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Abstract. In this work, we discuss various kinds of I-uniform convergence for sequences
of functions and introduce the concepts of I∗-uniform convergence, I and I∗-uniformly
Cauchy sequences for sequences of functions in 2-normed spaces. Then, we show the
relation between them.

1. Introduction

Throughout the paper, N denotes the set of all positive integers and R the set of all

real numbers. The concept of convergence of a sequence of real numbers has been extended

to statistical convergence independently by Fast [9] and Schoenberg [27].

The idea of I-convergence was introduced by Kostyrko et al. [21] as a generalization

of statistical convergence which is based on the structure of the ideal I of subset of N [9, 10].

Gökhan et al. [14] introduced the notion of pointwise and uniform statistical convergent of

double sequences of real-valued functions. Gezer and Karaku³ [13] investigated I-pointwise
and uniform convergence and I∗-pointwise and uniform convergence of function sequences

and they examined the relation between them. Baláz et al. [3] investigated I-convergence
and I-continuity of real functions. Balcerzak et al. [4] studied statistical convergence and

ideal convergence for sequences of functions Dündar and Altay [6, 7] studied the concepts

of pointwise and uniformly I2-convergence and I∗
2 -convergence of double sequences of func-

tions and investigated some properties about them. Furthermore, Dündar [8] investigated

some results of I2-convergence of double sequences of functions.

The concept of 2-normed spaces was initially introduced by Gähler [11, 12] in the

1960's. Since then, this concept has been studied by many authors. Gürdal and Pehli-

van [18] studied statistical convergence, statistical Cauchy sequence and investigated some

properties of statistical convergence in 2-normed spaces. �ahiner et al. [29] and Gürdal [20]

studied I-convergence in 2-normed spaces. Gürdal and Aç�k [19] investigated I-Cauchy
and I∗-Cauchy sequences in 2-normed spaces. Sarabadan and Talebi [25] presented var-

ious kinds of statistical convergence and I-convergence for sequences of functions with

values in 2-normed spaces and also de�ned the notion of I-equistatistically convergence

and study I-equistatistically convergence of sequences of functions. Recently, Sava³ and

Gürdal [26] concerned with I-convergence of sequences of functions in random 2-normed

spaces and introduce the concepts of ideal uniform convergence and ideal pointwise conver-

gence in the topology induced by random 2-normed spaces, and gave some basic properties

of these concepts. Arslan and Dündar [1, 2] investigated the concepts of I-convergence,
I∗-convergence, I-Cauchy and I∗-Cauchy sequences of functions in 2-normed spaces and

2010 Mathematics Subject Classi�cation. 40A05, 40A30, 40A35, 46A70.
Key words and phrases. Ideal, Filter, Sequence of functions, I-Convergence, Uniformly convergence,

2-normed spaces.
1



showed relationships between them. Also, Yegül and Dündar [31] studied statistical con-

vergence of sequence of functions in 2-normed spaces. Futhermore, a lot of development

have been made in this area (see [5, 22, 23, 24, 28, 30]).

2. Definitions and Notations

Now, we recall the concept of 2-normed space, ideal convergence and some funda-

mental de�nitions and notations (See [1, 2, 3, 4, 9, 10, 15, 16, 17, 18, 19, 20, 21, 25, 29]).

If K ⊆ N, then Kn denotes the set {k ∈ K : k ≤ n} and |Kn| denotes the cardinality
of Kn. The natural density of K is given by δ(K) = limn

1
n |Kn|, if it exists.

The number sequence x = (xk) is statistically convergent to L provided that for

every ε > 0 the set

K = K(ε) := {k ∈ N : |xk − L| ≥ ε}
has natural density zero; in this case, we write st− limx = L.

Let X ̸= ∅. A class I of subsets of X is said to be an ideal in X provided:

(i) ∅ ∈ I,
(ii) A,B ∈ I implies A ∪B ∈ I,
(iii) A ∈ I, B ⊂ A implies B ∈ I.

I is called a nontrivial ideal if X ̸∈ I. A nontrivial ideal I in X is called admissible

if {x} ∈ I, for each x ∈ X.

