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Abstract 

In this article, the structure of the improved 𝑡𝑎𝑛(𝜑/2)-expansion method and the simplest equation 

method are applied. The fractional nonlinear model of the low-pass electrical transmission lines via 

Atangana-Baleanu derivative operator is taken into consideration and exact solutions have been 

constructed of this equation using proposed methods. This article explores the applicability and 

effectiveness of these methods on fractional nonlinear evolution equations. 

 

 

 

Alçak Geçiren Elektrik İletim Hatlarının Kesirli Mertebeden Lineer 
Olmayan Modelinin İlerleyen Dalga Çözümlerinin Oluşturulması 
 

 

Anahtar kelimeler 

Atangana-Baleanu 

türev operatörü; 

geliştirilmiş 𝑡𝑎𝑛(𝜑/2)-

açılım yöntemi ; en 

basit denklem yöntemi 

Öz 

Bu makalede, geliştirilmiş 𝑡𝑎𝑛(𝜑/2)-açılım yöntemi ve en basit denklem yöntemi uygulanmıştır. Alçak 

geçiren elektrik iletim hatlarının Atangana-Baleanu türev operatörü aracılığıyla kesirli mertebeden 

lineer olmayan modeli dikkate alınmış ve önerilen yöntemler kullanılarak bu denklemin tam çözümleri 

oluşturulmuştur. Bu makale, bu yöntemlerin kesirli doğrusal olmayan evrim denklemleri üzerindeki 

uygulanabilirliğini ve etkinliğini araştırmaktadır. 

 

 
© Afyon Kocatepe Üniversitesi 

 

1. Introduction 

Fractional nonlinear evolution equation is one of the 

branches of science that has attracted attention 

especially in recent years. Fractional analysis studies 

that started with the discussion between L’Hospital 

and Leibniz have attracted the attention of 

researchers for many years. In addition to 

mathematics, it has a very deep physical application 

area where it can formulate many different 

phenomena in different fields such as physics, 

engineering sciences, economics, chemistry, signal 

processing, rheology, diffusion processes, food 

supplements, semi-chaotic dynamic systems, 

mechanics-mechatronics, seismology, 

hydrodynamics. Due to its wide scope and diverse 

applications in different disciplines, the importance 

of exact (analytical) and numerical solutions of 

fractional differential equations has increased. 

Many methods such as the direct algebraic method 

(Rezazadeh et al. 2017), the sinh-Gordon function 

method (Yokuş et al. 2020), the decomposition 

method (Ray 2006), the discrete homotopy 

perturbation method (Özpınar 2020), the finite 

forward difference method (Yokuş 2020), the 

modified homotopy analysis transform method 
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(Morales-Delgado et al. 2018), the (𝑚 + 1/𝐺′)-

expansion method (Durur et al. 2020), the sub-

equation method (Tasbozan et al. 2019, Yokuş et al. 

2020), the (𝐺′/𝐺) method (Durur 2020, Shang and 

Zheng 2013), fractional sub-equation method (Yaşar 

and Yıldırım 2018), (1/G′)-expansion method (Durur 

ve Yokuş 2019, Durur ve Yokuş 2020,  Yokuş et al. 

2020, Yokuş et al. 2020),  the generalization 

exponential rational method (Khater et al. 2020), 

the modified auxiliary equation method (Alderremy 

et al. 2019) etc. to be used to reach solutions have 

been proposed. 

The most popular definitions in the fractional 

mathematics world are the Riemann-Liouville, 

Grünwald-Letnikov and Caputo (Podlubny 1999, 

Caputo 1967, Caputo and Fabrizio 2015) definitions. 

Atangana-Baleanu (Atangana and Baleanu 2016) 

fractional derivative and integral due to Caputo and 

Riemann-Liouville fractional derivatives have played 

an important role in mathematical modeling these 

days. 

In this study, we construct the solutions for the 

fractional nonlinear model of the low-pass electrical 

transmission lines which is given by (Abdou and 

Soliman 2018)  

𝒟𝑡𝑡
2𝑣𝑊− 𝛼𝒟𝑡𝑡

2𝑣𝑊2 + 𝜎𝒟𝑡𝑡
2𝑣𝑊3 −

𝜆2𝒟𝑥𝑥
2𝑣𝑊−

𝜆4

12
𝒟𝑥𝑥𝑥𝑥
4𝑣 𝑊 = 0,                                (1) 

where 𝑊 = 𝑊(𝑥, 𝑡) is the function that is used to 
describe the dynamical behavior (the voltage) of 
the nonlinear wave processes low-pass electrical 
transmission lines. Additionally, 𝛼, 𝜆, 𝜎 are 
arbitrary constants while 0 < 𝑣 < 1. The variable x 
is interpreted as the propagation distance and t is 
the slow time. The physical details of the derivation 
of Eq. (1) using the Kirchhoffs laws are given in 
(Abdou and Soliman 2018). 
Applying the following definition of ABR fractional 

operator (Atangana and Gomez-Aguilar 2018) to Eq. 

(1); 

Definition 1 It is given by (Fernandez et al. 2019) 

 ABR𝒟𝑎+
𝑣 ℱ(𝑡) =

ℬ(𝑣)

1−𝑣

𝑑

𝑑𝑡
∫
𝑡

𝑎
ℱ(𝑥)𝒢𝑣 (

−𝑣(t−𝑣)𝑣

1−𝑣
)𝑑𝑥,  (2) 

where 𝒢𝑣  is the Mittag-Leffler function which is 

defined by  

𝒢𝑣(
−𝑣(t−𝑣)𝑣

1−𝑣
) = ∑∞𝑛=0

(
−𝑣

1−𝑣
)𝑛(𝑡−𝑥)𝑣𝑛

Γ(𝑣𝑛+1)
, (3) 

 and ℬ(𝑣) being a normalisation function. 

