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Abstract. In this study, we introduce the notion of rough I2-convergence and the set
of rough I2-limit points of a double sequence and obtained two rough I2-convergence
criteria associated with this set. Later, we proved that this set is closed and convex.
Finally, we examined the relations between the set of cluster points and the set of rough
I2-limit points of a double sequence.

1. BACKGROUND AND INTRODUCTION

Throughout the paper N and R denote the set of all positive integers and the set of
all real numbers, respectively. The idea of I-convergence was introduced by Kostyrko et al.
[11] as a generalization of statistical convergence which is based on the structure of the ideal
I of subset of the set of natural numbers. Nuray and Ruckle [14] introduced the same with
another name generalized statistical convergence. Kostyrko et al. [12] studied the idea of
I-convergence and extremal I-limit points and Demirci [6] studied the concepts of I-limit
superior and I-limit inferior. Das et al. [4] introduced the concept of I-convergence of
double sequences in a metric space and studied some properties of this convergence. Also,
Das and Malik [5] introduced the concept of I-limit points, I-cluster points and I-limit
superior and I-limit inferior of double sequences. A lot of development have been made in
this area after the works of [8, 9, 18, 19].

The idea of rough convergence was �rst introduced by Phu [15] in �nite-dimensional
normed spaces. In [15], he showed that the set LIMrx is bounded, closed, and convex; and
he introduced the notion of rough Cauchy sequence. He also investigated the relations
between rough convergence and other convergence types and the dependence of LIMrx
on the roughness degree r. In another paper [16] related to this subject, he de�ned the
rough continuity of linear operators and showed that every linear operator f : X → Y is r
-continuous at every point x ∈ X under the assumption dimY < ∞ and r > 0 whereX and
Y are normed spaces. In [17], he extended the results given in [15] to in�nite-dimensional
normed spaces. Aytar [2] studied of rough statistical convergence and de�ned the set of
rough statistical limit points of a sequence and obtained two statistical convergence criteria
associated with this set and prove that this set is closed and convex. Also, Aytar [3] studied
that the r-limit set of the sequence is equal to the intersection of these sets and that r-core
of the sequence is equal to the union of these sets. Recently, Dündar and Çakan [7, 8]
introduced the notion of rough I-convergence and the set of rough I-limit points of a
sequence and studied the notion of rough convergence and the set of rough limit points of
a double sequence.

In this study, we introduce the notion of rough I2-convergence and the set of rough
I2-limit points of a double sequence and obtained two rough I2-convergence criteria as-
sociated with this set. Later, we proved that this set is closed and convex. Finally, we
examined the relations between the set of cluster points and the set of rough I2-limit points
of a double sequence.

We note that our results and proof techniques presented in this paper are I ana-
logues of those in Phu's [15] paper. Namely, the actual origin of most of these results and
proof techniques is his paper. The following our theorems and results are the I-extension
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of theorems and results in [15].

De�nition 1.1 ([4]). A double sequence x = (xmn)m,n∈N of real numbers is said to be
convergent to L ∈ R if for any ε > 0 , there exists Nε ∈ N such that |xmn − L| < ε,
whenever m,n > Nε. In this case we write

lim
m,n→∞

xmn = L.

De�nition 1.2 ([4]). A double sequence x = (xmn) of real numbers is said to be bounded
if there exists a positive real number M such that |xmn| < M, for all m,n ∈ N. That is

∥x∥∞ = sup
m,n

|xmn| < ∞.

De�nition 1.3 ([11]). Let X ̸= ∅. A class I of subsets of X is said to be an ideal in X
provided:

i) ∅ ∈ I, ii) A,B ∈ I implies A ∪B ∈ I, iii) A ∈ I, B ⊂ A implies B ∈ I.

I is called a nontrivial ideal if X ̸∈ I.
A nontrivial ideal I in X is called admissible if {x} ∈ I for each x ∈ X.

