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Abstract 

33 cubic and 11 hexagonal materials were selected to determine the boiling temperature of the 

materials by regression analysis. The boiling temperatures of these selected materials were estimated 

by regression analysis using the elastic constant and boiling temperature information in the literature.  

Variance and regression analyze were performed with MINITAB 17 software in 95% confidence 

interval. Regression coefficients were calculated with 98.9% determination coefficient. As a result of 

regression analysis, an empirical relationship between the elastic constants and the boiling 

temperature was obtained which predicts boiling temperatures for some cubic and hexagonal 

materials. The boiling temperatures calculated with the help of these relationships were compared 

with the literature data. 

 

Elastik Sabitlerden Kaynama Sıcaklığının Belirlenmesi 

Anahtar kelimeler 

Kaynama sıcaklığı; 

Kübik; Regresyon; 

MINITAB 

Öz 

Regresyon analizi ile malzemelerin kaynama sıcaklığını belirlemek için 33 kübik ve 11 hekzagonal 

malzeme seçilmiştir. Bu seçilen malzemelerin kaynama sıcaklıkları, literatürdeki elastik sabit ve kaynama 

sıcaklığı bilgileri kullanılarak regresyon analizi ile tahmin edilmiştir. MINITAB 17 yazılımı ile %95 güven 

aralığında varyans ve regresyon analizi yapılmıştır. Regresyon katsayıları %98,9 tespit katsayısı ile 

hesaplanmıştır. Regresyon analizi sonucunda, elastik sabitler ile kaynama sıcaklığı arasında ampirik ilişki 

elde edilmiş ve bazı kübik ve hekzagonal malzemeler için kaynama sıcaklıkları öngörülmüştür. Bu 

ilişkilerin yardımıyla hesaplanan kaynama sıcaklıkları literatür verileri ile karşılaştırıldı. 

© Afyon Kocatepe Üniversitesi 

 

1. Introduction 

Since the existence of humanity, it has used the 

materials in nature to meet their needs according 

to their wishes. The use of materials in nature has 

sometimes taken place without any operation, and 

sometimes after various operations. The material 

has always been important for humanity and it still 

maintains its importance. Materials are critical to 

maintaining the current technological 

developments (Erdoğan 2007). The selection of 

suitable materials for the job is only possible by 

knowing the properties of the material. For 

example, it is desirable that the material used in 

the making of the boiling container is high melting 

temperature.  The material used in the cutting and 

drilling tool must be very hardness. Nowadays, the 

physical properties of materials can be determined 

by theoretical and experimental studies. In cases 

where experimental measurements can be difficult 

or the cost may be high be able to be determined, 

it can be very easy and inexpensive to determine 

the properties of the material through a number of 

theoretical models (Arslan and Dogan 2019). There 

are many models and empirical relationships in the 

literature to determine each properties of the 

material, for example, evaluation of 

thermodynamic properties (Arslan et al. 2013, 

Arslan and Dogan 2015, Dogan and Arslan 2018), 

composition dependencies of thermodynamic 

properties (Dogan and Arslan 2016), estimation of 

excessive energies and activity coefficients (Dogan 

et al. 2015), determination of martensite 
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conversion temperatures (Dogan and Ozer 2013), 

hardness of polycrystalline materials (Chen et al. 

2011), etc. The computing power of computers is 

widely used in theoretical studies. Computer 

calculations help to you understand physical 

phenomena while also reducing research costs 

(Ozer 2016). As a result of the calculations, 

empirical relations can be established between the 

physical properties of the material.  

As stated in many studies in the literature, the 

elastic properties of the solid are associated with 

physical properties such as heat capacity, melting 

point, inter-atom bond and Debye temperature 

(Liu 2011). Elastic constants of the material give 

interesting information about the mechanical and 

dynamic properties of the substance (Cabuk 2010).  

Also, the elastic constants are very important 

parameters for technological applications (Ozer 

and Cabuk 2018). The experimental determination 

of these quantities under high pressure is difficult 

because of the difficulty of the experimental 

conditions (Özer et al. 2017). Due to the 

relationship between the boiling temperature and 

the elastic constants, the boiling temperature of 

the material can be calculated by the help of elastic 

constants. The use of empirical relations in 

determining the boiling temperature will prevent 

the time and material consumption used in 

experimental studies. With empirical relations, the 

boiling temperature can be easily and quickly 

predicted. 