Thus  

 ABR𝒟𝑎+
𝑣 ℱ(𝑥) =

ℬ(𝑣)

1−𝑣
∑∞𝑛=0 (

−𝑣

1−𝑣
)
𝑛 

 𝑅𝐿ℐ𝑎
𝑣𝑛ℱ(𝑥), (4) 

leads to 𝑊(𝑥, 𝑡) = 𝑢(𝜁), 

𝜁 = (1 − 𝑣)(𝑥−𝑣𝑛 +

𝑘𝑡−𝑣𝑛)(𝐵(𝑣))
−1
(∑∞𝑛=0 (−

𝑣

1−𝑣
)
𝑛

Γ(1 − 𝑣𝑛))

−1

,

 (5) 

 where 𝑘 is the speed of the traveling wave. 
 
Using wave transformation given in (5), Eq. (1) can 

be converted to ordinary differential equation 

(ODE). Twice integration of the obtained ODE with 

zero constant of the integration, gives 

(𝑘2 − 𝜆2)𝑢(𝜁) − 𝛼 𝑘2(𝑢(𝜁))
2
+

𝜎 𝑘2(𝑢(𝜁))
3
− 1/12 𝜆4

𝑑2

𝑑  𝜁2
𝑢(𝜁) = 0. (6) 

In the next sections, we will examine an ordinary 

differential equation (ODE) obtained above. The 

remainder of this paper is divided into five sections. 

In Sects. 2 and 3, methods are described briefly. In 

Sects. 4 and 5, proposed methods are applied to the 

model equation. In Sect. 6, results and discussions 

are given. In Sect. 7, conclusions and 

recommendations for future study are presented. 

2.  The improved 𝒕𝒂𝒏(𝝋/𝟐)-expansion method 

In this section, the mathematical architecture 

(Manafian et al. 2016) is used to product exact 

traveling wave solutions. Consider the general 

nonlinear partial differential equation (NLPDE) for 

𝑞(𝑥, 𝑡) is given by, 

𝑃(𝑞, 𝑞𝑥, 𝑞𝑡 , 𝑞𝑥𝑥 , 𝑞𝑡𝑡 , . . . ) = 0. (7) 
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Taking into account wave transformation 𝜁 = 𝑘𝑥 +

𝑣𝑡, one can gain 

𝑄(𝑞, 𝑘𝑞′, 𝑣𝑞′, 𝑘2𝑞′′, 𝑣2𝑞′′, . . . ) = 0. (8) 

The solution of Eq. (8) can be articulated as  

𝑞(𝜁) = 𝑆(𝜑) = ∑𝑀𝑗=−𝑀 𝐴𝑗[𝜌 + 𝑡𝑎𝑛(𝜑/2)]
𝑗 , (9) 

where 𝐴𝑗  (0 ≤ 𝑗 ≤ 𝑀) and 𝐴−𝑗 = 𝐵𝑗 (1 ≤ 𝑗 ≤ 𝑀) 

are constants and 𝜌 is arbitrary constant, such that 

𝐴𝑗 ≠ 0, 𝐵𝑗 ≠ 0 and 𝜑 = 𝜑(𝜁) is the solution of the 

following first order differential equation: 

𝜑′(𝜁) = 𝛾sin(𝜑(𝜁)) + 𝛽cos(𝜑(𝜁)) + 𝜃. (10) 

If we try to find the solution of the (10), then we 

obtain special solutions that vary according to the 

state of the coefficients: 

Family 1. When Δ = 𝛾2 + 𝛽2 − 𝜃2 < 0 and 

𝛽 − 𝜃 ≠ 0, then 𝜑(𝜁) = 2tan−1 [
𝛾

𝛽−𝜃
−

√−Δ

𝛽−𝜃
tan(

√−Δ

2
𝜁)̅]. 

Family 2. When Δ = 𝛾2 + 𝛽2 − 𝜃2 > 0 and 

𝛽 − 𝜃 ≠ 0, then 𝜑(𝜁) = 2tan−1 [
𝛾

𝛽−𝜃
+

√Δ

𝛽−𝜃
tanh(

√Δ

2
𝜁)̅]. 

Family 3. When Δ = 𝛾2 + 𝛽2 − 𝜃2 > 0, 

𝛽 ≠ 0 and 𝜃 = 0, then 𝜑(𝜁) = 2tan−1 [
𝛾

𝛽
+

√𝛽2+𝛾2

𝛽
tanh (

√𝛽2+𝛾2

2
𝜁)̅].  

Family 4. When Δ = 𝛾2 + 𝛽2 − 𝜃2 < 0, 

𝜃 ≠ 0 and 𝛽 = 0, then 𝜑(𝜁) = 2tan−1 [
−𝛾

𝜃
+

√𝜃2−𝛾2

𝜃
tan (

√𝜃2−𝛾2

2
𝜁)̅].  

 Family 5. When Δ = 𝛾2 + 𝛽2 − 𝜃2 > 0, 

𝛽 − 𝜃 ≠ 0 and 𝛾 = 0, then 𝜑(𝜁) =

2tan−1 [√
𝛽+𝜃

𝛽−𝜃
tanh(

√𝛽2−𝜃2

2
𝜁)̅].  

Family 6. When 𝛾 = 0 and 𝜃 = 0, then 

𝜑(𝜁) = tan−1 [
𝑒2𝛽�̅�−1

𝑒2𝛽�̅�+1
,
𝑒2𝛽�̅�

𝑒2𝛽�̅�+1
].  