De�nition 1.4 ([11]). Let X ̸= ∅. A non empty class F of subsets of X is said to be a
�lter in X provided:

i) ∅ ̸∈ F , ii) A,B ∈ F implies A ∩B ∈ F , iii) A ∈ F , A ⊂ B implies B ∈ F .

Lemma 1.5 ([11]). If I is a nontrivial ideal in X, X ̸= ∅, then the class

F(I) = {M ⊂ X : (∃A ∈ I)(M = X\A)}

is a �lter on X, called the �lter associated with I.

De�nition 1.6 ([11]). Let (X, ρ) be a linear metric space and I ⊂ 2N be a non-trivial ideal.
a sequence (xi)i∈N of elements of X is said to be I-convergent to ξ ∈ X (I−limi→∞ xi = ξ)
if and only if for each ε > 0 the set A(ε) = {i ∈ N : ρ(xi, ξ) ≥ ε} belongs to I. The element
ξ is called the I-limit of the sequence x = (xi)i∈N.

Note that if I is an admissible ideal, then usual convergence inX implies I-convergence
in X.

De�nition 1.7. [6] For a sequence x = (xi) of real numbers, the notions of ideal limit
superior and ideal limit inferior are de�ned as follows:

I − lim supx =

{
supBx , if Bx ̸= ∅
−∞ , if Bx = ∅

and

I − lim inf x =

{
inf Ax , if Ax ̸= ∅
+∞ , if Ax = ∅ ,

where Ax = {a ∈ R : {i ∈ N : xi < a} ̸∈ I} and Bx = {b ∈ R : {i ∈ N : xi > b} ̸∈ I}.

De�nition 1.8 ([4]). A nontrivial ideal I2 of N×N is called strongly admissible if {i}×N
and N× {i} belong to I2 for each i ∈ N.

It is evident that a strongly admissible ideal is admissible also.

Throughout the paper we take I2 as a strongly admissible ideal in N× N.

De�nition 1.9 ([4]). Let (X, ρ) be a metric space A double sequence x = (xmn) in X is
said to be I2-convergent to L ∈ X, if for any ε > 0 we have

A(ε) = {(m,n) ∈ N× N : ρ(xmn, L) ≥ ε} ∈ I2.
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In this case we say that x is I2-convergent and we write

I2 − lim
m,n→∞

xmn = L.

If I2 is a strongly admissible ideal on N × N, then usual convergence implies I2-
convergence.

De�nition 1.10 ([5]). Let x = (xjk) be a double sequence of real numbers and

Ay = {a ∈ R : {(j, k) ∈ N× N : xjk < a} ̸∈ I2}
and

By = {b ∈ R : {(j, k) ∈ N× N : xjk > b} ̸∈ I2}.
Then I2-limit superior and I2-limit inferior of x are de�ned as follows:

I2 − lim supx =

{
supBx , if Bx ̸= ∅
−∞ , if Bx = ∅

and

I2 − lim inf x =

{
inf Ax , if Ax ̸= ∅
+∞ , if Ax = ∅.

During the paper, let r be a nonnegative real number and Rn denotes the real n-
dimensional space with the norm ∥.∥. Consider a sequence x = (xi) ⊂ Rn.

De�nition 1.11 ([15]). The sequence x = (xi) is said to be r-convergent to x∗, denoted

by xi
r−→ x∗ provided that

∀ε > 0 ∃iε ∈ N : i ≥ iε ⇒ ∥xi − x∗∥ < r + ε.

The set
LIMrx := {x∗ ∈ Rn : xi

r−→ x∗}
is called the r-limit set of the sequence x = (xi). A sequence x = (xi) is said to be r-
convergent if LIMrx ̸= ∅. In this case, r is called the convergence degree of the sequence
x = (xi). For r = 0, we get the ordinary convergence. There are several reasons for this
interest (see [15]).

De�nition 1.12 ([7]). A sequence x = (xi) is said to be I-convergent to L ∈ Rn, written
as I-limx = L, provided that the set {i ∈ N : ∥xi − L∥ ≥ ε} ∈ I, for every ε > 0. In this
case, L is called the I-limit of the sequence x.