Numerous experimental studies have been 

conducted to determine the boiling temperature of 

materials in the literature (Madelung 2004, Rumble 

2018). There are empirical correlations in the 

literature for determining the melting 

temperatures of cubic, hexagonal and tetragonal 

materials (Özer 2018, Fine et al. 1984). However, 

we could not find any empirical relation to the 

determination of boiling points. In this sense, an 

empirical equation was proposed between the 

elastic constants and the boiling temperatures for 

the first time in solids.  The proposed equation has 

a 95% confidence interval and a 98.9% coefficient 

of determination. 

2. Materials and Methods 

If the relationship between the variables is 

statistically significant, a statistical model can be 

created for this relationship. In constructing a 

statistical model, a variable is used as a dependent 

or as a response variable and other variable or 

variables are taken as explanatory variables. In this 

study, regression model was used. The purpose of 

the regression analysis is to explain the total 

change in the dependent or response variable 

using explanatory variable or variables. To explain 

the total change in the response variable, if the 

regression model uses an explanatory variable is 

called simple linear and if the regression model 

uses multiple explanatory variables is called as a 

multiple regression model. 

Too many variables can come together and 

influence another a variable. Same time these 

explanatory variables can also affect each other 

among themselves. For example, if there is a linear 

relationship between the explanatory variable X1 

and the explanatory variable X2, this causes the 

problem of multiple internal relations. These two 

explanatory variables do not need to be present in 

the model at the same time. One of the variables is 

enough to be in the model (Erol 2010). Scattering 

diagrams are plotted to easily visualize the 

relationship between variables. Scattering 

diagrams show the relationship and shape between 

variables. 

The equation, which determines from the 

scattering diagrams functional form of the 

relationship between variables, is called the 

regression equation. In cases where a variable is 

used, a single regression analysis is performed. If 

using in the regression analysis multiple 

independent variables is called "multiple regression 

analysis".  

The most common multiple regression equation; Xi 

explanatory variables or arguments, the ei error 

term, and the Y response variable or dependent 

variable; 

𝑌 = 𝑎0 + 𝑎1𝑋1 + 𝑎2𝑋2 + ⋯ + 𝑎𝑘𝑋𝑘 + 𝑒𝑖   ( 1 ) 

here, 𝑎0 is the value 𝑌 when 𝑋 = 0. 𝑎1, 𝑎2, 𝑎𝑘 are 

the regression coefficient. When it is changed 1 

unit in  's unit, it refers to the amount of change in 

𝑋 's own unit in the 𝑌. The term 𝑒𝑖 error 
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represents, in a way, the argument that is not 

included in the model. There are different methods 

(Gürsakal 2014) and software to solve the 

regression equations. In this study, we used the 

MINITAB software. In order to visually see the 

strength and direction of the relationship between 

two quantitative variables, a scattering diagram is 

drawn (Gürsakal 2014). If there is no relationship 

between variables, regression analysis cannot be 

applied. The scatter diagram drawn for this study is 

shown in Figure 2. The following figures (Figure-1) 

are given as examples for the scattering diagrams 

showing the shape and direction of the 

relationship.  

It is not correct to make an estimate for an 𝑋 value 

of outside the change range of the 𝑋 values used in 

the calculation of the regression coefficient of the 

regression equation.  If an 𝑋 value outside this the 

range is used for estimating from the regression 

equation, the estimate may be inaccurate 

(Gürsakal 2014). 

After the regression coefficients are calculated and 

regression estimation model is established, R2 and 

corrected R2 are calculated. The value of the R2, 

variable or variables of the 𝑋, indicates the 

percentage of the total change in the variable 𝑌.  In 

the regression models with the same number of 

explanatory variables, R2 uses the corrected R2 

value in regression models with a different number 

of explanatory variables (Erol 2010). Value of the 

coefficient of determination is 0 ≤ R2 ≤ 1. if the R2 

value is "0”, it indicates that the variability in the 

dependent variable cannot be explained by the 

argument. if the R2 value is "1”, it indicates that the 

variability in the dependent variable is fully 

explained by the argument (Gürsakal 2014).
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Figure 1: Examples of scattering diagrams, (a) There is no relationship between variables, (b) There is a positive linear 

relationship between variables, (c) There is a negative linear relationship between variables, (d) The 

relationship between variables is parabolic, (e) The relationship between the variables is parabolic in a 

negative direction, (f) The relationship between variables is curvilinear.  