Family 7. When 𝛽 = 0 and 𝜃 = 0, then 

𝜑(𝜁) = tan−1 [
𝑒2𝛾�̅�

𝑒2𝛾�̅�+1
,
𝑒2𝛾�̅�−1

𝑒2𝛾�̅�+1
].  

Family 8. When 𝛾2 + 𝛽2 = 𝜃2, then 𝜑(𝜁) =

2tan−1 [
𝛾�̅�+2

(𝛽−𝜃)�̅�
].  

Family 9. When 𝛾 = 𝛽 = 𝜃 = 𝑟𝛾, then 

𝜑(𝜁) = 2tan−1[𝑒𝑟𝛾�̅� − 1].  

Family 10. When 𝛾 = 𝜃 = 𝑟𝛾 and 𝛽 = −𝑟𝛾, 

then 𝜑(𝜁) = −2tan−1 [
𝑒𝑟𝛾�̅�

𝑒𝑟𝛾�̅�−1
].  

Family 11. When 𝜃 = 𝛾, then 𝜑(𝜁) =

−2tan−1 [
(𝛾+𝛽)𝑒𝛽�̅�−1

(𝛾−𝛽)𝑒𝛽�̅�−1
].  

Family 12. When 𝛾 = 𝜃, then 𝜑(𝜁) =

2tan−1 [
(𝜃+𝛽)𝑒𝛽�̅�+1

(𝛽−𝜃)𝑒𝛽�̅�−1
].  

Family 13. When 𝜃 = −𝛾, then 𝜑(𝜁) =

2tan−1 [
𝑒𝛽�̅�+𝛽−𝛾

𝑒𝛽�̅�−𝛽−𝛾
].  

 Family 14. When 𝛽 = −𝜃, then 𝜑(𝜁) =

2tan−1 [
𝛾𝑒𝛾�̅�

1−𝑑𝑒𝛾�̅�
].  

Family 15. When 𝛽 = 0 and 𝛾 = 𝜃, then 

𝜑(𝜁) = −2tan−1 [
𝜃�̅�+2

𝜃�̅�
].  

Family 16.When 𝛾 = 0 and 𝛽 = 𝜃, then 

𝜑(𝜁) = 2tan−1[𝜃𝜁]̅.  

Family 17. When 𝛾 = 0 and 𝛽 = −𝜃, then 

𝜑(𝜁) = −2tan−1 [
1

𝜃�̅�
].  

 Family 18. When 𝛾 = 0 and 𝛽 = 0, then 

𝜑(𝜁) = 𝜃𝜁 + 𝐶. 

Family 19. When 𝛽 = 𝜃, then 𝜑(𝜁) =

2tan−1 [
𝑒𝛾�̅�−𝜃

𝛾
], where 𝜁̅ = 𝜁 + 𝐶, 𝜌, 𝐴0, 𝐴𝑖 , 𝐵𝑖(𝑖 =

1,2, . . . , 𝑀), 𝛾, 𝛽 and 𝜃 are constants to be 

determined later. 

As is often done in similar methods, balancing the 

highest order derivatives with the highest order 

nonlinear terms in Eq. (8), one can acquire 𝑗. 

Following determining 𝑗, if Eq. (9) is substitued into 
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reduced equation (8), an algebraic equations set 

which contains 𝑡𝑎𝑛(𝜑/2)𝑖, 𝑐𝑜𝑡(𝜑/2)𝑖, (𝑖 =

0,1,2, . . . ) is obtained. Then setting each coefficient 

of 𝑡𝑎𝑛(𝜑/2)𝑖, 𝑐𝑜𝑡(𝜑/2)𝑖  to zero, we can get a set 

of over-determined equations for 𝐴0, 𝐴𝑖 , 𝐵𝑖(𝑖 =

1,2, . . . , 𝑀), 𝛾, 𝛽, 𝜃 and 𝜌. Using computer 

programming  such as Maple, and Mathematica 

obtained system can be solved. Finally, 

𝐴0, 𝐴1, 𝐵1 , . . . , 𝐴𝑀 , 𝐵𝑀 , 𝜌 are replaced in the Eq. (9). 

3. The Simplest Equation Method 

In this section we will outline the simplest equation 

method proposed by Kudryashov (Kudryashov 2005, 

Kudryashov 2005) in 2005. Consider a NLPDE given 

in Eq. (7) and (8). Suppose that Eq. (8) have solutions 

in the following form:  

𝑞(𝜁) = ∑𝑀𝑖=0 𝐴𝑖(𝑃(𝜁))
𝑖
,               (11) 

where 𝑃(𝜁) satisfies the well-known Bernoulli and 

Riccati equations. Using of the balancing principle, 

the number 𝑀 can be calculated here. The 

coefficients 𝐴0, 𝐴1, … , 𝐴𝑀 are constants. 

If these well-known equations are used respectively, 

the form the solutions will have is given below. 

For the Bernoulli equation: 

𝑃′(𝜁) = 𝐴𝑃(𝜁)2 + 𝐵𝑃(𝜁),  (12) 

where 𝐴 and 𝐵 are arbitrary constants. This 

equation is a well-known nonlinear ODE. The 

solution is represented as follows  

𝑃(𝜁) =
𝐵(cosh[𝐵(𝜁+𝐶)]+sinh[𝐵(𝜁+𝐶)])

1−𝐴cosh[𝐵(𝜁+𝐶)]−𝐴sinh[𝐵(𝜁+𝐶)]
. 