Example 2.1. Let If be the family of all �nite subsets of N. Then, If is an admissible

ideal in N and If convergence is the usual convergence.

Throughout the paper, we let I ⊂ 2N be an admissible ideal.

Let X ̸= ∅. A non empty class F of subsets of X is said to be a �lter in X provided:

(i) ∅ ̸∈ F ,

(ii) A,B ∈ F implies A ∩B ∈ F ,

(iii) A ∈ F , A ⊂ B implies B ∈ F .

Lemma 2.1 ([21]). If I is a nontrivial ideal in X, X ̸= ∅, then the class

F(I) = {M ⊂ X : (∃A ∈ I)(M = X\A)}

is a �lter on X, called the �lter associated with I.

A sequence (fn) of functions is said to be I-convergent (pointwise) to f on D ⊆ R
if and only if for every ε > 0 and each x ∈ D,

{n : |fn(x)− f(x) ≥ ε|} ∈ I.

In this case, we will write fn
I→ f on D.

A sequence (fn) of functions is said to be I∗-convergent (pointwise) to f on D ⊆ R if

and only if ∀ε > 0 and ∀x ∈ D, ∃Kx ̸∈ I and ∃n0 = n0(ε, x) ∈ Kx : ∀n ≥ n0 and n ∈ Kx,

|fn(x)− f(x)| < ε.

Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm on X is a

function ∥·, ·∥ : X ×X → R which satis�es the following statements:

(i) ∥x, y∥ = 0 if and only if x and y are linearly dependent.

(ii) ∥x, y∥ = ∥y, x∥.
(iii) ∥αx, y∥ = |α|∥x, y∥, α ∈ R.
(iv) ∥x, y + z∥ ≤ ∥x, y∥+ ∥x, z∥.
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The pair (X, ∥·, ·∥) is then called a 2-normed space. As an example of a 2-normed space we

may take X = R2 being equipped with the 2-norm ∥x, y∥ := the area of the parallelogram

based on the vectors x and y which may be given explicitly by the formula

∥x, y∥ = |x1y2 − x2y1|; x = (x1, x2), y = (y1, y2) ∈ R2.

In this study, we suppose X to be a 2-normed space having dimension d; where

2 ≤ d < ∞.

A sequence (xn) in 2-normed space (X, ∥·, ·∥) is said to be convergent to L in X if

lim
n→∞

∥xn − L, y∥ = 0,

for every y ∈ X. In such a case, we write limn→∞ xn = L and call L the limit of (xn).

A sequence (xn) in 2-normed space (X, ∥·, ·∥) is said to be I-convergent to L ∈ X,

if for each ε > 0 and each nonzero z ∈ X,

A(ε, z) = {n ∈ N : ∥xn − L, z∥ ≥ ε} ∈ I.

In this case, we write I − lim
n→∞

∥xn − L, z∥ = 0 or I − lim
n→∞

∥xn, z∥ = ∥L, z∥.
A sequence (xn) in 2-normed space (X, ∥·, ·∥) is said to be I∗-convergent to L ∈ X

if and only if there exists a set M ∈ F , M = {m1 < m2 < · · · < mk < · · · } such that

lim
n→∞

∥xmk
− L, z∥ = 0, for each nonzero z ∈ X.

Throughout the paper, we letX and Y be two 2-normed spaces, {fn}n∈N and {gn}n∈N
be two sequences of functions and f, g be two functions from X to Y .

The sequence {fn} is said to be convergent to f if fn(x)
∥.,.∥Y−→ f(x) for each x ∈ X.

We write fn
∥.,.∥Y−→ f . This can be expressed by the formula

(∀z ∈ Y )(∀x ∈ X)(∀ε > 0)(∃n0 ∈ N)(∀n ≥ n0)∥fn(x)− f(x), z∥ < ε.

We introduce uniform convergent of (fn)n∈N to f by the formula

(∀y ∈ Y ) (∀ε > 0) (∃n0 ∈ N) (∀n > n0) (∀x ∈ X) ∥fn(x)− f(x), y∥Y < ε

and we write it as fn
∥.,.∥Y
=⇒ f.

