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ABSTRACT. In this work, we discuss various kinds of Z-uniform convergence for sequences
of functions and introduce the concepts of Z*-uniform convergence, Z and Z*-uniformly
Cauchy sequences for sequences of functions in 2-normed spaces. Then, we show the
relation between them.

1. INTRODUCTION

Throughout the paper, N denotes the set of all positive integers and R the set of all
real numbers. The concept of convergence of a sequence of real numbers has been extended
to statistical convergence independently by Fast [9] and Schoenberg [27].

The idea of Z-convergence was introduced by Kostyrko et al. [21] as a generalization
of statistical convergence which is based on the structure of the ideal Z of subset of N [9, 10].
Gokhan et al. [14] introduced the notion of pointwise and uniform statistical convergent of
double sequences of real-valued functions. Gezer and Karakus [13] investigated Z-pointwise
and uniform convergence and Z*-pointwise and uniform convergence of function sequences
and they examined the relation between them. Balaz et al. [3] investigated Z-convergence
and Z-continuity of real functions. Balcerzak et al. [4] studied statistical convergence and
ideal convergence for sequences of functions Diindar and Altay [6, 7] studied the concepts
of pointwise and uniformly Zy-convergence and Z5-convergence of double sequences of func-
tions and investigated some properties about them. Furthermore, Diindar [8] investigated
some results of Zo-convergence of double sequences of functions.

The concept of 2-normed spaces was initially introduced by Géhler [11, 12| in the
1960’s. Since then, this concept has been studied by many authors. Giirdal and Pehli-
van [18] studied statistical convergence, statistical Cauchy sequence and investigated some
properties of statistical convergence in 2-normed spaces. Sahiner et al. [29] and Giirdal [20]
studied Z-convergence in 2-normed spaces. Giirdal and Acik [19] investigated Z-Cauchy
and Z*-Cauchy sequences in 2-normed spaces. Sarabadan and Talebi [25] presented var-
ious kinds of statistical convergence and Z-convergence for sequences of functions with
values in 2-normed spaces and also defined the notion of Z-equistatistically convergence
and study Z-equistatistically convergence of sequences of functions. Recently, Savas and
Giirdal [26] concerned with Z-convergence of sequences of functions in random 2-normed
spaces and introduce the concepts of ideal uniform convergence and ideal pointwise conver-
gence in the topology induced by random 2-normed spaces, and gave some basic properties
of these concepts. Arslan and Diindar [1, 2] investigated the concepts of Z-convergence,
T*-convergence, Z-Cauchy and Z*-Cauchy sequences of functions in 2-normed spaces and
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showed relationships between them. Also, Yegiil and Diindar [31] studied statistical con-
vergence of sequence of functions in 2-normed spaces. Futhermore, a lot of development
have been made in this area (see |5, 22, 23, 24, 28, 30]).

2. DEFINITIONS AND NOTATIONS

Now, we recall the concept of 2-normed space, ideal convergence and some funda-
mental definitions and notations (See [1, 2, 3, 4, 9, 10, 15, 16, 17, 18, 19, 20, 21, 25, 29]).

If K C N, then K, denotes the set {k € K : k < n} and |K,| denotes the cardinality
of K,. The natural density of K is given by §(K) = lim,, 1|K,|, if it exists.

The number sequence x = (zy) is statistically convergent to L provided that for
every € > 0 the set

K=K():={keN: |z, — L| > ¢}

has natural density zero; in this case, we write st —limx = L.

Let X # (. A class Z of subsets of X is said to be an ideal in X provided:
(i) 0 € Z,
(i) A, B € 7 implies AUB € Z,
(ii) AeZ, BC A implies B € T.
7 is called a nontrivial ideal if X € Z. A nontrivial ideal Z in X is called admissible
if {x} € Z, for each z € X.

Example 2.1. Let Iy be the family of all finite subsets of N. Then, Ly is an admissible
tdeal in N and Iy convergence is the usual convergence.

Throughout the paper, we let Z C 2 be an admissible ideal.
Let X # (). A non empty class F of subsets of X is said to be a filter in X provided:
(i) 0 ¢ 7F,
(i) A,B € F implies AN B € F,
(ii) Ae F, AC B implies B € F.