For the Riccati equation 

𝑃′(𝜁) = 𝐴𝑃(𝜁)2 + 𝐵𝑃(𝜁) + 𝐷, (13) 

the solutions are represented as follows  

𝑃(𝜁) = −
𝐵+𝜃tanh(

1

2
𝜃(𝜁+𝐶))

2𝐴
, 

and  

𝑃(𝜁) = −
𝐵 + 𝜃tanh (

1
2
𝜃𝜁)

2𝐴

+
sech (

𝜃
2
𝜁)

𝐶cosh (
𝜃
2
𝜁) −

2𝐴
𝜃
sinh(

𝜃
2
𝜁)
, 

where 𝜃2 = 𝐵2 − 4AD > 0. 

4. Application of ITEM 

Now, the ITEM will be explained for constructing 
traveling wave solutions to Eq. (6). With the help of 

the balancing principle between the 
𝑑2

𝑑𝜁2
𝑢(𝜁) and 

𝑢3(𝜁) in Eq. (6), we obtain 3𝑀 = 𝑀 + 2, 𝑀 = 1. 
Therefore, Eq. (9) is given as  

𝑢(𝜁) = 𝐴0 + 𝐴1tan (
𝜑(𝜁)

2
) + 𝐵1 (tan (

𝜑(𝜁)

2
))

−1

. 

Imposing the above equation into (6) and collect all 

terms with the same order  tan(𝜑(𝜁)/2) together 

and comparing, we obtain a set of algebraic 

equations of 𝛾, 𝛽, 𝜃, 𝐴0, 𝐴1, 𝐵1 as  

−
1

12
𝜆4𝐵1𝛽𝜃 −

1

24
𝜆4𝐵1𝜃

2 −
1

24
𝜆4𝐵1𝛽

2 + 𝜎 𝑘2𝐵1
3 = 0, 

−𝛼 𝑘2𝐵1
2 + 3 𝜎 𝑘2𝐴0𝐵1

2 −
1

8
𝜆4𝐵1𝛾𝜃 −

1

8
𝜆4𝐵1𝛾𝛽 = 0, 

3 𝜎 𝑘2𝐴0
2𝐵1 + 3 𝜎 𝑘

2𝐴1𝐵1
2 −

1

24
𝜆4𝐵1𝜃

2 − 2 𝛼 𝑘2𝐴0𝐵1

+
1

24
𝜆4𝐵1𝛽

2 − 𝜆2𝐵1 −
1

12
𝜆4𝐵1𝛾

2

+ 𝑘2𝐵1 = 0, 

−𝜆2𝐴0 −
1

24
𝜆4𝐴1𝛾𝜃 +

1

24
𝜆4𝐵1𝛾𝛽 −

1

24
𝜆4𝐵1𝛾𝜃

+ 𝜎 𝑘2𝐴0
3 −

1

24
𝜆4𝐴1𝛾𝛽 − 𝛼 𝑘

2𝐴0
2

+ 𝑘2𝐴0 +6 𝜎 𝑘
2𝐴0𝐴1𝐵1

− 2 𝛼 𝑘2𝐴1𝐵1 = 0, 

𝑘2𝐴1 −
1

12
𝜆4𝐴1𝛾

2 + 3 𝜎 𝑘2𝐴1
2𝐵1 −

1

24
𝜆4𝐴1𝜃

2 − 𝜆2𝐴1

+
1

24
 𝜆4𝐴1𝛽

2 + 3 𝜎 𝑘2𝐴0
2𝐴1

− 2 𝛼 𝑘2𝐴0𝐴1 = 0, 

−
1

8
𝜆4𝐴1𝛾𝜃 + 3 𝜎 𝑘

2𝐴0𝐴1
2 +

1

8
𝜆4𝐴1𝛾𝛽 − 𝛼 𝑘

2𝐴1
2 = 0, 

𝜎 𝑘2𝐴1
3 +

1

12
𝜆4𝐴1𝛽𝜃 −

1

24
𝜆4𝐴1𝛽

2 −
1

24
𝜆4𝐴1𝜃

2 = 0. 
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Solving the above algebraic equations with the help 

of Maple, we get three sets of coefficients for the 

solutions.  

Case I 

We have the desired constants as 

𝑘 =
√36+3 Δ 𝜆2𝜆

6
, 𝜆 = 𝜆, 𝜎 = 

2(12+Δ 𝜆2)𝛼2

9Δ 𝜆2
, 𝐴0 =

− 
3𝜆2(−Δ+𝛾√Δ)

2(12+Δ 𝜆2)𝛼
, 𝐴1 =

3√Δ(−𝜃+𝛽)𝜆2

2(12+Δ 𝜆2)𝛼
, 𝐵1 = 0.

  (14) 

By using Family 1, (6) becomes 

𝑢1 = −
3

2

𝜆2(−Δ+√Δ√−Δtan(
1

2
√−Δ𝜁))

𝛼 (𝜆2Δ+12) 
 , (15) 

where Δ = 𝛽 2 + 𝛾 2 − 𝜃 2 and 𝜁 is given in (5). 

By using Family 2, (6) becomes 

𝑢2 =
3

2
 
𝜆2(Δ+tanh(

1

2
√Δ𝜁)Δ)

𝛼 (𝜆2Δ+12) 
, (16) 

where Δ = 𝛽 2 + 𝛾 2 − 𝜃 2 and 𝜁 is given in (5). 

By using  Family 3, (6) one gets 

𝑢3 =
3

2
 
𝜆2(𝛽3+𝛽𝛾2+(𝛾2+𝛽2)𝛽tanh(

1

2
√𝛾2+𝛽2𝜁))

𝛽𝛼 (  𝜆2(𝛾2+𝛽2)+12)  
 , (17) 

where 𝜁 is given in (5). 