3. Results and Discussion 
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The boiling point and elastic constants of 33 cubic 

materials to be used in this study were obtained 

from the literature review and given in Table 1.  

The scattering diagrams of these materials showing 

the relationship between elastic constants and 

boiling temperatures are shown in Fig. 2. As seen 

from Figure 2, there is a positive linear relationship 

between the variables. For the cubic structures, 

variance and regression analyzes were performed 

with the MINITAB 17 (Minitab) software on the 

data shown in Table 1. As a result of the analyzes, it 

was seen that regression model and coefficients of 

the regression were statistically significant and the 

coefficient of determination of the model was 

98.9%. According to this result, 98.9% of the 

variability in the boiling point of a cubic material 

can be explained by the elastic constants C11, C12 

and C44, which cannot be explained by 1.1%. 1.1% 

depends on factors not included in the model. The 

empirical equation obtained in regression analysis 

is given below: 

 

 
Figure 2: Scattering diagram for cubic structures.  

 

𝑏𝑡 = 1312.5 + 7.019𝐶11 + 1.221𝐶12 + 2.26𝐶44 (2) 

here, 𝑏𝑡 is the boiling point in Kelvin (K) unit, 𝐶𝑖𝑗  is 

the elastic constants (GPa). As can be seen from 

this equation, the maximum contribution to boiling 

point comes from 𝐶11 constant. 𝐶12 and 

𝐶44 contribute a little to the boiling point. The 

comparison of the boiling points obtained by using 

the proposed equation with this study is done in 

Table 1 and Table 2. As can be seen from Table 1, 

the values calculated using Equation (2) are quite 

consistent with experimental values. The maximum 

difference between the calculated value and the 

experimental values given in Table 1 is 30.48%, the 

smallest difference is 0.03% mean 5.05% 

difference.  

In order to test the empirical equation (2), we 

applied to the materials in Table 2 which are not 

used in the analysis.   Table 2 was compared with 

unused data in the analysis to test the predictive 

power of this equation. As can be seen from Table 

2, the values calculated using Equation (2) are 

consistent with experimental data. The biggest 

difference between the calculated value and the 

experimental values given in Table 2 is 64.23%, the 

smallest difference is 2.32% and 25.95% difference.  
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Table 1: Comparison of boiling points for cubic structures (𝐶𝑖𝑗 in GPa, Boiling point (𝑏𝑡) in K) 

Formula 𝐶11 𝐶12 𝐶44 bt(expt.) bt (from eq.2) Dif. 