Lemma 2.1 ([21]). If T is a nontrivial ideal in X, X # (), then the class
FIZ)={McCX:(3AcI)(M=X\A)}
is a filter on X, called the filter associated with Z.

A sequence (f,) of functions is said to be Z-convergent (pointwise) to f on D C R
if and only if for every € > 0 and each z € D,

{n:lfu(z) - f(z) 2 e} €T

In this case, we will write f, EA fon D.
A sequence (f,,) of functions is said to be Z*-convergent (pointwise) to f on D C R if
and only if Ve > 0 and Vo € D, 3K, ¢ Z and Ing = no(e,x) € Ky : ¥Yn > ng and n € K,
fal@) — F@)] < e.
Let X be a real vector space of dimension d, where 2 < d < co. A 2-norm on X is a
function |-, -] : X x X — R which satisfies the following statements:
(i) ||z, y|| = 0 if and only if = and y are linearly dependent.
(i) [z, yll = [ly, =]|.
(iii) [loz, y[| = |||z, ]|, o € R.
(iv) [lz,y +2)| < llz,yll + ||z, 2]



The pair (X, ||-, -||) is then called a 2-normed space. As an example of a 2-normed space we
may take X = R? being equipped with the 2-norm ||z, y|| := the area of the parallelogram
based on the vectors x and y which may be given explicitly by the formula

2, yll = [z1y2 — 2o |; = = (21,22),y = (y1,52) € R*.
In this study, we suppose X to be a 2-normed space having dimension d; where

2 <d< 0.
A sequence (z,,) in 2-normed space (X, ||-,||) is said to be convergent to L in X if

lim ||z, — L,y|| =0,

n—o0
for every y € X. In such a case, we write lim,,_,o x, = L and call L the limit of (x,).
A sequence (x,) in 2-normed space (X, ||-,-||) is said to be Z-convergent to L € X,
if for each € > 0 and each nonzero z € X,

Ae,z) ={neN: |z, —L,z|| > e} € T.

In this case, we write Z — lim ||z, — L, 2| =0 or Z — lim ||z, z|| = ||L, 2]
n—oo n—oo
A sequence (x,) in 2-normed space (X, |-, -||) is said to be Z*-convergent to L € X

if and only if there exists a set M € F, M = {m; < mg < --- < my, < ---} such that
lim ||z, — L, z|| = 0, for each nonzero z € X.
n—oo

Throughout the paper, we let X and Y be two 2-normed spaces, { fn }nen and {gn nen
be two sequences of functions and f, g be two functions from X to Y.
The sequence {f,} is said to be convergent to f if f,(x) Iy f(z) for each x € X.

We write f, ”%”Y f. This can be expressed by the formula

(Vz € Y)(Vx € X)(Ve > 0)(Ing € N)(Vn > ng)|| fu(z) — f(x), 2] <e.
We introduce uniform convergent of (fy,)nen to f by the formula

(Vy € Y) (Ve > 0) (3no € N) (Vn > ng) (Vo € X) || fu(z) — f(2),ylly <e

and we write it as fj, ”:”ﬁ’ f.

The sequence (fy)nen is equi-continuous (on X) if
(Vz€ X) (Ve >0) (35 >0) (Vx,z0 € X) ||z — 20, 2||x < I = || fu(x) = fr(20)]|eo < €.

The sequence { f,,} is said to be Z-pointwise convergent to f, if for every € > 0 and
each nonzero z € Y, A(e,2) = {n e N: [[fo(z) — f(x),2]| > e} € Zor T — 11_}111 | fn(z) —
n [e.e]
f(x),z|ly =0 (in (Y,].,.|ly)), for each x € X. In this case, we write f, H”'—HX;I f. This can
be expressed by the formula

(V2 € Y)(Ve > 0)(3M € T)(Yno € N\M)(Vz € X)(¥n > no)|| fn(z) — f(z),2|| < e.

The sequence {f,} is said to be pointwise Z*-convergent to f, if there exists a set
Me F(I), (e, N\M €Z), M ={m; <mg <--- <my <---}, such that for each x € X
and each nonzero z € Y klim | frn (), 2| = || f(x), z|| and we write
— 00

I* — lim ||fae). 2l = /(). 2] ox fu 5 .