The sequence (fn)n∈N is equi-continuous (on X) if

(∀z ∈ X) (∀ε > 0) (∃δ > 0) (∀x, x0 ∈ X) ∥x− x0, z∥X < δ ⇒ ∥fn(x)− fn(x0)∥∞ < ε.

The sequence {fn} is said to be I-pointwise convergent to f , if for every ε > 0 and

each nonzero z ∈ Y, A(ε, z) = {n ∈ N : ∥fn(x) − f(x), z∥ ≥ ε} ∈ I or I − lim
n→∞

∥fn(x) −

f(x), z∥Y = 0 (in (Y, ∥., .∥Y )), for each x ∈ X. In this case, we write fn
∥.,.∥Y−→ I f . This can

be expressed by the formula

(∀z ∈ Y )(∀ε > 0)(∃M ∈ I)(∀n0 ∈ N\M)(∀x ∈ X)(∀n ≥ n0)∥fn(x)− f(x), z∥ ≤ ε.

The sequence {fn} is said to be pointwise I∗-convergent to f , if there exists a set

M ∈ F(I), (i.e., N\M ∈ I), M = {m1 < m2 < · · · < mk < · · · }, such that for each x ∈ X

and each nonzero z ∈ Y lim
k→∞

∥fnk
(x), z∥ = ∥f(x), z∥ and we write

I∗ − lim
n→∞

∥fn(x), z∥ = ∥f(x), z∥ or fn
I∗
→ f.

The sequence {fn} is said to be I-Cauchy sequence, if for every ε > 0 and each

x ∈ X there exists s = s(ε, x) ∈ N such that

{n ∈ N : ∥fn(x)− fs(x), z∥ ≥ ε} ∈ I,

for each nonzero z ∈ Y.
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The sequence {fn} is said to be I∗-Cauchy sequence, if there exists a set M =

{m1 < m2 < · · · < mk < · · · } ⊂ N, such that the subsequence {fM} = {fmk
} is a Cauchy

sequence, i.e.,

lim
k,p→∞

∥fmk
(x)− fmp(x), z∥ = 0,

for each x ∈ X and each nonzero z ∈ Y .

The sequence (fn)n∈N is said to be I-uniformly convergent to f (on X) if and only

if

(∀z ∈ Y ) (∀ε > 0) (∃M ∈ I) (∀n ∈ N\M) (∀x ∈ X) ∥fn(x)− f(x), z∥Y ≤ ε.

We write fn
∥.,.∥Y
=⇒ I f.

An admissible ideal I ⊂ 2N is said to satisfy the condition (AP ) if for every countable

family of mutually disjoint sets {A1, A2, ...} belonging to I there exists a countable family

of sets {B1, B2, ...} such that Ai∆Bi is a �nite set for j ∈ N and B =
∪∞

i=1Bi ∈ I.
Now we begin with quoting the lemmas due to Arslan and Dündar [1], Gezer and

Karaku³ [13] and Sarabadan and Talebi [25] which are needed throughout the paper.

Lemma 2.2 ([1]). Let X and Y be two 2-normed spaces, {fn} be a sequence of functions

and f be a function from X to Y . For each x ∈ X and each nonzero z ∈ Y ,

I∗ − lim
n→∞

∥fn(x), z∥ = ∥f(x), z∥ implies I − limn→∞∥fn(x), z∥ = ∥f(x), z∥.

Lemma 2.3 ([1]). Let I ⊂ 2N be an admissible ideal having the property (AP ), X and Y

be two 2-normed spaces, {fn} be a sequence of functions and f be a function from X to Y .

If the sequence of functions {fn} is I-convergent, then it is I∗-convergent.

Lemma 2.4 ([13]). Let I ⊂ 2N, X and Y be two 2-normed spaces and (fn) be a sequence

of functions on X. (fn) is I-convergent if and only if (fn) is I-Cauchy.

Lemma 2.5 ([25]). Let I ⊂ 2N be an admissible ideal, X and Y be two 2-normed spaces

with dimY < ∞. Assume that fn
∥.,.∥−→I f on X, where fn : X → Y, (n ∈ N) are equi-

continuous and f : X → Y . Then, f is sequentially continuous on X.