De�nition 1.13 ([7]). c ∈ Rn is called a I-cluster point of a sequence x = (xi) provided
that

{i ∈ N : ∥xi − c∥ < ε} ̸∈ I
for every ε > 0. We denote the set of all I-cluster points of the sequence x by I(Γx).

A sequence x = (xi) is said to be I-bounded if there exists a positive real number M
such that {i ∈ N : ∥xi∥ ≥ M} ∈ I.

De�nition 1.14 ([7]). A sequence x = (xi) is said to be rough I-convergent (r-I-convergent)
to x∗ with the roughness degree r, denoted by xi

r−I−→ x∗ provided that

{i ∈ N : ∥xi − x∗∥ ≥ r + ε}
belongs to I for every ε > 0; or equivalently, if the condition

I − lim sup ∥xi − x∗∥ ≤ r(1.1)

is satis�ed. In addition, we can write xi
r−I−→ x∗ i� the inequality ∥xi − x∗∥ < r + ε holds

for every ε > 0 and almost all i.

Throughout the paper we consider a sequence x = (xmn) such that (xmn) ∈ Rn,
m,n ∈ N.
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De�nition 1.15 ([8]). The double sequence x = (xmn) is said to be rough convergent

(r-convergent) to x∗ with the roughness degree r, denoted by xmn
r−→ x∗ provided that

∀ε > 0 ∃kε ∈ N : m,n ≥ kε ⇒ ∥xmn − x∗∥ < r + ε,(1.2)

or equivalently, if

lim sup ∥xmn − x∗∥ ≤ r.(1.3)

2. MAIN RESULTS

De�nition 2.1. For some given real number r ≥ 0, a sequence x = (xmn) is said to be

r-I2-convergent to x∗ with the roughness degree r, denoted by xmn
r−I2−→ x∗ provided that

{(m,n) ∈ N× N : ∥xmn − x∗∥ ≥ r + ε} ∈ I2,(2.1)

for every ε > 0; or equivalently, if the condition

I2 − lim sup ∥xmn − x∗∥ ≤ r(2.2)

is satis�ed. In addition, we can write xmn
r−I2−→ x∗ i� the inequality ∥xmn − x∗∥ < r + ε

holds for every ε > 0 and almost all (m,n).

Now, we give the de�nitions of I2-cluster point of a double sequence and of I2-
boundedness for a double sequence.

c ∈ Rn is called a I2-cluster point of a double sequence x = (xmn) provided that

{(m,n) ∈ N× N : ∥xmn − c∥ < ε} ̸∈ I2
for every ε > 0. We denote the set of all I2-cluster points of the double sequence x = (xmn)
by I2(Γx).

A double sequence x = (xmn) is said to be I2-bounded if there exists a positive real
number M such that {(m,n) ∈ N× N : ∥xmn∥ ≥ M} ∈ I2.

Remark 2.2. r-convergence implies r-I2-convergence as depending the roughness degree.

Here r is called the roughness degree. If we take r = 0, then we obtain the ordinary
I2-convergence of a double sequence.

In general, the r-I2-limit of a double sequence may not be unique for the roughness
degree r > 0. So we have to consider the so-called rough I2-limit set of a double sequence
x = (xmn), which is de�ned by

I2 − LIMrx := {x∗ ∈ Rn : xmn
r−I2−→ x∗}.

A double sequence x = (xmn) is said to be r-I2-convergent if I2 − LIMrx ̸= ∅.
As noted above, we cannot say that the r-I2-limit of a double sequence is unique for

the roughness degree r > 0. The following theorem is related to this claim.

Theorem 2.3. We have diam(I2−LIMrx) ≤ 2r, for any sequence x = (xmn). In general,
diam(I2 − LIMrx) has no smaller bound.