The sequence {f,} is said to be Z-Cauchy sequence, if for every e > 0 and each
x € X there exists s = s(e,z) € N such that

{n eN:|fulz) = fs(2), 2] 2 e} € I,

for each nonzero z € Y.



The sequence {f,} is said to be Z*-Cauchy sequence, if there exists a set M =
{m1 <mg <---<my <---} CN, such that the subsequence {fas} = {fm,} is a Cauchy
sequence, i.e.,

iy (2) = fy (@), 2] = 0,

for each z € X and each nonzero z € Y.
The sequence (fn)nen is said to be Z-uniformly convergent to f (on X) if and only
if
(VzeY)(Ve>0)(IM €I)(Yn e N\M) (Vo € X) || fulz) — f(z), 2]y <e.

We write f;, |%I I

An admissible ideal Z C 2V is said to satisfy the condition (AP) if for every countable
family of mutually disjoint sets {A1, As, ...} belonging to Z there exists a countable family
of sets {B1, Ba, ...} such that A;AB; is a finite set for j € N and B =J;2, B; € 7.

Now we begin with quoting the lemmas due to Arslan and Diindar [1], Gezer and
Karakusg [13] and Sarabadan and Talebi [25] which are needed throughout the paper.

Lemma 2.2 ([1]). Let X and Y be two 2-normed spaces, {fn} be a sequence of functions
and f be a function from X to Y. For each x € X and each nonzero z € Y,

" = lim || fu(@), 2] = [|f(2), 2| implies T = limnoo|| fn(2), 2[| = [ f(2), 2.

Lemma 2.3 ([1]). Let Z C 2N be an admissible ideal having the property (AP), X and Y
be two 2-normed spaces, {fn} be a sequence of functions and f be a function from X toY.
If the sequence of functions {fn} is Z-convergent, then it is T*-convergent.

Lemma 2.4 ([13]). Let Z C 2Y, X and Y be two 2-normed spaces and (f,) be a sequence
of functions on X. (fy) is Z-convergent if and only if (f,) is Z-Cauchy.

Lemma 2.5 ([25]). Let Z C 2V be an admissible ideal, X and Y be two 2-normed spaces

with dimY < oo. Assume that fy M)Z f on X, where f, : X — Y, (n € N) are equi-

continuous and f: X — Y. Then, fis sequentially continuous on X.

3. MaIN REsuLTS

In this paper, we study concepts of convergence, Z-uniform convergence, Z*-uniform
convergence of functions and investigate relationships between them and some properties
such as continuity in 2-normed spaces.

Definition 3.1. The sequence of functions {fn} is said to be Z*-uniformly convergent to
f, if there exists a set M € F(I),(i.e., N\M € Z), M = {m1 < mg < ... <my < ...}, such
that for each nonzero z €'Y,

lim | fn(z) = f(2), 2],
n—oo
for each x € X and we write
Il
fn :g/I* f
Theorem 3.1. Let f, be a sequence of continuous functions and f be function from X to
Y. If fn |@>}fz* f, then fis continuous on X.

Proof 3.1. Assume f, |@>¥p f on X.Then, for every e > 0, there exists a set M € F(Z),
(i.e., H=N\M € I) and ko = ko(e) € N such that for each nonzero z € Y

| falz) — f(z), 2] < g,n e M
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for each x € X and for all n > ko. Now we let zy € X is arbitrary. Since {fi,} is
continuous at xg € X, there is a § > 0 such that for each nonzero z € Y,
|z — xo,2|| <6
implies
ko (2) = Fro (@), 2l < 5.

3
Then for all x € X for which ||x — g, z|| < d, we have

Hf(fﬂ)—f(l’O)aZH < “f(a;)_fko(w0)7ZH+kao(x)_fko(xo)7zu+“fk0($)_f($0)ﬂz“
< cHs+z=c

for each nonzero z € Y. Since xg € X 1is arbitrary, f is continuous on X.

