\mathcal{I} -CESARO SUMMABILITY OF SEQUENCES OF SETS

Uğur ULUSU¹, Ömer KİŞİ²

¹ Afyon Kocatepe University, Faculty of Science, Department of Mathematics, 03200, Afyonkarahisar, Turkey

²Bartin University, Faculty of Science, Department of Mathematics, 74100 Bartin, Turkey

MSC 2010: 40A05; 40A35

Abstract

In this paper, we defined concept of Wijsman \mathcal{I} -Cesàro summability for sequences of sets and investigate the relationship between the concepts of Wijsman strongly \mathcal{I} -Cesàro summability, Wijsman strongly \mathcal{I} -lacunary summability, Wijsman *p*-strongly \mathcal{I} -Cesàro summability and Wijsman \mathcal{I} -statistical convergence.

Keywords: Cesàro summability, statistical convergence, lacunary sequence, \mathcal{I} -convergence, sequence of sets, Wijsman convergence.

References

- [1] J.-P. Aubin, H. Frankowska, Set-valued analysis, Birkhauser, Boston, 1990.
- [2] M. Baronti, P. Papini, Convergence of sequences of sets, In: Methods of functional analysis in approximation theory, ISNM 76, Birkhauser-Verlag, Basel, 1986.
- [3] G. Beer, On convergence of closed sets in a metric space and distance functions, Bull. Aust. Math. Soc. 31 (1985) 421–432.
- [4] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241–244.
- [5] J. A. Fridy, C. Orhan, Lacunary Statistical Convergence, Pacific J. Math. 160 (1) (1993) 43–51.
- [6] Ö. Kişi, F. Nuray, New Convergence Definitions for Sequences of Sets, Abstract and Applied Analysis, 2013 Article ID 852796, 6 pages http://dx.doi.org/10.1155/2013/852796.

¹ulusu@aku.edu.tr

²okisi@bartin.edu.tr