Proof. Suppose that diam(I2 − LIMrx) = sup{∥y − z∥ : y, z ∈ I2 − LIMrx} > 2r. Then

there exist y, z ∈ I2 − LIMrx such that ∥y − z∥ > 2r. Take ε ∈ (0, ∥y−z∥
2 − r). Since

y, z ∈ I2 − LIMrx, for every ε > 0, we have

A1(ε) = {(m,n) ∈ N× N : ∥xmn − y∥ ≥ r + ε} ∈ I2
and

A2(ε) = {(m,n) ∈ N× N : ∥xmn − z∥ ≥ r + ε} ∈ I2.
In this case, we have

Ac
1(ε) = {(m,n) ∈ N× N : ∥xmn − y∥ < r + ε} ∈ F(I2)
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and

Ac
2(ε) = {(m,n) ∈ N× N : ∥xmn − z∥ < r + ε} ∈ F(I2).

Using the properties of F(I2), A1(ε)
c ∩A2(ε)

c is non-empty and we get

(Ac
1(ε) ∩Ac

2(ε)) ∈ F(I2).
Thus, we can write

∥y − z∥ ≤ ∥xmn − y∥+ ∥xmn − z∥ < 2(r + ε) < 2(r +
∥y − z∥

2
− r) = ∥y − z∥,

for all (m,n) ∈ A1(ε)
c ∩A2(ε)

c, which is a contradiction.
Now, for prove of the second part of the theorem, consider a double sequence x =

(xmn) such that I2-limxmn = x∗. Let ε > 0. Then, we can write

{(m,n) ∈ N× N : ∥xmn − x∗∥ ≥ ε} ∈ I2.
Thus, we have

∥xmn − y∥ ≤ ∥xmn − x∗∥+ ∥x∗ − y∥ ≤ ∥xmn − x∗∥+ r,

for each y ∈ Br(x∗) := {y ∈ Rn : ∥y − x∗∥ ≤ r}. Then, we get
∥xmn − y∥ < r + ε,

for each (m,n) ∈ {(m,n) ∈ N×N : ∥xmn−x∗∥ < ε}. Since the double sequence x = (xmn)
is I2-convergent to x∗, we have

{(m,n) ∈ N× N : ∥xmn − x∗∥ < ε} ∈ F(I2).
Thus, we have y ∈ I2 − LIMrx and we can write

I2 − LIMrx = Br(x∗).(2.3)

Since diam(Br(x∗)) = 2r, this shows that in general, the upper bound 2r of the diameter
of the set I2 − LIMrx cannot be decreased anymore. �

Now we give some topological and geometrical properties of the r-I2-limit set of a
double sequence.

Theorem 2.4. The r-I2-limit set of a double sequence x = (xmn) is closed

Proof. If I2 − LIMrx = ∅, then there is nothing to prove. Suppose that I2 − LIMrx ̸=
∅. In this case we can select an arbitrary sequence (ymn) ⊆ I2 − LIMrx such that
limm,n→∞ ymn = y∗. We must show that y∗ ∈ I2 − LIMrx.

Let ε > 0 be given. Since ymn → y∗, there exists k = kε ∈ N such that

∥ymn − y∗∥ < ε, for all m,n > k.

Now select an an m0, n0 ∈ N such that m0, n0 ≥ k. Then we can write

∥ym0n0 − y∗∥ < ε.

On the other hand, since (ymn) ⊆ I2 − LIMrx, we have ym0n0 ∈ I2 − LIMrx, that is,

A(ε) = {(m,n) ∈ N× N : ∥xmn − ym0n0∥ ≥ r + ε} ∈ I2.(2.4)

Now, let us show that the inclusion

Ac(ε) ⊆ Ac(2ε)(2.5)

holds, where A(2ε) = {(m,n) ∈ N× N : ∥xmn − y∗∥ ≥ r + 2ε}. Take (k, l) ∈ Ac(ε). Then
we have

∥xkl − ym0n0∥ < r + ε

and hence

∥xkl − y∗∥ ≤ ∥xkl − ym0n0∥+ ∥ym0n0 − y∗∥ < r + 2ε,
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that is, (k, l) ∈ Ac(2ε), which proves (2.5). So, we have

A(2ε) ⊆ A(ε).