Ag [ a] 123.99 93.67 46.12 2435.00 2401.39 1.38 

AgBr [ a] 59.20 36.40 6.16 1775.00 1786.39 0.64 

Au [ a] 192.44 162.98 42.00 3109.00 2957.15 4.88 

CaF2 [ a] 164.20 43.98 84.06 2773.00 2708.69 2.32 

CaO [ a] 221.89 57.81 80.32 3123.00 3122.06 0.03 

CsBr [ a] 30.63 8.07 7.50 1573.00 1554.30 1.19 

CsCl [ a] 36.44 8.82 8.04 1570.00 1597.21 1.73 

CsI [ a] 24.46 6.61 6.29 1553.00 1506.47 3.00 

Cu [ a] 168.30 122.10 75.70 2833.00 2813.96 0.67 

Fe [ a] 226.00 140.00 116.00 3134.00 3331.89 6.31 

K [ a] 3.70 3.14 1.88 1032.00 1346.55 30.48 

KBr [ a] 34.68 5.80 5.07 1708.00 1574.46 7.82 

KF [ a] 64.90 15.20 12.32 1775.00 1814.44 2.22 

KI [ a] 27.10 4.50 3.64 1596.00 1516.44 4.99 

Li [ a] 13.50 11.44 8.78 1615.00 1441.07 10.77 

LiBr [ a] 39.40 18.80 19.10 1573.00 1655.17 5.22 

LiCl [ a] 49.27 23.10 24.95 1656.00 1742.92 5.25 

LiI [ a] 28.50 14.00 13.50 1444.00 1560.15 8.04 

MgO [ a] 297.08 95.36 156.13 3873.00 3866.99 0.16 

Mo [ a] 463.70 157.80 109.20 4912.00 5006.68 1.93 

Na [ a] 7.39 6.22 4.19 1155.94 1381.43 19.51 

NaBr [ a] 39.70 10.01 9.98 1663.00 1625.93 2.23 

NaCl [ a] 49.47 12.88 12.87 1738.00 1704.54 1.93 

NaF [ a] 97.00 23.80 28.22 1977.00 2086.18 5.52 

NaI [ a] 30.07 9.12 7.33 1577.00 1551.26 1.63 

Pb [ a] 49.66 42.31 14.98 2022.00 1746.58 13.62 

Pd [ a] 227.10 176.04 71.73 3236.00 3283.57 1.47 

Pt [ a] 346.70 250.70 76.50 4098.00 4224.98 3.10 

RbBr [ a] 31.52 5.00 3.80 1613.00 1548.43 4.00 

RbCl [ a] 36.24 6.12 4.68 1663.00 1584.92 4.70 

RbI [ a] 25.56 3.82 2.78 1573.00 1502.85 4.46 

TaC [ a] 505.00 73.00 79.00 5053.00 5124.77 1.42 

W [ a] 522.39 204.37 160.83 5828.00 5592.17 4.05 

Max. 522.39 250.70 160.83 5828.00 5592.17 30.48 

Min. 3.70 3.14 1.88 1032.00 1346.55 0.03 

Mean. 128.40 56.15 39.50 2371.48 2371.58 5.05 

a Rumble 2018 
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Table 2: Comparison of unused boiling points (in cubic structures) in regression analysis (𝐶𝑖𝑗  in GPa, Boiling point (𝑏𝑡) 

in K) 

Formula 𝐶11 𝐶12 𝐶44 bt(expt.) bt (from eq. 2) Dif. 

Al 106.75[a,b,c] 60.41  28.34 2792.00[a] 2199.59 21.22 

CaF2 164.20[a,b,d] 43.98  84.06 2773.00[a] 2708.69 2.32 

Cr  339.80[a,b,e] 58.60  99.00 2944.00[a] 3992.85 35.63 

Ge  128.35[a,b,f] 48.23 66.66 3106.00[a] 2422.93 21.99 

LiF  113.97[a,b,g] 47.67 63.64 1946.00[a] 2314.49 18.94 

MgO  297.10[ o]       . 96.50 155.70 4070.00[o] 3867.55 4.97 

Nb  246.50[a,b,h] 134.50 28.73 5014.00[a] 3271.84 34.75 

Ni  248.10[a,b,i] 154.90 124.20 3186.00[a] 3523.74 10.60 

Si  165.78[a,b,j] 63.94 79.62 3538.00[a] 2734.12 22.72 

SrF2 123.50[a,b, k] 43.05 31.28 2733.00[a] 2302.60 15.75 

SrO  175.47[o]          . 49.08 55.87 3300.00[o] 2730.32 17.26 

Ta  260.23[a,b,l] 154.46 82.55 5728.00[a] 3514.21 38.65 

Th  75.30[a,b,m] 48.90 47.80 5058.00[a] 2008.77 60.29 

ThO2  367.00[a,b,n] 106.00 79.70 4673.00[a] 4198.02 10.16 

TlBr  37.60[a]     . 14.58 7.57 1092.00[a] 1611.32 47.56 

TlCl  40.15[o]    . 15.37 7.84   993.00[o] 1630.80 64.23 

V  228.70[a,b,h] 119.00 43.20 3680.00[a] 3160.68 14.11 

Max. 367.00 154.90 155.70 5728.00 4198.02 64.23 

Min. 37.60 14.58 7.57 993.00 1611.32 2.32 

Mean. 183.44 74.07 63.87 3330.94 2834.85 25.95 

a Rumble 2018, b Simsons and Wang 1971, c Thomas 1968, d Wong and Schuele 1967, 
e Sumer and Smith 1963, f Bogardus 1965, g Drabble and Strathen1967, h Bolef 1961, 
i Epstein and Carlson 1965, j McSkimin and 1964, k Gerlich 1964, l Soga 1966, 
m Armstrong et al. 1959, n Macedo et al. 1964, o Madelung 2004, 