By using Family 4, (6) can be written as 

𝑢4 =
3

2

𝜆2(𝜃𝛾2−𝜃3−𝑖(𝜃2−  𝛾2)𝜃tan(
1

2
√𝜃2−𝛾2𝜁))

𝜃𝛼 (𝜆2(𝛾2−𝜃2)+12) 
, (18) 

where 𝜁 is given in (5). 

By using Family 5, (6) can be written as 

𝑢5 =
3
2

𝜆2  (𝛽−𝜃)(𝛽+𝜃+|𝛽+𝜃|tanh(
1

2
√𝛽2−𝜃2𝜁))

𝛼(𝜆2𝛽2−𝜆2𝜃2+12) 
,  (19) 

where 𝜁 is given in (5). 

By using Family 13, (6) can be written as 

𝑢6 = 
3𝜆2𝛽2e𝛽 𝜁

(e𝛽 𝜁−𝛽−𝛾)𝛼 (𝜆2𝛽2+12) 
, (20) 

where 𝛽 > 0 and 𝜁 is given in (5). 

By using Family 18, (6) can be written as 

𝑢7 =
3𝜃𝜆2(𝜃+√−𝜃2tan(

1

2
𝜃𝜁+

1

2
𝐶))

2𝛼 (−12+𝜆2𝜃2) 
, (21) 

where 𝜁 is given in (5) and 𝐶 is arbitrary constant. 

 

Case II 

We have the desired constants as 

𝑘 =
√36+3 Δ 𝜆2

6
𝜆, 𝜆 = 𝜆, 𝜎 =

 
2(12+Δ 𝜆2)𝛼2

9Δ 𝜆2
, 𝐴0 = 

3𝜆2(Δ+𝛾√Δ)

2(12+Δ 𝜆2)𝛼
, 𝐴1 = 0, 𝐵1 =

3√Δ𝜆2(𝜃+𝛽)

2(12+Δ 𝜆2)𝛼
, (22) 

By using Family 1, (6) becomes 

𝑢8 =
3

2
 
𝜆2(−𝛾Δ−Δ√Δ+√−Δ(Δ+𝛾 √Δ)tan(

1

2
√−Δ𝜁))

(𝜆2Δ+12) 𝛼 (−𝛾+√−Δtan(
1

2
√−Δ𝜁))

, (23) 

where 𝜁 is given in (5) and Δ = 𝛽 2 − 𝜃 2 + 𝛾 2. 

By using Family 2, (6) becomes  

𝑢9 =
3

2
 
𝜆2Δ(𝛾+√Δ)(1+tanh(

1

2
√Δ𝜁))

(𝜆2Δ+12) 𝛼 (𝛾+√Δtanh(
1

2
√Δ𝜁))

, (24) 

where 𝜁 is given in (5) and Δ = 𝛽 2 − 𝜃 2 + 𝛾 2. 

By using Family 3, (6) becomes  

𝑢10 =

3

2
 
𝜆2(𝛾2+𝛽2)(𝛾+√𝛾2+  𝛽2)(tanh(

1

2
√𝛾2+𝛽2𝜁)+1)

𝛼 (𝜆2(𝛽2+𝛾2)+12) (𝛾+√𝛾2+𝛽2tanh(
1

2
√𝛾2+𝛽2𝜁))

, (25) 

where 𝜁 is given in (5). 

By using Family 4, (6) becomes  

𝑢11 =
3

2
  
𝜆2(−Δ(𝛾+√Δ)+(Δ+𝛾√Δ)√−Δtan(

1

2
√−Δ𝜁))

(𝜆2Δ+12) 𝛼 (−𝛾+√−Δtan(
1

2
 √−Δ𝜁))

, (26) 

where 𝜁 is given in (5) and Δ = 𝛾 2 − 𝜃 2. 

By using Family 5, (6) becomes  

𝑢12 =

3

2
𝜆2 √  

𝛽−𝜃

𝛽+𝜃
 
(√Δ(𝛽+𝜃)+√

𝛽+𝜃

𝛽−𝜃
tanh(

1

2
√Δ𝜁)Δ)

(𝜆2Δ+12) 𝛼tanh(
1

2
√Δ𝜁)

 , (27) 

where 𝜁 is given in (5) and Δ = 𝛽 2 − 𝜃 2. 

By using Family 13, (6) becomes  

𝑢13 = 
3𝜆2𝛽2e𝛽 𝜁

(𝜆2𝛽2+12) 𝛼 (e𝛽 𝜁+𝛽−𝛾)
, (28) 
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where 𝛽 > 0 and 𝜁 is given in (5). 

By using Family 18, (6) becomes  

𝑢14 =
3𝜆2𝜃(tan(

1

2
𝜃𝜁+

1

2
𝐶)𝜃−√−  𝜃2)

2(−12+𝜆2𝜃2) 𝛼 tan(
1

2
𝜃𝜁+

1

2
𝐶)

 (29) 

where 𝜁 is given in (5). 

By using Family 19, (6) becomes  

𝑢15 = − 
3𝜆2𝛾2𝜃

(𝜆2𝛾2+12) 𝛼 (e𝛾 𝜁−𝜃)
, (30) 

where 𝛾 < 0 and 𝜁 is given in (5). 

Case III 

We have the desired constants as  

𝑘 =
√36+3 Δ 𝜆2𝜆

6
, 𝜆 = 𝜆, 𝜎 =

2(12+Δ 𝜆2)𝛼2

9𝜆2𝛾2
, 𝐴0 = 

3𝜆2𝛾2

(12+Δ 𝜆2)𝛼
, 𝐴1 =

− 
3𝜆2𝛾(−𝜃+𝛽)

2(12+Δ 𝜆2)𝛼
, 𝐵1 = 

3𝜆2𝛾(𝜃+𝛽)

2(12+Δ 𝜆2)𝛼
. (31) 

By using Family 1, (6) becomes  

𝑢16 = 
−3𝜆2𝛾(Δ+Δ(tan(

1

2
√−Δ𝜁))

2

)

2(𝜆2Δ+12) 𝛼 (−𝛾+√−Δtan(
1

2
√−Δ𝜁))

, (32) 

where 𝜁 is given in (5) and Δ = 𝛽 2 − 𝜃 2 + 𝛾 2. 