Theorem 3.2. Let Z C 2N be an admissible ideal with the property (AP), S be a compact
subset of X and {fn} be a sequence of continuous function on S. Assume that {fn} be
monotonic decreasing on S, i.e.,

fn-‘,—l < fn(l'), (TL =1,2, )

for every x € S, fis continuous and for each nonzero z € Y,

I lim [fa(a). 2] = /@), 2]

foded g

on S. Then,

on S.
Proof 3.2. Let
(3.1) Gn=fo—f

be a sequence of functions on S. Since {fn} is continuous on monotonic decreasing and f

is continuous on S. Then {gn} is continuous on monotonic decreasing and [ is continuous
on S. Since for each nonzero z €Y,

T~ lim ||fu(@). 2] = |7 (2). 2.
for each nonzero z € Y. Then by 8.1, for each nonzero z € Y,
T - lim [|gn(z), 2| =0
on S and since T satisfy condition (AP), then we have for each nonzero z € Y,
7" — lim [[gn(2), 2] =0,
for each x € S. Hence, for every € > 0 and each x € S there exists K, € F(Z) such that
0 < gn(x) < §, for all n > n(x)(n(z) = n(z,e) € K;). Since {gn} is continuous at x € S

for every € > 0, there exists an open set A(x) which contains X such that for each nonzero
z€eY,

€
l9(8) = gn(2), 2|l < 5
for all t € A(zx). Then for € > 0,by monotonicity we have
0< gn($) < In(x) (t) < In(x) (t> — 9n(x) ($) + In(x) (l’) < Hgn(ac) (t) — On(x) (.’L’), Z” + Hgn(x) (33‘)“

(n € Kx) for everyt € A(x) and for alln > n(x) and for each v € S. Since S C UzesA(x)
and S is a compact set, by the Heine- Borel theorem S has a finite open covering such that

S C A(z1) U A(x2) U A(xg)... U A(xg,).
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Now, let
K =Ky MKy, N Ky, N .. Ky,
and define
N = max{n(z1),n(x2),n(xs),...,n(x;)}.
Since for every K., belong to F(Z), we have K € F(Z). Then when all n > N and
n e K,0<g,(t) <e for every t € A(z). So

[l lly
gn — 1+ 0.

Since T is an admissible ideal g, lggz 0 on S and by (2.1) we have f, ‘@i/l fonS.

Sarabadan and Talebi proved the lemma 2.5. In addition to this lemma, if X is
compact, we have following theorem:

I[-5-lly

Theorem 3.3. If X is compact then, we have f,, = 17 f on X.

Proof 3.3. First we will prove that f is continuous on X. Let zg € X and € > 0. By the
equi-continuity of fn’s, there exists 6 > 0 such that for each nonzero ||z € Y.

Fnl@) = falao). 2l < 5

for every n € N and © € Bs(xg). (x € Bs(xo) stands for an open ball in X with center

to o and radius §). Let x € Bs(xo) be fized. Since f, ”L”};z f, the set for each nonzero
z €Y,

€ €
{n € N lfu(wo) = flzo), 2]l = G U{n € N: [ fu(z) = f(2), 2] = 3}
is i L and is different from N. Hence, there exists a n € N such that for each nonzero
z €Y,
€ €
1fn(@0) = flzo), 2l 2 5} and |[fulz) = f(2), 2l = 5}

Thus, we have

1f(xo) = f(x), 2l < |lf(z0) = fulxo), 2]l + 1 fn(w0) = fu(@), 2] + | fu(x) — f (), 2|
e € ¢
< g + § + g = €.
So fis continuous on X. Now assume that X is compact. Let € > 0. Since X is compact,
it follows that f is uniformly continuous and fy’s are equi-uniformly continuous on X. So,
pick & > 0 such that for any x,2° € X and for each nonzero z € Y with ||z — ', 2| < 0.
Then by equi-uniformly continuouty we have for each nonzero z € Y || fn(x) — fu(2'), 2[| < §
and || fer) — f(z'),z]| < §. By the compactness of X, we can choose a finite subcover

Bz, (6), Bry (0), Bag(8), -+, Ba (0)

from the cover {By(0)}zex of X. Using fp :Q’"HY f and a set M € T such that for each
nonzero z € Y, || fn(x:) — f@i), 2| < 5,4 € {1,2,...,k} for all n ¢ M.