Because of A(ε) ∈ I2 by (2.4), we have A(2ε) ∈ I2 (i.e., y∗ ∈ I2−LIMrx), which completes
the proof. �
Theorem 2.5. The r-I2-limit set of a double sequence x = (xmn) is convex.

Proof. Assume that y1, y2 ∈ I2−LIMrx for the sequence x = (xmn) and let ε > 0 be given.
De�ne

A1(ε) = {(m,n) ∈ N× N : ∥xmn − y1∥ ≥ r + ε} and

A2(ε) = {(m,n) ∈ N× N : ∥xmn − y2∥ ≥ r + ε}.
Because of y1, y2 ∈ I2 − LIMrx, we have A1(ε), A2(ε) ∈ I2. Hence, we have

∥xmn − [(1− λ)y1 + λy2]∥ = ∥(1− λ)(xmn − y1) + λ(xmn − y2)∥ < r + ε,

for each (m,n) ∈ Ac
1(ε) ∩ Ac

2(ε) and each λ ∈ [0, 1]. Because of (Ac
1(ε) ∩ Ac

2(ε)) ∈ F(I2)
by de�nition F(I2), we get

{(m,n) ∈ N× N : ∥xmn − [(1− λ)y1 + λy2]∥ ≥ r + ε} ∈ I2,
that is,

[(1− λ)y1 + λy2] ∈ I2 − LIMrx,

which proves the convexity of the set I2 − LIMrx. �
Theorem 2.6. Suppose r > 0. Then a double sequence x = (xmn) is r-I2-convergent to
x∗ if and only if there exists a sequence y = (ymn) such that

I2 − lim y = x∗ and ∥xmn − ymn∥ ≤ r, for each m,n ∈ N.(2.6)

Proof. Assume that x = (xmn) is r-I2-convergent to x∗. Then, by (2.2) we have

I2 − lim sup ∥xmn − x∗∥ ≤ r.(2.7)

Now, de�ne

ymn =

{
x∗ , if ∥xmn − x∗∥ ≤ r

xmn + r x∗−xmn
∥xmn−x∗∥ , otherwise .

Then, we have

∥ymn − x∗∥ =

{
0 , if ∥xmn − x∗∥ ≤ r

∥xmn − x∗∥ − r , otherwise
,

and by de�nition of ymn,

∥xmn − ymn∥ ≤ r,(2.8)

for all m,n ∈ N. By (2.7) and the de�nition of ymn, we get

I2 − lim sup ∥ymn − x∗∥ = 0

which implies that I2 − lim ymn = x∗.
Assume that (2.6) holds. Because of I2 − lim y = x∗, we have

A(ε) = {(m,n) ∈ N× N : ∥ymn − x∗∥ ≥ r + ε} ∈ I2,
for each ε > 0. Now, de�ne the set

B(ε) = {(m,n) ∈ N× N : ∥xmn − x∗∥ ≥ r + ε}.
It is easy to see that the inclusion

B(ε) ⊆ A(ε)

holds. Because of A(ε) ∈ I2, we get B(ε) ∈ I2. Hence, x = (xmn) is r-I2-convergent to
x∗. �
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Lemma 2.7. For an arbitrary c ∈ I2(Γx) of a double sequence x = (xmn), we have

∥x∗ − c∥ ≤ r for all x∗ ∈ I2 − LIMrx.