By using Family 2, (6) becomes 

𝑢17 = 
−3𝜆2Δ𝛾(−1+(tanh(

1

2
√Δ𝜁))

2

)

2(𝜆2Δ+12)𝛼 (𝛾+√Δtanh(
1

2
√Δ𝜁))

, (33) 

where 𝜁 is given in (5) and Δ = 𝛽 2 − 𝜃 2 + 𝛾 2. 

By using Family 3, (6) becomes  

𝑢18 =

 
3𝜆2𝛾𝛽(𝛾2+𝛽2)(1−(tanh(

1

2
√𝛾2+𝛽2𝜁))

2

)

2(𝜆2(𝛽2+𝛾2)+12) 𝛼 𝛽(𝛾+√𝛾2+𝛽2tanh(
1

2
√𝛾2+𝛽2𝜁))

, (34) 

where 𝜁 is given in (5). 

By using Family 4, (6) becomes  

𝑢19 = 
3𝜆2𝛾(−𝛾2+𝜃2)𝜃(1+(tan(

1

2
√𝜃2−𝛾2𝜁))

2

)

2(12+𝜆2(𝛾2−𝜃2))
 
𝛼 𝜃(−𝛾+√𝜃2−𝛾2tan(

1

2
√𝜃2−𝛾2𝜁))

,

 (35) 

where 𝜁 is given in (5). 

By using Family 8, (6) becomes  

𝑢20 = 
−𝛾𝜆2

2𝛼 𝜁 (𝛾𝜁+2)
, (36) 

where 𝜁 is given in (5). 

By using Family 13, (6) becomes  

𝑢21 =
−6𝜆2𝛾e𝛽 𝜁𝛽2

(𝜆2𝛽2+12) 𝛼 (e𝛽 𝜁−𝛽−𝛾)(e𝛽 𝜁+𝛽−𝛾)
 , (37) 

where 𝛽 > 0 and 𝜁 is given in (5). 

By using Family 15, (6) becomes 

𝑢22 = −
𝜃𝜆2

2𝛼 𝜁 (𝜃𝜁+2)
, (38) 

where 𝜁 is given in (5). 

By using Family 19, (6) becomes 

𝑢23 = 
3𝜆2𝛾2e𝛾 𝜁

(𝜆2𝛾2+12) 𝛼 (e𝛾 𝜁−𝜃)
, (39) 

where 𝜁 is given in (5) and 𝛾 < 0. 

5. Application of Simplest Equation Method 

In this section, we consider (8). With the help of 
homogenous balance principle between the 
𝑑2

𝑑𝜁2
𝑢(𝜁) and 𝑢3(𝜁) in Eq. (6), we obtain 3𝑀 = 𝑀 +

2, 𝑀 = 1. Therefore, we get that the trial solution 
of Eq. (6) can be stated as, 

𝑢(𝜁) = 𝐴0 + 𝐴1𝑤(𝜁), (40) 

where 𝐴1 ≠ 0, 𝐴0 are constants. For Bernoulli 

equation, putting 𝑢, 𝑢′′, 𝑢2 in (6) and comparing, we 

get, 

𝑘2𝐴0 − 𝜆
2𝐴0 + 𝜎 𝑘

2𝐴0
3 − 𝛼 𝑘2𝐴0

2 = 0, 

𝑘2𝐴1 − 2 𝛼 𝑘
2𝐴0 𝐴1 − 𝜆

2𝐴1 + 3 𝜎 𝑘
2𝐴0

2𝐴1

− 1/12 𝜆4𝐴1𝐵
2 = 0, 

𝜎 𝑘2𝐴1
3 − 1/6 𝜆4𝐴1 𝐴

2 = 0, 

−𝛼 𝑘2𝐴1
2 + 3 𝜎 𝑘2𝐴0 𝐴1

2 − 1/

4𝜆4𝐴1 𝐵𝐴 = 0.  (41) 

Calculation with the aid of Maple software, the 

solutions of the algebraic equations can be derived. 
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𝐒𝐞𝐭𝟏𝐁: {
𝐴0 = 0,𝐴1 = −

2

3
 
𝐴𝛼

𝜎 𝐵
, 𝜆 =

2√6𝛼

 𝐵√9𝜎−2𝛼2
,

𝑘 =
6√6 √𝜎𝛼 

(−9𝜎+2𝛼2)B
.

}

For Set 1𝐵 , we obtained the desired solutions as  

𝑢24 =
2

3
 
𝐴𝛼 cosh(𝐵(𝜁+𝐶))

𝜎
+
2

3
 
𝐴𝛼 sinh(𝐵(𝜁+𝐶))

𝜎

−1+𝐴cosh(𝐵(𝜁+𝐶))+𝐴sinh(𝐵(𝜁+𝐶))
, (42) 

where 𝜁 is given in (5). 

𝐒𝐞𝐭𝟐𝐁:

{
 
 

 
 𝐴0 = 0,𝐴1 = −

2

3
 
𝐴𝛼

𝜎 𝐵
, 𝜆 = −

2√6𝛼

 𝐵√9𝜎 − 2𝛼2
,

𝑘 =
6√6 √𝜎𝛼 

(−9𝜎 + 2𝛼2)B
.

