fala) + 9n(x) — () + 9()). 2] > €}
and it is sufficient to prove that C(e,z) C A(5,2)UB(5,2). Let n € C(e, z), then for each
x € X and each nonzero z € Y, we have
e < ||(fal@) + gn(2)) = (f(2) + 9(2)), 2] < [ fu(z) = f(2), 2| + llgn(2) — g(2), 2.
As both of {[| fu(z) — f(2), 2|, [lgn(x) — g(x), 2|} can not be (together) strictly less than §

and therefore either

|fal@) = F@).2] = 5 or llga(a) = gle).2l| = 5.

for each z € X and each nonzero z € Y. This shows that n € A(%, z) orn € B(%, z) and
so we have - -
n e A<§,z> UB(i,z).

Hence, C(e,z) C A(%,z) UB(%,Z).
(ii) Let ce Rand Z — le | fn(z), 2|l = || f(2), 2|, for each € X and each nonzero

z €Y. If ¢ =0, there is nothing to prove, so we assume ¢ # 0. Then,

{nen:ne - rw.al 2 S} ez

]

for each = € X and each nonzero z € Y and by the definition we have

€
(neN:llefulo) -~ f@)e 2 2} = {n e Ns fule) - )2 = 5 |
Hence, the right side of above equality belongs to Z and so
T~ lim [le-fule). 2] = le-f(x). 2],

for each x € X and each nonzero z € Y .



(iii) Since
T~ tim | fale). 2] = | f(2).2]
for each x € X and each nonzero z € Y, then fore =1 >0
{neN:|[fu(z) - f(z),2]| =1} € T,
and so
A={neN:|fu(z) — f(z), 2] <1} € F(2).
Also, for any n € A, ||fn(x),z]] <1+ ||f(x), 2| for each x € X and each nonzero z € Y.
Let € > 0 be given. Chose § > 0 such that

0<20< °

1f (@), 2l + [lg(z), 2l + 17
for each z € X and each nonzero z € Y. It follows from the assumption that,

B ={neN:||fulx) - f(x), 2] < 6} € F(T)

and
C={neN:|gu(z) —g(x), 2[| <} € F(I)
for each x € X and each nonzero z € Y. Since F(Z) is a filter, therefore ANBNC € F(Z).
Then, for each n € AN BN C we have
[fn(2)-gn(x) — f(2).9(x), || [fn(2).gn(x) = fu(2).9(x) + fu(z).9(x) — f(2).9(2), 2]
[fn(2), 2l llgn(z) — g(2), 2|
lg(@), 2|l fn(@) — f (), ]|
(If (@), 2l +1).6 + (lg(x), z[]).0
(Lf (), 2l + llg(z), 2| + 1).0
< €

AN S VAN |

and so, we have
{n e N:|fu(x).gn(x) — f(2).9(x), 2]| = €} € I,

for each £ € X and each nonzero z € Y. This completes the proof of theorem. (|
Theorem 3.4. Let X, Y be two 2-normed spaces, {fn}, {gn} and {h,} be sequences of
functions and k be a function from X toY. For each x € X and each nonzero z €Y, if

(i) {fn} <A{gn} < {hn}, for every n € K, where N2 K € F(Z) and

(i) T — lim || fo(z), 2[| = |[k(2), 2]] and T — lim ||k (), 2| = [[k(2), 2],

i n—oo n—oo
then T — lim ||gn(x), || = ||k(z), z]|.
n—oo

Proof. Let € > 0 be given. By condition (i) we have
{neN:|fu(z) —k(z),2]| > e} € Z and {n € N: ||h,(x) — k(x), 2| > €} € T,
for each z € X and each nonzero z € Y. This implies that the sets
P={neN:|fu(z) —k(x),z]| <e}and R ={n € N: | h,(z) — k(z), 2| < &}
belong to F(Z), for each z € X each nonzero z € Y. Let
Q={neN:|gn(x) — k(z), z[| <e},

for each z € X and each nonzero z € Y. It is clear that the set PN RN K C Q. Since
PNRNK € F(Z) and PNRNK C @, then from the property of filter, we have Q € F(Z)
and so
{n € N: llga(a) — k(a), 2l| > e} €T,
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for each z € X and each nonzero z € Y. O
Theorem 3.5. For each x € X and each nonzero z € Y, we let
Z— lim ||fu(2), 2] = [[f(z), 2] and I — lim ||gn(2), ]| = [[g(z), z].
n—oo n—oo

Then, for every n € K we have
(i) If fu(z) >0 then, f(z) >0 and
(1) If fn(z) < gn(z) then f(x) < g(x), where K C N and K € F(Z).

Proof. (i) Suppose that f(z) < 0. Select ¢ = —@, for each x € X. Since 7 —
lim | fn(x), 2|l = || f(x), z||, so there exists the set M such that
n—oo

M ={neN:|fu(z) - f(z), 2| <e} € F(I),
for each € X and each nonzero z € Y. Since M, K € F(Z), then M N K is a nonempty
set in F(Z). So we can find out a point ng in K such that
I na(2) = @), 2l <

Since f(x) < 0 and € = _T(I) for each z € X, then we have f,,(x) < 0. This is a
conradiction to the fact that f,(xz) > 0 for every n € K. Hence, we have f(z) > 0, for
each z € X.