Proof. Assume on the contrary that there exist a point c ∈ I2(Γx) and x∗ ∈ I2 − LIMrx

such that ∥x∗ − c∥ > r. De�ne ε := ∥x∗−c∥−r
3 . Hence, we can write

{(m,n) ∈ N× N : ∥xmn − c∥ < ε} ⊆ {(m,n) ∈ N× N : ∥xmn − x∗∥ ≥ r + ε}.(2.9)

Because of c ∈ I2(Γx), we get

{(m,n) ∈ N× N : ∥xmn − c∥ < ε} ̸∈ I2.
But from de�nition of I2-convergence, since

{(m,n) ∈ N× N : ∥xmn − x∗∥ ≥ r + ε} ∈ I2,
so by (2.9) we have

{(m,n) ∈ N× N : ∥xmn − c∥ < ε} ∈ I2,
which contradicts with the fact c ∈ I2(Γx). This completed the proof of the lemma. �
Theorem 2.8. (i) If c ∈ I2(Γx), then

I2 − LIMrx ⊆ Br(c).(2.10)

(ii)

I2 − LIMrx =
∩

c∈I2(Γx)

Br(c) = {x∗ ∈ Rn : I2(Γx) ⊆ Br(x∗)}.(2.11)

Proof. (i) If c ∈ I2(Γx) then by Lemma 2.7, we have

∥x∗ − c∥ ≤ r, for all x∗ ∈ I2 − LIMrx,

otherwise we get

{(m,n) ∈ N× N : ∥xmn − x∗∥ ≥ r + ε} ̸∈ I, for ε :=
∥x∗ − c∥ − r

3
.

Because of c is an I2-cluster point of (xmn), this contradicts with the fact that x∗ ∈
I2 − LIMrx.

(ii) From (2.10), we have

I2 − LIMrx ⊆
∩

c∈I2(Γx)

Br(c).(2.12)

Now, let

y ∈
∩

c∈I2(Γx)

Br(c).

Then we have ∥y − c∥ ≤ r, for all c ∈ I2(Γx), which is equivalent to I2(Γx) ⊆ Br(y), i.e.,∩
c∈I2(Γx)

Br(c) ⊆ {x∗ ∈ Rn : I2(Γx) ⊆ Br(x∗)}.(2.13)

Now, let y ̸∈ I2 − LIMrx. Then, there exists an ε > 0 such that

{(m,n) ∈ N× N : ∥xmn − y∥ ≥ r + ε} ̸∈ I2
which implies the existence of an I2-cluster point c of the sequence x with ∥y− c∥ ≥ r+ ε,
that is,

I2(Γx) ̸⊆ Br(y) and y ̸∈ {x∗ ∈ Rn : I2(Γx) ⊆ Br(x∗)}.

Hence, y ∈ I2 − LIMrx follows from y ∈ {x∗ ∈ Rn : I2(Γx) ⊆ Br(x∗)}, i.e.,

{x∗ ∈ Rn : I2(Γx) ⊆ Br(x∗)} ⊆ I2 − LIMrx.(2.14)
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Therefore, the inclusions (2.12)-(2.14) ensure that (2.11) holds that is,

I2 − LIMrx =
∩

c∈I2(Γx)

Br(c) = {x∗ ∈ Rn : I2(Γx) ⊆ Br(x∗)}.

�
Finally we give the relation between the set of I2-cluster points and the set of rough

I2-limit points of a double sequence.

Theorem 2.9. Let x = (xmn) be an I2-bounded sequences. If r ≥ diam(I2(Γx)), then we
have I2(Γx) ⊆ I2 − LIMrx.

Proof. Let c ̸∈ I2 − LIMrx. Then there exist an ε > 0 such that

{(m,n) ∈ N× N : ∥xmn − c∥ ≥ r + ε} ̸∈ I2.(2.15)

Since x = (xmn) is I2-bounded and from the inequality (2.15), there exists an I2-cluster
point c1 such that

∥c− c1∥ > r + ε1,

where ε1 :=
ε
2 . So we get

diam(I2(Γx)) > r + ε1,

which proves the theorem. �
The converse of this theorem is also holds, i.e., if I2(Γx) ⊆ I2−LIMrx, then we have

r ≥ diam(I2(Γx)).
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