Let n ¢ M z € X . Thus, € By, (d) for since i € {1,2,...,k}. Hence,for each
nonzero z € Y we have

[fn(2) = f(2), 2l < fu@) = falao), 2] + ([ fn(ei) = fa), 2l + [1f (i) = f(2), 2]

< £L.E8.°¢
3 3 3

and so fj, |Q§I fon X.



Definition 3.2. {f,} is said to be Z-uniformly Cauchy if for every € > 0 here exists
s = s(e) € N such that for each nonzero z €'Y,

{neN:|fulz)— fs(x),2} >e} €T | for each x € X.
Now, we give T-Cauchy criteria for Z-uniformly Convergence.

Theorem 3.4. Let T C 2" be admissible ideal with the property (AP) and let f, be a
sequence of bounded function on X. Then fy, is T-uniformly convergent if and only if for
every € > 0. There is a n(e) € N such that for each nonzero z € Y

(3-2) [fn(2) = fs(x),2} <e} ¢ 7

Note 3.5. The sequence {f,} satisfying property 3.2 is said to be Z-uniformly Cauchy on
X.

Proof 3.4. Assume that {f,} converges Z-Uniformly to a function f defined on X.Let
€ > 0 then for each nonzero z € Y ,we have

{n:lfu(z) = f2),2} <e} 7

for each x € X.We can select on n(e) € N such that for each nonzero z € Y

{n:llfoe (@) — f@),2} <e} €1
for each © € X .The triangle inequality yields that

{n : ”fn(x) - fn(s)(x)7z} < E} ¢TI

Since € is arbitrary , {fn} is Z-uniformly Cauchy on it.
Conversely,assume that { f,} is Z-uniformly Cauchy on X.Let x € X be fized by 3.2
for every € > 0 there is on n(e) € N such that for each nonzero z € Y,
{n: fn(@) = fage)(2), 2} <e} ¢ 1.
Hence {fn(x)} is Z-Cauchy ,s0 by Lemma 2.4 we have that {f,(x)} is Z-convergent to

f(x).Then f, ‘@ﬁ’z fonX.
Now we shall show that this convergence must be uniform.Note that since I satisfy
the condition (AP),by 3.2 there is a K & T such that for each nonzero z € Y,

£
an(x) - fn(a)(x)az} < 5
for alln(e) € N and n € K. So for every e > 0. Here is K € T and n(e) € N such that
for each nonzero z €Y,
(3.3) [fn(z) = flx), 2]l <e

for alln > n(e) and n € K and for each v € X .Fizing n on applying the limit operator
in 3.3 , we conclude that for every e > 0 there is a K ¢ Z and n(e) € N such that for
each nonzero z € Y. ||fu(x) — f(x),2|| < & for all n > ng and for each x € X.Hence

fn=lllvre £ on X, consequently f, ”":'”gz fonX.
u

Definition 3.3. The sequence of functions {f(z)} is said to be Z*-uniformly Cauchy se-
quence, if there exist a set

MeFI),M={m <my<..<mp<..}CN
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such that for each subsequence {far} = {fmk} is a Cauchy Sequence ,i,e., for each nonzero
z €Y,

m ] fing (@) = frap(2), 2] = 0
p—00

)

for each x € X.

Theorem 3.6. If {f,} is a Z*-uniformly Cauchy sequence than is Z-uniformly Cauchy
sequence in 2-normed spaces.

Proof 3.5. Let {fn} is a Z* -uniformly Cauchy sequence is 2-normed spaces then, by
definition there exist the set

M={m <ms<..<mp<..} CN,MeF®I)
such that for every € > 0 and for each nonzero z € Y,

ank:(x) - fnp($)7 Z” <ég

for each x € X and ky, > ko = ko(e,x).Let N = N(e, X) = my, + 1.Then for € > 0 and
for each nonzero z € Y we have

[ frk(z) = (@), 2| <e
for each x € X and k > ko. Now put H = %.It 18 clear that H € T and
Ale,z) ={neN:|fo(z) — fv(@)]| > e} CHU{mi <ma < .. <mg,}.

Since Ls an admissible ideal then,H U{m; < ma < ... < my, € Z. Hence for every e >0
we find N = N (e, X) such that A(e,z) € Z,i.e.,{fn} is T uniformly Cauchy sequence.
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