3. Main Results

In this paper, we study concepts of convergence, I-uniform convergence, I∗-uniform

convergence of functions and investigate relationships between them and some properties

such as continuity in 2-normed spaces.

De�nition 3.1. The sequence of functions {fn} is said to be I∗-uniformly convergent to

f , if there exists a set M ∈ F(I), (i.e.,N\M ∈ I),M = {m1 < m2 < ... < mk < ...}, such
that for each nonzero z ∈ Y ,

lim
n→∞

∥fn(x)− f(x), z∥,

for each x ∈ X and we write

fn
∥.,.∥Y
=⇒ I∗ f.

Theorem 3.1. Let fn be a sequence of continuous functions and f be function from X to

Y . If fn
∥.,.∥Y
=⇒ I∗ f , then f is continuous on X.

Proof 3.1. Assume fn
∥.,.∥Y
=⇒ I∗ f on X.Then, for every ε > 0, there exists a set M ∈ F(I),

(i.e., H = N\M ∈ I) and k0 = k0(ε) ∈ N such that for each nonzero z ∈ Y

∥fn(x)− f(x), z∥ <
ε

3
, n ∈ M
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for each x ∈ X and for all n > k0. Now we let x0 ∈ X is arbitrary. Since {fk0} is

continuous at x0 ∈ X, there is a δ > 0 such that for each nonzero z ∈ Y ,

∥x− x0, z∥ < δ

implies

∥fk0(x)− fk0(x0), z∥ <
ε

3
.

Then for all x ∈ Xfor which ∥x− x0, z∥ < δ, we have

∥f(x)− f(x0), z∥ ≤ ∥f(x)− fk0(x0), z∥+ ∥fk0(x)− fk0(x0), z∥+ ∥fk0(x)− f(x0), z∥

<
ε

3
+

ε

3
+

ε

3
= ε

for each nonzero z ∈ Y. Since x0 ∈ X is arbitrary, f is continuous on X.

Theorem 3.2. Let I ⊂ 2N be an admissible ideal with the property (AP), S be a compact

subset of X and {fn} be a sequence of continuous function on S. Assume that {fn} be

monotonic decreasing on S, i.e.,

fn+1 ≤ fn(x), (n = 1, 2, ...)

for every x ∈ S, f is continuous and for each nonzero z ∈ Y ,

I − lim
n→∞

∥fn(x), z∥ = ∥f(x), z∥

on S. Then,

fn
∥.,.∥
=⇒I f

on S.

Proof 3.2. Let

gn = fn − f(3.1)

be a sequence of functions on S. Since {fn} is continuous on monotonic decreasing and f

is continuous on S. Then {gn} is continuous on monotonic decreasing and f is continuous

on S. Since for each nonzero z ∈ Y ,

I − lim
n→∞

∥fn(x), z∥ = ∥f(x), z∥,

for each nonzero z ∈ Y . Then by 3.1, for each nonzero z ∈ Y ,

I − lim
n→∞

∥gn(x), z∥ = 0

on S and since I satisfy condition (AP), then we have for each nonzero z ∈ Y ,

I∗ − lim
n→∞

∥gn(x), z∥ = 0,

for each x ∈ S. Hence, for every ε > 0 and each x ∈ S there exists Kx ∈ F(I) such that

0 ≤ gn(x) <
ε
2 , for all n ≥ n(x)(n(x) = n(x, ε) ∈ Kx). Since {gn} is continuous at x ∈ S

for every ε > 0, there exists an open set A(x) which contains X such that for each nonzero

z ∈ Y ,

∥gn(t)− gn(x), z∥ ≤ ε

2
for all t ∈ A(x). Then for ε > 0,by monotonicity we have

0 ≤ gn(x) ≤ gn(x)(t) ≤ gn(x)(t)− gn(x)(x) + gn(x)(x) ≤ ∥gn(x)(t)− gn(x)(x), z∥+ ∥gn(x)(x)∥

(n ∈ KX) for every t ∈ A(x) and for all n ≥ n(x) and for each x ∈ S. Since S ⊂ ∪x∈SA(x)

and S is a compact set, by the Heine- Borel theorem S has a �nite open covering such that

S ⊂ A(x1) ∪A(x2) ∪A(x3)... ∪A(xxi).
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Now, let

K = Kx1 ∩Kx2 ∩Kx3 ∩ ... ∩Kxi

and de�ne

N = max{n(x1), n(x2), n(x3), ..., n(xi)}.
Since for every Kx1, belong to F(I), we have K ∈ F(I). Then when all n ≥ N and

n ∈ K, 0 ≤ gn(t) < ε for every t ∈ A(x). So

gn
∥.,.∥Y
=⇒ I∗ 0.