}
 
 

 
 

 

For Set 2𝐵 , we obtained the desired solutions as 

𝑢25 =
2

3
 
𝐴𝛼 cosh(𝐵(𝜁+𝐶))

𝜎
+
2

3
 
𝐴𝛼 sinh(𝐵(𝜁+𝐶))

𝜎

−1+𝐴cosh(𝐵(𝜁+𝐶))+𝐴sinh(𝐵(𝜁+𝐶))
, (43) 

where 𝜁 is given in (5).  

𝐒𝐞𝐭𝟑𝐁:

{
 
 

 
 𝐴0 =

2
3
 
𝛼
𝜎
, 𝐴1 =

2

3
 
𝐴𝛼

𝜎 𝐵
, 𝜆 =

2√6𝛼

 𝐵√9𝜎 − 2𝛼2
,

𝑘 =
6√6 √𝜎𝛼 

(−9𝜎 + 2𝛼2)B
.

}
 
 

 
 

 

For Set 3𝐵 , we obtained the desired solutions as  

𝑢26 =  
−2𝛼

3𝜎 (−1+𝐴cosh(𝐵(𝜁+𝐶))+𝐴sinh(𝐵(𝜁+𝐶)))
, (44) 

where 𝜁 is given in (5). 

𝐒𝐞𝐭𝟒𝐁:

{
 
 

 
 𝐴0 =

2
3
 
𝛼
𝜎
, 𝐴1 =

2

3
 
𝐴𝛼

𝜎 𝐵
, 𝜆 = −

2√6𝛼

 𝐵√9𝜎 − 2𝛼2
,

𝑘 =
6√6 √𝜎𝛼 

(−9𝜎 + 2𝛼2)B
.

}
 
 

 
 

 

For Set 4𝐵 , we obtained the desired solutions as  

𝑢27 = 
2𝛼

3𝜎 (−1+𝐴cosh(𝐵(𝜁+𝐶))+𝐴sinh(𝐵(𝜁+𝐶)))
, (45) 

where 𝜁 is given in (5). 

For Riccati equation, putting 𝑢, 𝑢2, 𝑢′′, 𝑢3 in (6) and 

comparing, we get,  

12 𝑘2𝐴0 − 𝜆
4𝐴1 𝐵𝐷 − 12 𝜆

2𝐴0 + 12 𝜎 𝑘
2𝐴0

3 −

12 𝛼 𝑘2𝐴0
2 = 0, 

12 𝑘2𝐴1 − 12 𝜆
2𝐴1 + 36 𝜎 𝑘

2𝐴0
2𝐴1 −

24 𝛼 𝑘2𝐴0 𝐴1 − 𝜆
4𝐴1 𝐵

2 − 2 𝜆4𝐴1 𝐴D = 0, 

−12 𝛼 𝑘2𝐴1
2 − 3 𝜆4𝐴1 𝐵𝐴 + 36 𝜎 𝑘

2𝐴0 𝐴1
2 = 0,

   

12 𝜎 𝑘2𝐴1
3 − 2 𝜆4𝐴1 𝐴

2 = 0. (46) 

Calculation with the aid of Maple software, the 

solutions of the algebraic equations can be derived. 

𝐒𝐞𝐭𝟏𝐑:

{
 
 
 
 

 
 
 
 𝐴0 =

1

2
 
(𝐵+√−4 𝐴𝐷+𝐵2)𝐴1

𝐴
, 𝐴1 = 𝐴1 ,

𝛼 = 3 
𝐴

𝑘2𝐴1

√−4 𝐴𝐷+𝐵2

4 𝐴𝐷−𝐵2
(2 

3+√9−12 𝑘2𝐴𝐷+3 𝑘2𝐵2

4 𝐴𝐷−𝐵2
− 𝑘2) ,

𝜆 =
√2√(4 𝐴𝐷−𝐵2)(3+√9−12 𝑘2𝐴𝐷+3 𝑘2𝐵2)

4 𝐴𝐷−𝐵2
,

𝜎 = 2 𝐴2
(2 

3+√9−12 𝑘2𝐴𝐷+3 𝑘2𝐵2

4 𝐴𝐷−𝐵2
−𝑘2)

(4 𝐴𝐷−𝐵2)𝑘2𝐴1
2 . }

 
 
 
 

 
 
 
 

 

For Set 1𝑅, we obtained the desired solutions as  

𝑢28 = −
𝐴1√−4 𝐴𝐷+𝐵

2(−1+tanh(
1

2
 √−4 𝐴𝐷+𝐵2(𝜁+𝐶)))

2𝐴
 ,

 (47) 

and  

𝑢29 =
1

2
 
(𝐵+√𝐵2−4 𝐴𝐷)𝐴1

𝐴
  

 

+𝐴1  (−
1

2
 
𝐵+√𝐵2−4 𝐴𝐷tanh(

1

2
 √𝐵2−4 𝐴𝐷𝜁)

𝐴
 

+
𝑠𝑒𝑐ℎ(

1

2
 √𝐵2−4 𝐴𝐷𝜁)

𝐶cosh(
1

2
 √𝐵2−4 𝐴𝐷𝜁)−2 

𝐴sinh(
1
2
 √𝐵2−4 𝐴𝐷𝜁)

√𝐵2−4 𝐴𝐷

),

  (48) 

where 𝜁 is given in (5). 