(ii) Suppose that f(z) > g(z). Select ¢ = M for each z € X. So that the
neighborhoods (f(zo)—¢, f(x0)+¢) and (g(xo) —¢, g(xo)+¢) of f(x) and g(z), respectively,
are disjoints. Since for each z € X and each nonzero z € Y,

T~ lim |[fo(z), 2] = [[f(), ]| and T = lim_{|gn (), z]| = [lg(=), z]|
and F(Z) is a filter on N, therefore we have
A={neN:|fu(z) - f(z),2]] <e} € F(I)
and
B={neN:|gn(r) —g(z), 2| <e} € F(I).
This implies that ) # AN BN K € F(Z). There exists a point ng in K such that
[fn(z) = f(2), 2]l <€ and |lgn(z) — g(z), 2| <e.

Since f(x) > g(z) and ¢ = M for each z € X, then we have fp, () > gn,(x). This
is a contradiction to the fact fy,(z) < gn(x) for every n € K. Thus, we have f(z) < g(x),
for each z € X. 0

Theorem 3.6. Let T C 2V be an admissible ideal having the property (AP). Then, for
each x € X and each nonzero z € Y, following conditions are equivalent:

(i) T —limp o0 [ fu(2), 2] = [If(2), 2]
(ii) There exists {gn} and {hy} be two sequences of functions from X to'Y such that

Ful@) = gu(@) + ha(@). Tim g (). 2] = | £(@), 2] and supp ho(2) € T.
where supp hy(z) = {n € N: hy,(z) # 0}.

Proof. (i) = (ii) : Z — limy 00 || fr (), 2|| = || f(2), 2]|, for each z € X and each nonzero
z € Y. Then, by Lemma 2.3 there exists a set M € F(Z), (i.e, H=N\M € Z), M = {m; <
mg < --- < my < ---}, such that for each z € X and each nonzero z € Y,

T ||, (), 21 = £ @), 2]
7



Let us define the sequence {g,} by
| fal®) , neM
3.1) we={ ) e

It is clear that {g,} is a sequence of functions and ILm lgn(x), 2| = ||f(x), z|| for each
n—oo
x € X and each nonzero z € Y. Also let

(3'2) hn(x) = fn(x) - gn(x)a n €N,
for each x € X. Since
{n eN: fu(x) # gu(z)} CN\M €T,

for each z € X, so we have
{n eN: hy(x)#0} L.

It follows that supp hy(z) € Z and by (3.1) and (3.2) we get fn(z) = gn(x) + hyn(z), for
each z € X.
(ii) = (i) : Suppose that there exist two sequences {g,} and {hy} such that

(33) fa(@) = gule) + ha(@), T gn (@), 2] = | £(2), 2] and supp ha(2) € T,

for each € X and each nonzero z € Y, where supp h,(z) = {n € N: h,(z) # 0}. We

will show that Z — limy, o0 || fr(2), 2| = || f(2), 2|| for each € X and each nonzero z € Y.
Define M = {ny} to be a subset of N such that

(3.4) M ={neN:h,(xr) =0} =N\supp h,(x)

Since

supp hp(x) ={n € N: hy(z) #0} € Z,
then from (3.3) and (3.4) we have M € F(Z), fn(z) = gn(x) if n € M. Hence, we conclude
that there exists a set M = {m; <ma <--- <my <---}, M € F(Z) such that

lim. [ fri (), 2| = | f (), 2],

k—
and so Z* — li_>m | fn(x), 2| = ||f(x),z], for each x € X and each nonzero z € Y. By
n oo
Lemma 2.2 it follows that Z — h_)m | fn(x), z]] = ||f(z),z|, for each z € X and each
n oo
nonzero z € Y. This completes the proof. (|

Corollary 3.1. Let Z C 2V be an admissible ideal having the property (AP). Then,
Z—limy o0 || fr(x), 2|| = || f (), 2|| if and only if there exist {gn} and {h,} be two sequences
of functions from X toY such that

Fol@) = gn(@) + ha(e), T [lgn(@), 2] = [ 7(2), 2]l and T lim [hn(), 2] =0,

for each © € X and each nonzero z € Y.

Proof. Let Z — im0 || fn (), 2|| = ||f(x), 2] and {g,} is a sequence defined by (3.1).
Consider the sequence
(3.5) hn(x) = fn(x) - gn(x)7 neN

for each z € X. Then, we have

lim ||gn(z), 2| = [If(2), 2|

n—oo

and since 7 is an admissible ideal so

T = lim [lgn(x), 2] = [ f(), =],
8



for each x € X and each nonzero z € Y. By Theorem 3.3 and by (3.5) we have
7-— nli)rrolo lhn(z), z|| = 0,

for each x € X and each nonzero z € Y.
Now let fn(z) = gn(z) + hn(x), where

lim ||gn(z),2]| = [ f(2),2]| and Z — lim || (2), 2| =0,
n—0o0 n—oo
for each x € X and each nonzero z € Y. Since 7 is an admissible ideal so
T lim lga(a). 2] = [I£(x). 2]
and by Theorem 3.3 we get
T lim |fu(2). 2] = [1£(2). 2]
for each x € X and each nonzero z € Y. O

Remark 3.1. In Theorem 3.6, if (ii) is satisfied then the admissible ideal Z need not have
the property (AP). Since for each v € X and each nonzero z € Y,

{neN:|hp(z),z]| >e} C{neN:hy(z) #0} €I,

for each € > 0, then
Z—- ILm |hn(x), z]] = 0.

Hence, we have

T lim || fa(e),2] = (@), 2]

for each x € X and each nonzero z € Y.
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