Since I is an admissible ideal gn
∥.,.∥Y
=⇒ I 0 on S and by (2.1) we have fn

∥.,.∥Y
=⇒ I f on S.

Sarabadan and Talebi proved the lemma 2.5. In addition to this lemma, if X is

compact, we have following theorem:

Theorem 3.3. If X is compact then, we have fn
∥.,.∥Y
=⇒ I f on X.

Proof 3.3. First we will prove that f is continuous on X. Let x0 ∈ X and ε > 0. By the

equi-continuity of fn's, there exists δ > 0 such that for each nonzero ∥z ∈ Y .

fn(x)− fn(x0), z∥ ≤ ε

3

for every n ∈ N and x ∈ Bδ(x0). (x ∈ Bδ(x0) stands for an open ball in X with center

to x0 and radius δ). Let x ∈ Bδ(x0) be �xed. Since fn
∥.,.∥Y−→ I f , the set for each nonzero

z ∈ Y,

{n ∈ N : ∥fn(x0)− f(x0), z∥ ≥ ε

0
} ∪ {n ∈ N : ∥fn(x)− f(x), z∥ ≥ ε

3
}

is in I and is di�erent from N. Hence, there exists a n ∈ N such that for each nonzero

z ∈ Y,

∥fn(x0)− f(x0), z∥ ≥ ε

3
} and ∥fn(x)− f(x), z∥ ≥ ε

3
}.

Thus, we have

∥f(x0)− f(x), z∥ ≤ ∥f(x0)− fn(x0), z∥+ ∥fn(x0)− fn(x), z∥+ ∥fn(x)− f(x), z∥

<
ε

3
+

ε

3
+

ε

3
= ε.

So f is continuous on X. Now assume that X is compact. Let ε > 0. Since X is compact,

it follows that f is uniformly continuous and fn's are equi-uniformly continuous on X. So,

pick δ > 0 such that for any x, x
′ ∈ X and for each nonzero z ∈ Y with ∥x − x

′
, z∥ < δ.

Then by equi-uniformly continuouty we have for each nonzero z ∈ Y ∥fn(x)−fn(x
′), z∥ < ε

3

and ∥f(x)− f(x′), z∥ < ε
3 . By the compactness of X, we can choose a �nite subcover

Bx1(δ), Bx2(δ), Bx3(δ), ..., Bxk
(δ)

from the cover {Bx(δ)}x∈X of X. Using fn =⇒∥.,.∥Y
I f and a set M ∈ I such that for each

nonzero z ∈ Y, ∥fn(xi)− f(xi), z∥ < ε
3 , i ∈ {1, 2, ..., k} for all n ̸∈ M.

Let n ̸∈ M x ∈ X . Thus, x ∈ Bxi(δ) for since i ∈ {1, 2, ..., k}. Hence,for each

nonzero z ∈ Y we have

∥fn(x)− f(x), z∥ ≤ ∥fn(x)− fn(xi), z∥+ ∥fn(xi)− f(xi), z∥+ ∥f(xi)− f(x), z∥

<
ε

3
+

ε

3
+

ε

3
,

and so fn
∥.,.∥Y
=⇒ I f on X.
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De�nition 3.2. {fn} is said to be I-uniformly Cauchy if for every ε > 0 here exists

s = s(ε) ∈ N such that for each nonzero z ∈ Y,

{n ∈ N : ∥fn(x)− fs(x), z} ≥ ε} ∈ I , for each x ∈ X.

Now, we give I-Cauchy criteria for I-uniformly Convergence.