 

For the hexagonal structures, elastic constant 

(𝐶𝑖𝑗) and boiling points are obtained from the 

literature and are shown in Table 3.  A distribution 

graph shown in Figure 3 was obtained to form the 

empirical relationship between Cij and the boiling 

point.    

 

 
Figure 3: Scattering diagram for hexagonal structures.  
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Regression analysis was performed with MINITAB 

17 software. It is seen that the proposed model 

explained the boiling point in 99.71%. Other factors 

that are not included in the model are 0.29% in 

determining the boiling point. The regression 

equation for hexagonal structures; 

𝑏𝑡 = 555.4 − 25.94𝐶11 + 44.88𝐶12 + 16.05𝐶13  −

7.48𝐶33 + 65.14𝐶44   ( 3 ) 

The boiling temperature values of 11 different 

materials calculated with the help of equation 3 are 

compared with the boiling points in the literature 

in Table 3. In the comparison, it is seen that the 

proposed model predicts the boiling point different 

by 6.9% on average. 

 

 

Table 3: Determination of boiling point in hexagonal structure from elastic constants. 

Formula 𝑏𝑡 (expt.) 𝐶11 𝐶12 𝐶13 𝐶33 𝐶44 𝑏𝑡 (from eq.3) Dif. 

Be 2468[a] 292.3[a,b,p] 26.7 14 336.4 162.5 2465.1 0.1 

BiI3 542[a] 29[o]         . 5 9 26 7 433.5 20.0 

Cd 767[a] 114.5[a,b,r] 39.5 39.9 50.85 19.85 911.1 18.8 

CdI2 744[a] 43.1[o]         . 20.4 8.9 22.5 5.5 685.8 7.8 

In 2027[a] 45.4[a,b,s] 40.06 41.51 45.15 6.51 1929.5 4.8 

Mg 1090[a] 59.5[a,b,t] 26.12 21.8 61.55 16.35 1138.8 4.5 

Ru 4147[a] 562.6[a] 187.8 168.2 624.2 180.6 4184.9 0.9 

Ti 3287[a] 162.4[a,b,u] 92 69 180.7 46.7 3269.6 0.5 

Tl 1473[a] 40.8[a,b,w] 35.4 29 52.8 7.26 1629.2 10.6 

Zn 907[a] 163.68[a,b,y] 36.4 53 63.47 38.79 845.8 6.7 

Re 5590[a] 618.2[a,b,z] 275.3 207.8 683.5 160.6 5558.9 0.6 

Max. 5590 618.2 275.3 207.8 683.5 180.6 5558.9 20.0 

Min. 542 29.0 5.0 8.9 22.5 5.5 433.5 0.1 

Mean. 2095 193.8 71.3 60.2 195.2 59.2 2095.6 6.9 

a Rumble 2018, b Simsons and Wang 1971, o Madelung 2004, p Smith and Arbogast 1960, 
r Chang and Himmel 1966, s Chandrasekhar and Rayne 1961, t Wazzan and Robinson 1967, 
u Fisher and Renken 1964, w Ferris et al. 1963, y Alers and Neighbours 1958, 
z Fisher and Ever 1967. 

 

4. Conclusion 

In this study, the scatter diagrams of some cubic 

and hexagonal structures in the literature have 

been drawn to find the relationship between their 

boiling points and their elastic constants.  

Regression analysis was applied on these 

distribution diagrams and empirical expressions 

were obtained. The boiling temperatures of some 

cubic and hexagonal materials were estimated 

using the equations obtained as a result of the 

regression analysis. The 50 boiling points calculated 

for cubic materials were found to be 12.12% 

different from the experimental value on average.  
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