𝐒𝐞𝐭𝟐𝐑:

{
 
 
 
 
 

 
 
 
 
 𝐴0 =

1

2
 
(𝐵 + √−4 𝐴𝐷 + 𝐵2)𝐴1

𝐴
, 𝐴1 = 𝐴1 ,

𝛼 =
3 𝐴√−4 𝐴𝐷 + 𝐵2

𝐴1(4 𝐴𝐷 − 𝐵
2)𝑘2

(2 
3 + √9 − 12 𝑘2𝐴𝐷 + 3 𝑘2𝐵2

4 𝐴𝐷 − 𝐵2
− 𝑘2) ,

𝜆 = −
√2√(4 𝐴𝐷 − 𝐵2)(3 + √9 − 12 𝑘2𝐴𝐷 + 3 𝑘2𝐵2)

4 𝐴𝐷 − 𝐵2
,

𝜎 =

2𝐴2 (2 
3 + √9 − 12 𝑘2𝐴𝐷 + 3 𝑘2𝐵2

4 𝐴𝐷 − 𝐵2
− 𝑘)

(4 𝐴𝐷 − 𝐵2)𝑘2𝐴1
2 .

}
 
 
 
 
 

 
 
 
 
 

 

For Set 2𝑅, we obtained the desired solutions as 

𝑢30 =
(𝐵 + √−4 𝐴𝐷 + 𝐵2)𝐴1

2𝐴
  

−
𝐵𝐴1+𝐴1 √−4 𝐴𝐷+  𝐵

2tanh(
1

2
 √−4 𝐴𝐷+𝐵2(𝜁+𝐶))

2𝐴
, (49) 
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and  

𝑢31

=
1

2
 
(𝐵 + √−4 𝐴𝐷 + 𝐵2)𝐴1

𝐴

+ 𝐴1  (−
1

2
 
𝐵 + √−4 𝐴𝐷 + 𝐵2tanh (

1
2
 √−4 𝐴𝐷 + 𝐵2𝜁)

𝐴
 

+
𝑠𝑒𝑐ℎ(

1

2
 √−4 𝐴𝐷+𝐵2𝜁)

𝐶cosh(
1

2
 √−4 𝐴𝐷+𝐵2𝜁)−2 

𝐴sinh(
1
2
 √−4 𝐴𝐷+𝐵2𝜁)

√−4 𝐴𝐷+𝐵2

), (50) 

where 𝜁 is given in (5). 

 

Figure 1.  Numerical simulation of 𝑢1 in Eq. (15) in three 
dimensional plot. 

 

Figure 2. Numerical simulation of 𝑢18 in Eq. (34) in three 
dimensional plot. 

 

Figure 3. Numerical simulation of 𝑢24 in Eq. (42) in three 
dimensional plot.   

 

Figure 4. Numerical simulation of 𝑢26 in Eq. (44) in three 
dimensional plot. 

 

Figure 5. Numerical simulation of 𝑢28 in Eq. (47) in three 
dimensional plot. 
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6 Results and discussion 

The model discussed in this study contains the 

fractional derivative ABR which makes it interesting. 

The ABR fractional operator is considered as one of 

the last general fractional operators derived from 

avoiding the deficiencies and defects of some other 

fractional operators (Park et al. 2020). The 

techniques applied in this study are effective and 

powerful techniques for solving partial differential 

equations. The variety of solutions obtained makes 

these methods advantageous, which is a 

scientifically beatiful feature. 

The nonlinear integer order PDE describing the low-

pass electrical lines has been discussed in 

(Abdoulkary et al. 2013) using an auxiliary equation 

method an in (Zayed and Alurrfi 2015) using Jacobi 

elliptic function expansion method. In (Park et al. 

2020), the fractional nonlinear model of the low–

pass electrical transmission lines has been 

considered and constructed explicit wave solutions 

using modified Khater method. When our results 

obtained in this study using two different methods 

were compared with the results obtained in (Part et 

al 2020), it was seen that they were different. 

The graphical representation of some of obtained 
solution are plotted by taking suitable values of 
involved unknown parameters. Here, we give the 
figure interpretation of the shown figures as 
following: 
Figure 1 explains the periodic wave solution u1 when 
𝑎 = 1, 𝑏 = 1, 𝑐 = 2, 𝛼 = 5, 𝜆 = 4, 𝑣 = 0.1. 
Figure 2 shows the dark wave solution u18   when 
𝑎 = 2, 𝑏 = 5, 𝑐 = 0, 𝛼 = 2, 𝜆 = 0.6, 𝑣 = 0.55. 
Figure 3 shows the graph of hyperbolic function 
solution u24 when 𝐴 = 3, 𝐵 = 2, 𝐶 = 2, 𝛼 =
−2, 𝜎 = 5, 𝑣 = 0.3. 
Figure 4 shows the graph of hyperbolic function 
solution u26 when 𝐴 = 1, 𝐵 = 1, 𝐶 = 2, 𝛼 =
0.1, 𝜎 = 3, 𝑣 = 0.01. 
Figure 5 indicates the exact soliton wave solution   
u28  when 𝐴 =  −3, 𝐴1  =  5, 𝐵 =  1, 𝐶 =
 −0.1, 𝐷 =  5, 𝑘 =  4.5, 𝑣 =  0.6. 
 
 

7. Conclusions 

In this work, the improved 𝑡𝑎𝑛(𝜑/2)-expansion 
method and the simple equation method are 
successfully used to obtained exact solutions of the 

fractional nonlinear model of the low-pass electrical 
transmission lines. By proposed methods, solitary 
solutions are established including three types 
namely, triangular functions solutions, exponential 
solutions and rational solutions. The variety of 
complete solutions obtained plays an important role 
in the interpretation and understanding of the 
physical model.  Some sketches are also depicted for 
the interpretation physically of the achieved 
solutions. To our best knowledge, some of the 
obtained solutions are new and not reported 
previously. This study shows that the proposed 
method is quite proficient and practically well 
organized in finding exact solutions to other physical 
problems. 
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