Theorem 3.4. Let I ⊂ 2N be admissible ideal with the property (AP ) and let fn be a

sequence of bounded function on X. Then fn is I-uniformly convergent if and only if for

every ε > 0. There is a n(ε) ∈ N such that for each nonzero z ∈ Y

∥fn(x)− fs(x), z} < ε} ̸∈ I(3.2)

Note 3.5. The sequence {fn} satisfying property 3.2 is said to be I-uniformly Cauchy on

X.

Proof 3.4. Assume that {fn} converges I-Uniformly to a function f de�ned on X.Let

ε > 0 then for each nonzero z ∈ Y ,we have

{n : ∥fn(x)− f(x), z} < ε} ̸∈ I

for each x ∈ X.We can select on n(ε) ∈ N such that for each nonzero z ∈ Y

{n : ∥fn(ε)(x)− f(x), z} < ε} ̸∈ I

for each x ∈ X.The triangle inequality yields that

{n : ∥fn(x)− fn(ε)(x), z} < ε} ̸∈ I.

Since ε is arbitrary , {fn} is I-uniformly Cauchy on it.

Conversely,assume that {fn} is I-uniformly Cauchy on X.Let x ∈ X be �xed by 3.2

for every ε > 0 there is on n(ε) ∈ N such that for each nonzero z ∈ Y,

{n : ∥fn(x)− fn(ε)(x), z} < ε} ̸∈ I.

Hence {fn(x)} is I-Cauchy ,so by Lemma 2.4 we have that {fn(x)} is I-convergent to
f(x).Then fn

∥.,.∥Y
=⇒ I f on X.

Now we shall show that this convergence must be uniform.Note that since I satisfy

the condition (AP ),by 3.2 there is a K ̸∈ I such that for each nonzero z ∈ Y,

∥fn(x)− fn(ε)(x), z} <
ε

2

for all n(ε) ∈ N and n ∈ K. So for every ε > 0. Here is K ̸∈ I and n(ε) ∈ N such that

for each nonzero z ∈ Y,

∥fn(x)− f(x), z∥ < ε(3.3)

for all n ≥ n(ε) and n ∈ K and for each x ∈ X.Fixing n on applying the limit operator

in 3.3 , we conclude that for every ε > 0 there is a K ̸∈ I and n(ε) ∈ N such that for

each nonzero z ∈ Y . ∥fn(x) − f(x), z∥ < ε for all n ≥ n0 and for each x ∈ X.Hence

fn=⇒∥.,.∥yI∗f on X, consequently fn
∥.,.∥Y
=⇒ I f on X.

u

De�nition 3.3. The sequence of functions {f(x)} is said to be I∗-uniformly Cauchy se-

quence, if there exist a set

M ∈ F(I),M = {m1 < m2 < ... < mk < ...} ⊂ N
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such that for each subsequence {fM} = {fmk} is a Cauchy Sequence ,i,e., for each nonzero

z ∈ Y,

lim
k,p→∞

∥fmk(x)− fmp(x), z∥ = 0

for each x ∈ X.

Theorem 3.6. If {fn} is a I∗-uniformly Cauchy sequence than is I-uniformly Cauchy

sequence in 2-normed spaces.

Proof 3.5. Let {fn} is a I∗ -uniformly Cauchy sequence is 2-normed spaces then, by

de�nition there exist the set

M = {m1 < m2 < ... < mk < ...} ⊂ N,M ∈ F(I)

such that for every ε > 0 and for each nonzero z ∈ Y,

∥fnk(x)− fnp(x), z∥ < ε

for each x ∈ X and kp > k0 = k0(ε, x).Let N = N(ε,X) = mk0 + 1.Then for ε > 0 and

for each nonzero z ∈ Y we have

∥fnk(x)− fN (x), z∥ < ε

for each x ∈ X and k > k0. Now put H = N
M .It is clear that H ∈ I and

A(ε, z) = {n ∈ N : ∥fn(x)− fN (x)∥ ≥ ε} ⊂ H ∪ {m1 < m2 < ... < mk0}.

Since Is an admissible ideal then,H ∪ {m1 < m2 < ... < mk0 ∈ I. Hence for every ε > 0

we �nd N = N(ε,X) such that A(ε, z) ∈ I,i.e.,{fn} is I uniformly Cauchy sequence.
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